BACKGROUND T cell large granular lymphocyte leukemia (T-LGLL) is a lymphoproliferative disorder of cytotoxic T lymphocytes (CTLs), often with gain-of-function STAT3 mutations. T-LGLL represents a unique model for the study of persistent CTL expansions. Albeit autoimmunity is implied, various paradoxical observations led us to investigate whether immunodeficiency traits underpin T-LGLL.METHODS This is a comprehensive immunogenomic study of 92 consecutive patients from a large T-LGLL cohort with full laboratory-clinical characterization (n = 271). Whole-exome profiling of variants associated with inborn errors of immunity (IEI) and somatic mutations in T cell lymphoid drivers was analyzed. Single-cell RNA-Seq and TCR-Seq in T-LGLL samples and RNA-Seq in T cell cancer cell lines were utilized to establish biological correlations.RESULTS Lymphocytopenia and/or hypogammaglobulinemia were identified in 186 of 241 (77%) T-LGLL patients. Genetic screening for IEI revealed 43 rare heterozygous variants in 38 different immune genes in 34 of 92 (36%) patients (vs. 167/63,026 [0.26%] in controls). High-confidence deleterious variants associated with dominant, adult-onset IEIs were detected in 15 of 92 (16%) patients. Carriers showed atypical features otherwise tied to the cryptic IEI, such as earlier onset, lower lymphocyte counts, lower STAT3 mutational rate, and higher proportions of hypogammaglobulinemia and immune cytopenia/bone marrow failure than noncarriers. Somatic mutational landscape, RNA-Seq, and TCR-Seq analyses supported immune imbalance caused by the IEI variants and interactions with somatic mutations in T cell lymphoid drivers.CONCLUSIONS Our findings in T-LGLL reveal that maladaptive CTL expansions may stem from cryptic immunodeficiency traits and open the horizon of IEIs to clonal hematopoiesis and bone marrow failure.FUNDING NIH; Aplastic Anemia and MDS International Foundation; VeloSano; Edward P. Evans Foundation; Instituto de Salud Carlos III; European Research Council; European Research Area Network on Personalised Medicine; Academy Finland; Cancer Foundation Finland.
Carlos Bravo-Perez, Carmelo Gurnari, Jani Huuhtanen, Naomi Kawashima, Luca Guarnera, Aashray Mandala, Nakisha D. Williams, Christopher Haddad, Michaela Witt, Serhan Unlu, Zachary Brady, Olisaemeka Ogbue, Mark Orland, Arooj Ahmed, Yasuo Kubota, Simona Pagliuca, Arda Durmaz, Satu Mustjoki, Valeria Visconte, Jaroslaw P. Maciejewski
Abdullah H. Alfalah, Alfadil Haroon, Ahmed Alfares, Syed Osman Ahmed, Sateesh Maddirevula
Collagen VI–related disorders (COL6-RDs) are a group of rare muscular dystrophies caused by pathogenic variants in collagen VI genes (COL6A1, COL6A2, and COL6A3). Collagen type VI is a heterotrimeric, microfibrillar component of the muscle extracellular matrix (ECM), predominantly secreted by resident fibroadipogenic precursor cells in skeletal muscle. The absence or mislocalization of collagen VI in the ECM underlies the noncell-autonomous dysfunction and dystrophic changes in skeletal muscle with a yet elusive direct mechanistic link between the ECM and myofiber dysfunction. Here, we conducted a comprehensive natural history and outcome study in a mouse model of COL6-RDs (Col6a2–/– mice) using standardized (TREAT-NMD) functional, histological, and physiological parameters. Notably, we identify a conspicuous dysregulation of the TGF-β pathway early in the disease process and propose that the collagen VI–deficient matrix is not capable of regulating the dynamic TGF-β bioavailability both at baseline and in response to muscle injury. Thus, we propose a new mechanism for pathogenesis of the disease that links the ECM regulation of TGF-β with downstream skeletal muscle abnormalities, paving the way for the development and validation of therapeutics that target this pathway.
Payam Mohassel, Hailey Hearn, Jachinta Rooney, Yaqun Zou, Kory Johnson, Gina Norato, Matthew A. Nalls, Pomi Yun, Tracy Ogata, Sarah Silverstein, David A. Sleboda, Thomas J. Roberts, Daniel B. Rifkin, Carsten G. Bönnemann
Synovial sarcoma is an aggressive soft tissue cancer driven by the chimeric SS18::SSX fusion oncoprotein, which disrupts chromatin remodeling by combining two antagonistic transcriptional regulators. SS18 participates in BAF complexes that open chromatin, while the SSX genes are cancer-testis antigens that interface with chromatin decorated with monoubiquitinated histone H2A placed by Polycomb repressive complexes (PRCs) activity. Because KDM2B brings PRC to unmethylated CpG islands, it is plausible that methylation directly determines the distribution of SS18::SSX to target loci. Given that synovial sarcoma is also characterized by a peculiarly low DNA hypomethylation profile, we hypothesized that further disturbance of DNA methylation would have a negative impact on synovial sarcoma growth. DNMT1 disruption by CRISPR/Cas9 targeting or pharmacologic inhibition with cytidine analogs 5-aza-2ʹ-deoxycytidine (decitabine) and 5-azacytidine led to decreased genome-wide methylation, redistribution of SS18::SSX, and altered gene expression profiles, most prominently including upregulation of tumor suppressor genes, immune-related genes, and mesenchymal differentiation-related genes. These drugs suppressed growth of synovial sarcoma cell lines and drove cytoreduction in mouse genetic models. DNMT1 inhibitors, already approved for treating myelodysplastic syndromes, warrant further clinical investigation for synovial sarcoma as repurposed, targeted treatments exploiting a vulnerability in the intrinsic biology of this cancer.
Nobuhiko Hasegawa, Nezha S. Benabdallah, Kyllie Smith-Fry, Li Li, Sarah McCollum, Jinxiu Li, Caelen A. Jones, Lena Wagner, Vineet Dalal, Viola Golde, Anastasija Pejkovska, Lara Carroll, Malay Haldar, Seth M. Pollack, Scott W. Lowe, Torsten O. Nielsen, Ana Banito, Kevin B. Jones
The ATP6V0A4 gene encodes the a4 subunit of Vacuolar H+-ATPase (V-ATPase), which mediates hydrogen ion transport across the membrane. Previous studies have suggested that mutations in ATP6V0A4 consistently result in a loss of function (LOF), impairing the hydrogen ion transport efficacy of V-ATPase and leading to distal renal tubular acidosis (dRTA) and sensorineural hearing loss. Here, we identified a 32-year-old male patient and his father, both of whom harbored a heterozygous ATP6V0A4 p.V512L mutation, and both exhibited with hypochloremic metabolic alkalosis, acidic urine and hypokalemia. Through a series of protein structural analyses and functional experiments, the V512L mutation was confirmed as a gain-of-function (GOF) mutation in the ATP6V0A4 gene. V512-a4 increased a4 subunit expression abundance by enhancing V512L-a4 stability and reducing its degradation, which in turn potentiated V-ATPase's capacity to acidify the tubular lumen, leading to acidic urine and metabolic alkalosis. Through mutant V512L-a4 subunit structure-based virtual and experimental screening, we discovered F351 (C25H26FN3O2S), a small-molecule inhibitor specifically targeting the V512L-a4 mutant. In conclusion, we identify a GOF mutation in the ATP6V0A4 gene, broadening its phenotypic and mutational spectrum, and provide valuable insights into potential therapeutic approaches for diseases associated with ATP6V0A4 mutations.
Si-qi Peng, Qian-qian Wu, Wan-yi Wang, Yi-Lin Zhang, Rui-ning Zhou, Jun Liao, Jin-xuan Wei, Yan Yang, Wen Shi, Jun-lan Yang, Xiao-xu Wang, Zhi-yuan Wei, Jia-xuan Sun, Lu Huang, Hong Fan, Hui Cai, Cheng-kun Wang, Xin-hua Li, Ting-song Li, Bi-Cheng Liu, Xiao-liang Zhang, Bin Wang
Fanconi anemia (FA) is a rare genetic disease characterized by loss-of-function variants in any of the 22 previously identified genes (FANCA-FANCW) that encode proteins participating in the repair of DNA interstrand crosslinks (ICLs). Patient phenotypes are variable, but may include developmental abnormalities, early onset pancytopenia, and predisposition to hematologic and solid tumors. Here, we describe two unrelated families with multiple pregnancy losses and offspring presenting with severe developmental and hematologic abnormalities leading to death in utero or in early life. Homozygous loss-of-function variants in FAAP100 were identified in affected children of both families. The FAAP100 protein associates with FANCB and FANCL, the E3 ubiquitin ligase responsible for the monoubiquitination of FANCD2 and FANCI, which is necessary for FA pathway function. Patient-derived cells exhibited phenotypes consistent with FA. Expression of the wild-type FAAP100 cDNA, but not the patient-derived variants, rescued the observed cellular phenotypes. This establishes FAAP100 deficiency as a cause of Fanconi anemia, with FAAP100 gaining an alias as FANCX. The extensive developmental malformations of individuals with FAAP100 loss-of-function variants are among the most severe across previously described FA phenotypes, indicating that the FA pathway is essential for human development.
Benjamin A. Harrison, Emma Mizrahi-Powell, John Pappas, Kristen Thomas, Subrahmanya Vasishta, Shripad Hebbar, Anju Shukla, Shalini S. Nayak, Tina K. Truong, Amy Woroch, Yara Kharbutli, Bruce D. Gelb, Cassie S. Mintz, Gilad D. Evrony, Agata Smogorzewska
Samantha Chan, Mai B. Margetts, Longfei Wang, Jack Godsell, Josh Chatelier, Belinda Liu, Charlotte A. Slade, Andrew Brett, Kasha P. Singh, Vanessa L. Bryant, Lauren J. Howson
Sandrine Lemoine, Arnaud Molin, Alice Koenig, Justine Bacchetta
The Fanconi anemia (FA)/BRCA DNA repair network promotes the removal of DNA interstrand crosslinks (ICLs) to counteract their devastating consequences, including oncogenesis. Network signaling is initiated by the FA core complex, which consists of seven authentic FA proteins and an FA-associated protein, FAAP100, with incompletely characterized roles and unknown disease associations. Upon activation, the FA core complex functions as a multiprotein E3 ubiquitin ligase centered on its catalytic module, the FANCB-FANCL-FAAP100 (BLP100) subcomplex, for FANCD2 and FANCI monoubiquitylation. Here, we identified a homozygous variant in FAAP100, c.1642A>C, predicting p.(T542P), in a fetus with malformations suggestive of FA. The mutation causes sensitivity to ICL-inducing agents in cells from the affected individual and genetically engineered, FAAP100-inactivated human, avian, zebrafish, and mouse cells. All FAAP100-deficient cell types were rescued by ectopic expression of wild-type FAAP100, but not FAAP100T542P. In a confirmatory animal model, customized Faap100–/– mice exhibit embryonic lethality, microsomia, malformations, and gonadal atrophy resembling mice with established FA subtypes. Mechanistically, FAAP100T542P impairs ligase activity by preventing BLP100 subcomplex formation, resulting in defective FAAP100T542P nuclear translocation and chromatin recruitment. FAAP100 dysfunction that disrupts the FA pathway and impairs genomic maintenance, together with FAconsistent human manifestations, recommends FAAP100 as a legitimate FA gene, FANCX.
Julia Kuehl, Yutong Xue, Fenghua Yuan, Ramanagouda Ramanagoudr-Bhojappa, Simone Pickel, Reinhard Kalb, Settara C. Chandrasekharappa, Weidong Wang, Yanbin Zhang, Detlev Schindler
BACKGROUND. Decoding the clinical impact of genetic variants is particularly important for precision medicine in cancer. Genetic screening of mainly breast and ovarian cancer patients has identified numerous BRCA1/BRCA2 ‘variants of uncertain significance’ (VUS) that remain unclassified due to a lack of pedigrees and functional data. METHODS. Here, we used CRISPR-Select — a technology that exploits unique inbuilt controls at the endogenous locus — to assess 54 rare ClinVar VUS located in the PALB2-binding domain (PBD) of BRCA2. Variant deleteriousness was examined in the absence and presence of PARPi, Cisplatin, or Mitomycin C. RESULTS. Marked functional deficiency was observed for variants in the exon 2-donor splice region (A22 = (c.66A>C), A22 = (c.66A>G), A22 = (c.66A>T), and D23H) and Trp31 amino acid (W31G, W31L, and W31C), both critical for BRCA2 function. Moreover, T10K and G25R resulted in an intermediate phenotype, suggesting these variants are hypomorphic in nature. Combining our functional results with the latest ClinGen BRCA1/2 Variant Curation Expert Panel recommendations, we could classify 49 of the 54 VUS as either likely benign (n = 45) or likely pathogenic (n = 4). CONCLUSION. Hence, CRISPR-Select is an important tool for efficient variant clinical classification. Application of this technology in the future will ultimately improve patient care. FUNDING. Danish Cancer Society, Novo Nordisk Foundation, Sygeforsikring Danmark, Børnecancerfonden, Neye-Fonden, Roche, Novartis, Pfizer, AstraZeneca, MSD, and Daiichi Sankyo Europe GmbH.
Muthiah Bose, Manika Indrajit Singh, Morten Frödin, Bent Ejlertsen, Claus S. Sørensen, Maria Rossing