Launay et al. identify molecular mechanisms underlying an ultrarare spastic paraplegia and acute liver failure syndrome, caused by RINT1 mutations. The cover art depicts lipid droplets budding out from the ER, close to mitochondria. RINT1 (purple) is crucial for lipid droplet biogenesis, tethering to the ER, metabolic homeostasis of neutral lipid and phospholipids, and mitochondria dynamics. Image credit: Nathalie Launay.
Ayush Kumar
Mesenchymal cells are uniquely located at the interface between the epithelial lining and the stroma, allowing them to act as a signaling hub among diverse cellular compartments of the lung. During embryonic and postnatal lung development, mesenchyme-derived signals instruct epithelial budding, branching morphogenesis, and subsequent structural and functional maturation. Later during adult life, the mesenchyme plays divergent roles wherein its balanced activation promotes epithelial repair after injury while its aberrant activation can lead to pathological remodeling and fibrosis that are associated with multiple chronic pulmonary diseases, including bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this Review, we discuss the involvement of the lung mesenchyme in various morphogenic, neomorphogenic, and dysmorphogenic aspects of lung biology and health, with special emphasis on lung fibroblast subsets and smooth muscle cells, intercellular communication, and intrinsic mesenchymal mechanisms that drive such physiological and pathophysiological events throughout development, homeostasis, injury repair, regeneration, and aging.
Elie El Agha, Victor J. Thannickal
Acute respiratory infections trigger an inflammatory immune response with the goal of pathogen clearance; however, overexuberant inflammation causes tissue damage and impairs pulmonary function. CD4+FOXP3+ regulatory T cells (Tregs) interact with cells of both the innate and the adaptive immune system to limit acute pulmonary inflammation and promote its resolution. Tregs also provide tissue protection and coordinate lung tissue repair, facilitating a return to homeostatic pulmonary function. Here, we review Treg-mediated modulation of the host response to respiratory pathogens, focusing on mechanisms underlying how Tregs promote resolution of inflammation and repair of acute lung injury. We also discuss potential strategies to harness and optimize Tregs as a cellular therapy for patients with severe acute respiratory infection and discuss open questions in the field.
Milica Jovisic, Nurbek Mambetsariev, Benjamin D. Singer, Luisa Morales-Nebreda
hnRNPH2-related neurodevelopmental disorder (NDD) is caused by mutations in the HNRNPH2 gene and is associated with substantial challenges, including developmental delay, intellectual disability, growth delay, and epilepsy. There is currently no therapeutic intervention available to those with hnRNPH2-related NDD that addresses its underlying mechanisms. In this issue of the JCI, Korff et al. studied specific gain-of-function mutations associated with hnRNPH2-related NDD, with the help of mouse models that recapitulate key features of the condition in humans. Their work paves the way for therapeutic approaches that aim to reduce the expression of mutant hnRNPH2 and highlights a role for disrupted RNA granules in neurodevelopmental and neurodegenerative disorders.
Benjamin A. Kelvington, Ted Abel
In this issue of the JCI, Wang and colleagues investigate the relationship between sleep disturbances, an environmental risk factor for Alzheimer’s disease (AD), and the apolipoprotein 4 (APOEε4) allele, a strong genetic risk factor for AD. The authors subjected an amyloid mouse model expressing human APOE3 or APOE4, with and without human AD-tau injection, to sleep deprivation and observed that amyloid and tau pathologies were worsened in the presence of APOE4. Moreover, decreased microglial clustering and increased dystrophic neurites around plaques were observed in sleep-deprived APOE4 mice. In addition, aquaporin 4, important for clearing amyloid-β through the glymphatic system, was reduced and less polarized to astrocytic endfeet. These APOE4-induced changes caused alterations in sleep behavior during recovery from sleep deprivation, suggesting a feed-forward cycle of sleep disturbance and increased AD pathology that can further disrupt sleep in the presence of APOE4.
Katherine R. Sadleir, Robert Vassar
Hypertrophic cardiomyopathy and pathological cardiac hypertrophy are characterized by mitochondrial structural and functional abnormalities. In this issue of the JCI, Zhuang et al. discovered 1-deoxynojirimycin (DNJ) through a screen of mitochondrially targeted compounds. The authors described the effects of DNJ in restoring mitochondria and preventing cardiac myocyte hypertrophy in cellular models carrying a mutant mitochondrial gene, MT-RNR2, which is causally implicated in familial hypertrophic cardiomyopathy. DNJ worked via stabilization of the mitochondrial inner-membrane GTPase OPA1 and other, hitherto unknown, mechanisms to preserve mitochondrial crista and respiratory chain components. The discovery is likely to spur development of a class of therapeutics that restore mitochondrial health to prevent cardiomyopathy and heart failure.
Abhinav Diwan
Cell senescence suppresses tumors by arresting cells at risk of becoming malignant. However, this process in turn can affect the microenvironment, leading to acquisition of a senescence-associated secretory phenotype (SASP) that renders senescent cells proinflammatory and results in tumor progression. But how is SASP controlled? In this issue of the JCI, Attig and Pape et al. describe the role of chimeric calbindin 1 (CALB1) transcripts, which are driven by an upstream human endogenous retrovirus subfamily H (HERVH) element. The authors propose that in lung squamous cell carcinoma (LUSC), HERVH-driven isoforms of calbindin (HERVH-CALB1) counteract SASP. As an alternative promoter, HERVH drove calbindin isoforms that prevented cancer cell senescence and associated inflammation, which was associated with better patient survival. We comment on the similarities between HERVH-CALB1–related cellular fitness in cancer and early embryogenesis and discuss the potential benefits of HERVH-driven chimeric transcripts.
Manvendra Singh, Aleksandra M. Kondraskhina, Laurence D. Hurst, Zsuzsanna Izsvák
Sepsis remains a leading cause of death for humans and currently has no pathogenesis-specific therapy. Hampered progress is partly due to a lack of insight into deep mechanistic processes. In the past decade, deciphering the functions of small noncoding miRNAs in sepsis pathogenesis became a dynamic research topic. To screen for new miRNA targets for sepsis therapeutics, we used samples for miRNA array analysis of PBMCs from patients with sepsis and control individuals, blood samples from 2 cohorts of patients with sepsis, and multiple animal models: mouse cecum ligation puncture–induced (CLP-induced) sepsis, mouse viral miRNA challenge, and baboon Gram+ and Gram– sepsis models. miR-93-5p met the criteria for a therapeutic target, as it was overexpressed in baboons that died early after induction of sepsis, was downregulated in patients who survived after sepsis, and correlated with negative clinical prognosticators for sepsis. Therapeutically, inhibition of miR-93-5p prolonged the overall survival of mice with CLP-induced sepsis, with a stronger effect in older mice. Mechanistically, anti–miR-93-5p therapy reduced inflammatory monocytes and increased circulating effector memory T cells, especially the CD4+ subset. AGO2 IP in miR-93–KO T cells identified important regulatory receptors, such as CD28, as direct miR-93-5p target genes. In conclusion, miR-93-5p is a potential therapeutic target in sepsis through the regulation of both innate and adaptive immunity, with possibly a greater benefit for elderly patients than for young patients.
Mihnea P. Dragomir, Enrique Fuentes-Mattei, Melanie Winkle, Keishi Okubo, Recep Bayraktar, Erik Knutsen, Aiham Qdaisat, Meng Chen, Yongfeng Li, Masayoshi Shimizu, Lan Pang, Kevin Liu, Xiuping Liu, Simone Anfossi, Huanyu Zhang, Ines Koch, Anh M. Tran, Swati Mohapatra, Anh Ton, Mecit Kaplan, Matthew W. Anderson, Spencer J. Rothfuss, Robert Silasi, Ravi S. Keshari, Manuela Ferracin, Cristina Ivan, Cristian Rodriguez-Aguayo, Gabriel Lopez-Berestein, Constantin Georgescu, Pinaki P. Banerjee, Rafet Basar, Ziyi Li, David Horst, Catalin Vasilescu, Maria Teresa S. Bertilaccio, Katayoun Rezvani, Florea Lupu, Sai-Ching Yeung, George A. Calin
Mutations in HNRNPH2 cause an X-linked neurodevelopmental disorder with features that include developmental delay, motor function deficits, and seizures. More than 90% of patients with hnRNPH2 have a missense mutation within or adjacent to the nuclear localization signal (NLS) of hnRNPH2. Here, we report that hnRNPH2 NLS mutations caused reduced interaction with the nuclear transport receptor Kapβ2 and resulted in modest cytoplasmic accumulation of hnRNPH2. We generated 2 knockin mouse models with human-equivalent mutations in Hnrnph2 as well as Hnrnph2-KO mice. Knockin mice recapitulated clinical features of the human disorder, including reduced survival in male mice, impaired motor and cognitive functions, and increased susceptibility to audiogenic seizures. In contrast, 2 independent lines of Hnrnph2-KO mice showed no detectable phenotypes. Notably, KO mice had upregulated expression of Hnrnph1, a paralog of Hnrnph2, whereas knockin mice failed to upregulate Hnrnph1. Thus, genetic compensation by Hnrnph1 may counteract the loss of hnRNPH2. These findings suggest that HNRNPH2-related disorder may be driven by a toxic gain of function or a complex loss of HNRNPH2 function with impaired compensation by HNRNPH1. The knockin mice described here are an important resource for preclinical studies to assess the therapeutic benefit of gene replacement or knockdown of mutant hnRNPH2.
Ane Korff, Xiaojing Yang, Kevin O’Donovan, Abner Gonzalez, Brett J.W. Teubner, Haruko Nakamura, James Messing, Fen Yang, Alexandre F. Carisey, Yong-Dong Wang, Tushar Patni, Heather Sheppard, Stanislav S. Zakharenko, Yuh Min Chook, J. Paul Taylor, Hong Joo Kim
The Rad50 interacting protein 1 (Rint1) is a key player in vesicular trafficking between the ER and Golgi apparatus. Biallelic variants in RINT1 cause infantile-onset episodic acute liver failure (ALF). Here, we describe 3 individuals from 2 unrelated families with novel biallelic RINT1 loss-of-function variants who presented with early onset spastic paraplegia, ataxia, optic nerve hypoplasia, and dysmorphic features, broadening the previously described phenotype. Our functional and lipidomic analyses provided evidence that pathogenic RINT1 variants induce defective lipid–droplet biogenesis and profound lipid abnormalities in fibroblasts and plasma that impact both neutral lipid and phospholipid metabolism, including decreased triglycerides and diglycerides, phosphatidylcholine/phosphatidylserine ratios, and inhibited Lands cycle. Further, RINT1 mutations induced intracellular ROS production and reduced ATP synthesis, affecting mitochondria with membrane depolarization, aberrant cristae ultrastructure, and increased fission. Altogether, our results highlighted the pivotal role of RINT1 in lipid metabolism and mitochondria function, with a profound effect in central nervous system development.
Nathalie Launay, Montserrat Ruiz, Laura Planas-Serra, Edgard Verdura, Agustí Rodríguez-Palmero, Agatha Schlüter, Leire Goicoechea, Cristina Guilera, Josefina Casas, Felix Campelo, Emmanuelle Jouanguy, Jean-Laurent Casanova, Odile Boespflug-Tanguy, Maria Vazquez Cancela, Luis González Gutiérrez-Solana, Carlos Casasnovas, Estela Area-Gomez, Aurora Pujol
Glucose is the basic fuel essential for maintenance of viability and functionality of all cells. However, some neurons — namely, glucose-inhibited (GI) neurons — paradoxically increase their firing activity in low-glucose conditions and decrease that activity in high-glucose conditions. The ionic mechanisms mediating electric responses of GI neurons to glucose fluctuations remain unclear. Here, we showed that currents mediated by the anoctamin 4 (Ano4) channel are only detected in GI neurons in the ventromedial hypothalamic nucleus (VMH) and are functionally required for their activation in response to low glucose. Genetic disruption of the Ano4 gene in VMH neurons reduced blood glucose and impaired counterregulatory responses during hypoglycemia in mice. Activation of VMHAno4 neurons increased food intake and blood glucose, while chronic inhibition of VMHAno4 neurons ameliorated hyperglycemia in a type 1 diabetic mouse model. Finally, we showed that VMHAno4 neurons represent a unique orexigenic VMH population and transmit a positive valence, while stimulation of neurons that do not express Ano4 in the VMH (VMHnon-Ano4) suppress feeding and transmit a negative valence. Together, our results indicate that the Ano4 channel and VMHAno4 neurons are potential therapeutic targets for human diseases with abnormal feeding behavior or glucose imbalance.
Longlong Tu, Jonathan C. Bean, Yang He, Hailan Liu, Meng Yu, Hesong Liu, Nan Zhang, Na Yin, Junying Han, Nikolas A. Scarcelli, Kristine M. Conde, Mengjie Wang, Yongxiang Li, Bing Feng, Peiyu Gao, Zhao-Lin Cai, Makoto Fukuda, Mingshan Xue, Qingchun Tong, Yongjie Yang, Lan Liao, Jianming Xu, Chunmei Wang, Yanlin He, Yong Xu
Increased levels and diversity of human endogenous retrovirus (HERV) transcription characterize most cancer types and are linked with disease outcomes. However, the underlying processes are incompletely understood. Here, we show that elevated transcription of HERVH proviruses predicted survival of lung squamous cell carcinoma (LUSC) and identified an isoform of CALB1, encoding calbindin, ectopically driven by an upstream HERVH provirus under the control of KLF5, as the mediator of this effect. HERVH-CALB1 expression was initiated in preinvasive lesions and associated with their progression. Calbindin loss in LUSC cell lines impaired in vitro and in vivo growth and triggered senescence, consistent with a protumor effect. However, calbindin also directly controlled the senescence-associated secretory phenotype (SASP), marked by secretion of CXCL8 and other neutrophil chemoattractants. In established carcinomas, CALB1-negative cancer cells became the dominant source of CXCL8, correlating with neutrophil infiltration and worse prognosis. Thus, HERVH-CALB1 expression in LUSC may display antagonistic pleiotropy, whereby the benefits of escaping senescence early during cancer initiation and clonal competition were offset by the prevention of SASP and protumor inflammation at later stages.
Jan Attig, Judith Pape, Laura Doglio, Anastasiya Kazachenka, Eleonora Ottina, George R. Young, Katey S.S. Enfield, Iker Valle Aramburu, Kevin W. Ng, Nikhil Faulkner, William Bolland, Venizelos Papayannopoulos, Charles Swanton, George Kassiotis
Human epidermal growth factor receptor 2–targeted (HER2-targeted) therapy is the mainstay of treatment for HER2+ breast cancer. However, the proteolytic cleavage of HER2, or HER2 shedding, induces the release of the target epitope at the ectodomain (ECD) and the generation of a constitutively active intracellular fragment (p95HER2), impeding the effectiveness of anti-HER2 therapy. Therefore, identifying key regulators in HER2 shedding might provide promising targetable vulnerabilities against resistance. In the current study, we found that upregulation of dolichyl-phosphate N-acetylglucosaminyltransferase (DPAGT1) sustained high-level HER2 shedding to confer trastuzumab resistance, which was associated with poor clinical outcomes. Upon trastuzumab treatment, the membrane-bound DPAGT1 protein was endocytosed via the caveolae pathway and retrogradely transported to the ER, where DPAGT1 induced N-glycosylation of the sheddase — ADAM metallopeptidase domain 10 (ADAM10) — to ensure its expression, maturation, and activation. N-glycosylation of ADAM10 at N267 protected itself from ER-associated protein degradation and was essential for DPAGT1-mediated HER2 shedding and trastuzumab resistance. Importantly, inhibition of DPAGT1 with tunicamycin acted synergistically with trastuzumab treatment to block HER2 signaling and reverse resistance. These findings reveal a prominent mechanism for HER2 shedding and suggest that targeting DPAGT1 might be a promising strategy against trastuzumab-resistant breast cancer.
Muwen Yang, Yue Li, Lingzhi Kong, Shumei Huang, Lixin He, Pian Liu, Shuang Mo, Xiuqing Lu, Xi Lin, Yunyun Xiao, Dongni Shi, Xinjian Huang, Boyu Chen, Xiangfu Chen, Ying Ouyang, Jun Li, Chuyong Lin, Libing Song
Extracellular cold-inducible RNA-binding protein (eCIRP) is a key mediator of severity and mortality in sepsis. We found that stimulation of mouse bone marrow–derived neutrophils (BMDNs) with eCIRP generated a distinct neutrophil subpopulation, characterized by cell surface markers of both antigen-presenting cells and aged neutrophils as well as expression of IL-12, which we named antigen-presenting aged neutrophils (APANs). The frequency of APANs was significantly increased in the blood, spleen, and lungs of WT mice subjected to cecal ligation and puncture–induced sepsis but not in CIRP–/– mice. Patients with sepsis had a significant increase in circulating APAN counts compared with healthy individuals. Compared with non–APAN-transfered mice, APAN-transferred septic mice had increased serum levels of injury and inflammatory markers, exacerbated acute lung injury (ALI), and worsened survival. APANs and CD4+ T cells colocalized in the spleen, suggesting an immune interaction between these cells. APANs cocultured with CD4+ T cells significantly induced the release of IFN-γ via IL-12. BMDNs stimulated with eCIRP and IFN-γ underwent hyper-NETosis. Stimulating human peripheral blood neutrophils with eCIRP also induced APANs, and stimulating human neutrophils with eCIRP and IFN-γ caused hyper-NETosis. Thus, eCIRP released during sepsis induced APANs to aggravate ALI and worsen the survival of septic animals via CD4+ T cell activation, Th1 polarization, and IFN-γ–mediated hyper-NETosis.
Hui Jin, Monowar Aziz, Atsushi Murao, Molly Kobritz, Andrew J. Shih, Robert P. Adelson, Max Brenner, Ping Wang
Hypertrophic cardiomyopathy (HCM) is the most prominent cause of sudden cardiac death in young people. Due to heterogeneity in clinical manifestations, conventional HCM drugs have limitations for mitochondrial hypertrophic cardiomyopathy. Discovering more effective compounds would be of substantial benefit for further elucidating the pathogenic mechanisms of HCM and treating patients with this condition. We previously reported the MT-RNR2 variant associated with HCM that results in mitochondrial dysfunction. Here, we screened a mitochondria-associated compound library by quantifying the mitochondrial membrane potential of HCM cybrids and the survival rate of HCM-induced pluripotent stem cell–derived cardiomyocytes (iPSC-CMs) in galactose media. 1-Deoxynojirimycin (DNJ) was identified to rescue mitochondrial function by targeting optic atrophy protein 1 (OPA1) to promote its oligomerization, leading to reconstruction of the mitochondrial cristae. DNJ treatment further recovered the physiological properties of HCM iPSC-CMs by improving Ca2+ homeostasis and electrophysiological properties. An angiotensin II-induced cardiac hypertrophy mouse model further verified the efficacy of DNJ in promoting cardiac mitochondrial function and alleviating cardiac hypertrophy in vivo. These results demonstrated that DNJ could be a potential mitochondrial rescue agent for mitochondrial hypertrophic cardiomyopathy. Our findings will help elucidate the mechanism of HCM and provide a potential therapeutic strategy.
Qianqian Zhuang, Fengfeng Guo, Lei Fu, Yufei Dong, Shaofang Xie, Xue Ding, Shuangyi Hu, Xuanhao D. Zhou, Yangwei Jiang, Hui Zhou, Yue Qiu, Zhaoying Lei, Mengyao Li, Huajian Cai, Mingjie Fan, Lingjie Sang, Yong Fu, Dong Zhang, Aifu Lin, Xu Li, Tilo Kunath, Ruhong Zhou, Ping Liang, Zhong Liu, Qingfeng Yan
Alzheimer’s disease (AD) is the most common cause of dementia. The APOE-ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset AD. The APOE genotype modulates the effect of sleep disruption on AD risk, suggesting a possible link between apoE and sleep in AD pathogenesis, which is relatively unexplored. We hypothesized that apoE modifies Aβ deposition and Aβ plaque–associated tau seeding and spreading in the form of neuritic plaque–tau (NP-tau) pathology in response to chronic sleep deprivation (SD) in an apoE isoform–dependent fashion. To test this hypothesis, we used APPPS1 mice expressing human APOE-ε3 or -ε4 with or without AD-tau injection. We found that SD in APPPS1 mice significantly increased Aβ deposition and peri-plaque NP-tau pathology in the presence of APOE4 but not APOE3. SD in APPPS1 mice significantly decreased microglial clustering around plaques and aquaporin-4 (AQP4) polarization around blood vessels in the presence of APOE4 but not APOE3. We also found that sleep-deprived APPPS1:E4 mice injected with AD-tau had significantly altered sleep behaviors compared with APPPS1:E3 mice. These findings suggest that the APOE-ε4 genotype is a critical modifier in the development of AD pathology in response to SD.
Chanung Wang, Aishwarya Nambiar, Michael R. Strickland, Choonghee Lee, Samira Parhizkar, Alec C. Moore, Erik S. Musiek, Jason D. Ulrich, David M. Holtzman
Bulk analysis of renal allograft biopsies (rBx) identified RNA transcripts associated with acute cellular rejection (ACR); however, these lacked cellular context critical to mechanistic understanding of how rejection occurs despite immunosuppression (IS). We performed combined single-cell RNA transcriptomic and TCR-α/β sequencing on rBx from patients with ACR under differing IS drugs: tacrolimus, iscalimab, and belatacept. We found distinct CD8+ T cell phenotypes (e.g., effector, memory, exhausted) depending upon IS type, particularly within expanded CD8+ T cell clonotypes (CD8EXP). Gene expression of CD8EXP identified therapeutic targets that were influenced by IS type. TCR analysis revealed a highly restricted number of CD8EXP, independent of HLA mismatch or IS type. Subcloning of TCR-α/β cDNAs from CD8EXP into Jurkat 76 cells (TCR–/–) conferred alloreactivity by mixed lymphocyte reaction. Analysis of sequential rBx samples revealed persistence of CD8EXP that decreased, but were not eliminated, after successful antirejection therapy. In contrast, CD8EXP were maintained in treatment-refractory rejection. Finally, most rBx-derived CD8EXP were also observed in matching urine samples, providing precedent for using urine-derived CD8EXP as a surrogate for those found in the rejecting allograft. Overall, our data define the clonal CD8+ T cell response to ACR, paving the next steps for improving detection, assessment, and treatment of rejection.
Tiffany Shi, Ashley R. Burg, J. Timothy Caldwell, Krishna M. Roskin, Cyd M. Castro-Rojas, P. Chukwunalu Chukwuma, George I. Gray, Sara G. Foote, Jesus A. Alonso, Carla M. Cuda, David A. Allman, James S. Rush, Catherine H. Regnier, Grazyna Wieczorek, Rita R. Alloway, Adele R. Shields, Brian M. Baker, E. Steve Woodle, David A. Hildeman