The hallmark feature of metabolic dysfunction-associated steatotic liver disease (MASLD) is hepatic lipid accumulation. A recent search for genes impacting MASLD in mice uncovered the transcriptional repressor T-box 3 (Tbx3) as a top hit. In this issue of the JCI, Mannino et al. investigated the mechanism of action of TBX3 in murine MASLD. Tbx3 deletion protected against MASLD by inducing high density lipoprotein binding protein and stimulating hepatic VLDL secretion. Loss-of-function mutations in human TBX3 identified in MASLD patients displayed a similar protective effect. Collectively, these findings highlight the importance of lipid export in the prevention of MASLD and identify a transcriptional pathway controlling hepatic lipid secretion that is poised for further investigation.
Jacquelyn J. Maher
Accumulation of the light-reactive heme precursor protoporphyrin IX (PPIX) in blood causes protoporphyria, a disease characterized by severe pain resulting from sunlight exposure, as well as by the occurrence of liver failure in some patients. Thus, decreasing PPIX biosynthesis is a promising strategy to treat protoporphyria. In this issue of the JCI, Ducamp et al. report that inhibition of the glycine plasma membrane transporter GLYT1 using bitopertin decreased PPIX accumulation and ameliorated liver disease using human in vitro and mouse in vivo models. Their findings support the ongoing development of bitopertin to treat protoporphyria, while concurrently pointing to underexplored roles of glycine in erythroid cells.
Marc Liesa
Cutaneous melanoma (CM) is known for its aggressive behavior, high metastatic potential, and poor prognosis. Mutations in the BRAF gene are common in CM, and patients with BRAF-mutant melanoma often respond well to combined inhibition of BRAF and MEK (BRAFi + MEKi). Although BRAFi + MEKi therapy provides clinical efficacy, the response durability is limited by persistent drug-tolerant residual cells, culminating in relapse. In this issue of the JCI, Tiago et al. confirmed that NR2F1, a dormancy-associated transcription factor, is a key determinant of therapeutic resistance in melanoma. NR2F1 expression was elevated in transcriptomic datasets from patients with minimal residual disease, and in murine and human melanoma models, NR2F1 overexpression reduced therapeutic efficacy and suppressed tumor proliferation and invasion while sustaining mechanistic target of rapamycin complex 1 (mTORC1) transcriptional regulation of relevant genes. Combining BRAFi + MEKi with the mTORC1 inhibitor rapamycin effectively targeted these resistant melanoma cells, suggesting a potential path forward for targeting NR2F1 and mTORC1 signaling in patients with CM.
Narsimha Mamidi, Swadesh K. Das, Paul B. Fisher
The search for transformative medicines has continuously uncovered select diseases associated with the disruption of the endocannabinoid (eCB) signaling system in the brain and emphasized the therapeutic value of small molecules that rescue this signaling system. In this issue of JCI, Wang et al. report that genetic disruption of PPP2R1A function in mouse forebrain, a preclinical mouse model of neurodevelopmental disorders, resulted in pronounced impairment of eCB signaling. Notably, small-molecule inhibitors of eCB inactivation rescued both eCB signaling and cognitive dysfunction in this model, providing a solid foundation to move such transformative therapeutic approaches based on targeting eCB signaling toward human clinical trial testing.
Nephi Stella
Cerebrospinal fluid dynamics play an important role in maintaining brain health and clearing metabolic waste from the brain. In this issue of the JCI, Gursky et al. investigate how CSF distribution is affected when its primary efflux pathway — the deep cervical lymph nodes — is disrupted by cauterization. This timely study reveals compensatory fluid drainage routes from the skull, age-dependent adaptations in CSF homeostasis, and the emergence of neuroinflammation when an efflux pathway is occluded. The findings underscore the need to better understand the physiological mechanisms governing CSF clearance, how these pathways evolve with aging, and whether CSF influx and efflux exhibit region-specific dynamics shaped by neuroanatomy. Additionally, the study raises important questions about whether peripheral injury can influence central nervous system states. A more complete understanding of CSF flow regulation may offer new perspectives on the origins of neuropathology.
Lauren M. Hablitz, Maiken Nedergaard
Leukocyte-associated Ig-like receptor 1 (LAIR1) is a collagen-binding inhibitory immune receptor that negatively regulates cellular activation. In this issue of the JCI, Tao et al. show that LAIR1-inhibitory signaling plays an important role in immunosuppressive M2-like tumor-associated macrophages (TAMs) in aggressive brain tumors. LAIR1 KO, antibody blockade, and an immunotherapy that incorporates a LAIR1-inhibitory module into a chimeric antigen receptor (CAR) all led to increased antitumor activity by CAR T cells, reduced M2-like TAMs, altered collagen networks, and increased survival rates in mouse tumor models. These findings demonstrate an innovative immunotherapeutic approach for cancer that leverages LAIR1 inhibition to combat multiple tumor immune evasion strategies.
Ezri P. Perrin, Hannah K. Dorando, Jacqueline E. Payton
Platelet hyperreactivity, defined as enhanced sensitivity to activation in response to classical agonists, contributes to the increased risk of arterial thrombosis associated with chronic inflammatory diseases. In this issue of the JCI, Kong and colleagues used an unbiased proteomic approach to identify elevated SEC61B in platelets from patients with diabetes and from hyperglycemic mice. Typically, SEC61B participates in protein transport within the endoplasmic reticulum (ER), but it can also act as an ion channel that allows calcium to leak from ER to cytoplasm. The authors showed that elevated SEC61B expression caused increased calcium leak, elevated basal cytoplasmic calcium concentrations, and platelet hyperreactivity. In vitro and in vivo pharmacological interventions to alter calcium homeostasis through this pathway affected platelet reactivity. The results of this work are consistent with those of previous studies showing that platelets from patients with chronic diseases behaved differently than those from healthy participants. These findings identify potential disease-specific targets to prevent and treat arterial thrombosis.
Roy L. Silverstein
For many conditions, genotyping aids in clinical decision making. However, interpreting the clinical significance of genetic variants remains challenging, in part because a single risk variant does not always lead to disease, and variant carriers experience variable outcomes. One hypothesis underlying these phenomena, which are known as incomplete penetrance and variable expressivity, respectively, is that additional common genetic variation beyond the primary variant influences the presence and severity of disease. In this issue of JCI, Poeschla et al. present a compelling argument that common variants linked to telomere length act together with high-risk telomere biology disorder variants to scale outcomes. These data support a model in which many variants interact to shape cumulative risk.
Tanner O. Monroe
Over the last decade, there have been multiple outbreaks of enterovirus D68 (EV-D68) disease and associated cases of acute flaccid myelitis (AFM). The underlying cause of EV-D68–induced AFM is contentious; whether spinal cord motor neurons are damaged by direct viral infection, infiltration of immune cells, or a combination of both is not clear. In this issue of the JCI, Woods Acevedo and coworkers used a neonatal WT mouse model of EV-D68 infection to attribute paralytic disease to immune cell infiltration into the spinal cord. The results of their work in cytokine-knockout or immune cell–depleted animals effectively argue that immunopathogenesis plays an integral role in EV-D68–induced AFM.
Peter W. Krug
Tumor heterogeneity in metastatic prostate cancer (mPC) is well established, but comprehensive characterization using routine sampling remains challenging. Autopsy-based research addresses this obstacle by enabling broad tissue collection within individual patients after treatment. In this issue of the JCI, Roudier et al. analyzed samples from a mPC research autopsy cohort, revealing extensive inter- and intratumor heterogeneity across patients and at the cellular level. The authors associated this variability with genomic, phenotypic, and clinical features and explored the importance of tumors expressing both androgen receptor and neuroendocrine markers. Their findings demonstrate heterogeneity across metastatic sites that may influence treatment response and clinical outcomes, informing future therapeutic strategies in mPC.
Sylvie S.W. Chan, Osvaldas Vainauskas, Gerhardt Attard
No posts were found with this tag.