Recently published - More

Abstract

Obese, insulin-resistant states are characterized by a paradoxical pathogenic condition in which the liver appears to be selectively insulin resistant. Specifically, insulin fails to suppress glucose production, yet successfully stimulates de novo lipogenesis. The mechanisms underlying this dysregulation remain controversial. Here, we hypothesized that carbohydrate-responsive element-binding protein (ChREBP), a transcriptional activator of glycolytic and lipogenic genes, plays a central role in this paradox. Administration of fructose increased hepatic hexose-phosphate levels, activated ChREBP, and caused glucose intolerance, hyperinsulinemia, hypertriglyceridemia, and hepatic steatosis in mice. Activation of ChREBP was required for the increased expression of glycolytic and lipogenic genes as well as glucose-6-phosphatase (G6pc) that was associated with the effects of fructose administration. We found that fructose-induced G6PC activity is a major determinant of hepatic glucose production and reduces hepatic glucose-6-phosphate levels to complete a homeostatic loop. Moreover, fructose activated ChREBP and induced G6pc in the absence of Foxo1a, indicating that carbohydrate-induced activation of ChREBP and G6PC dominates over the suppressive effects of insulin to enhance glucose production. This ChREBP/G6PC signaling axis is conserved in humans. Together, these findings support a carbohydrate-mediated, ChREBP-driven mechanism that contributes to hepatic insulin resistance.

Authors

Mi-Sung Kim, Sarah A. Krawczyk, Ludivine Doridot, Alan J. Fowler, Jennifer X. Wang, Sunia A. Trauger, Hye-Lim Noh, Hee Joon Kang, John K. Meissen, Matthew Blatnik, Jason K. Kim, Michelle Lai, Mark A. Herman

×

Abstract

Oncogenic mutations drive anabolic metabolism, creating a dependency on nutrient influx through transporters, receptors, and macropinocytosis. While sphingolipids suppress tumor growth by downregulating nutrient transporters, macropinocytosis and autophagy still provide cancer cells with fuel. Therapeutics that simultaneously disrupt these parallel nutrient access pathways have potential as powerful starvation agents. Here, we describe a water-soluble, orally bioavailable synthetic sphingolipid, SH-BC-893, that triggers nutrient transporter internalization and also blocks lysosome-dependent nutrient generation pathways. SH-BC-893 activated protein phosphatase 2A (PP2A), leading to mislocalization of the lipid kinase PIKfyve. The concomitant mislocalization of the PIKfyve product PI(3,5)P2 triggered cytosolic vacuolation and blocked lysosomal fusion reactions essential for LDL, autophagosome, and macropinosome degradation. By simultaneously limiting access to both extracellular and intracellular nutrients, SH-BC-893 selectively killed cells expressing an activated form of the anabolic oncogene Ras in vitro and in vivo. However, slower-growing, autochthonous PTEN-deficient prostate tumors that did not exhibit a classic Warburg phenotype were equally sensitive. Remarkably, normal proliferative tissues were unaffected by doses of SH-BC-893 that profoundly inhibited tumor growth. These studies demonstrate that simultaneously blocking parallel nutrient access pathways with sphingolipid-based drugs is broadly effective and cancer selective, suggesting a potential strategy for overcoming the resistance conferred by tumor heterogeneity.

Authors

Seong M. Kim, Saurabh G. Roy, Bin Chen, Tiffany M. Nguyen, Ryan J. McMonigle, Alison N. McCracken, Yanling Zhang, Satoshi Kofuji, Jue Hou, Elizabeth Selwan, Brendan T. Finicle, Tricia T. Nguyen, Archna Ravi, Manuel U. Ramirez, Tim Wiher, Garret G. Guenther, Mari Kono, Atsuo T. Sasaki, Lois S. Weisman, Eric O. Potma, Bruce J. Tromberg, Robert A. Edwards, Stephen Hanessian, Aimee L. Edinger

×

Abstract

Rush desensitization (DS) is a widely used and effective clinical strategy for the rapid inhibition of IgE-mediated anaphylactic responses. However, the cellular targets and underlying mechanisms behind this process remain unclear. Recent studies have implicated mast cells (MCs) as the primary target cells for DS. Here, we developed a murine model of passive anaphylaxis with demonstrated MC involvement and an in vitro assay to evaluate the effect of DS on MCs. In contrast with previous reports, we determined that functional IgE remains on the cell surface of desensitized MCs following DS. Despite notable reductions in MC degranulation following DS, the high-affinity IgE receptor FcεRI was still capable of transducing signals in desensitized MCs. Additionally, we found that displacement of the actin cytoskeleton and its continued association with FcεRI impede the capacity of desensitized MCs to evoke the calcium response that is essential for MC degranulation. Together, these findings suggest that reduced degranulation responses in desensitized MCs arise from aberrant actin remodeling, providing insights that may lead to improvement of DS treatments for anaphylactic responses.

Authors

W.X. Gladys Ang, Alison M. Church, Mike Kulis, Hae Woong Choi, A. Wesley Burks, Soman N. Abraham

×

Abstract

Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic BRAF, represses the genetic program that enables iodide transport. Here, we determined that a critical threshold for inhibition of MAPK signaling is required to optimally restore expression of thyroid differentiation genes in thyroid cells and in mice with BrafV600E-induced thyroid cancer. Although the MEK inhibitor selumetinib transiently inhibited ERK signaling, which subsequently rebounded, the MEK inhibitor CKI suppressed ERK signaling in a sustained manner by preventing RAF reactivation. A small increase in ERK inhibition markedly increased the expression of thyroid differentiation genes, increased iodide accumulation in cancer cells, and thereby improved responses to RAI therapy. Only a short exposure to the drug was necessary to obtain a maximal response to RAI. These data suggest that potent inhibition of ERK signaling is required to adequately induce iodide uptake and indicate that this is a promising strategy for the treatment of BRAF-mutant thyroid cancer.

Authors

James Nagarajah, Mina Le, Jeffrey A. Knauf, Giuseppe Ferrandino, Cristina Montero-Conde, Nagavarakishore Pillarsetty, Alexander Bolaender, Christopher Irwin, Gnana Prakasam Krishnamoorthy, Mahesh Saqcena, Steven M. Larson, Alan L. Ho, Venkatraman Seshan, Nobuya Ishii, Nancy Carrasco, Neal Rosen, Wolfgang A. Weber, James A. Fagin

×


Advertisement

September 2016

126 9 cover

September 2016 Issue

On the cover:
Transcription factor BCL6 is a druggable oncoprotein

On page 3351, Cardenas et al. report the development of a high-affinity small-molecule inhibitor for the transcription factor BCL6, which is an important driver of diffuse large B cell lymphoma. The cover image is a graphic depiction of FX1 (green) interacting with the BCL6 BTB domain lateral groove pocket and displacing its natural ligand. Image credit: Sam Shlomo Spaeth, CMI.

×
Jci tm 2016 09

September 2016 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Extracellular Vesicles

Series edited by Laurence Zitvogel

Cell-to-cell communication is an essential component in multicellular organisms, allowing for rapid, coordinated responses to changes within the environment. Classical signaling mediators include direct cell-cell contact as well as secreted factors, such as cytokines, metabolites, and hormones. In the past decade, extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, have emerged as important mediators of intercellular communication. EVs are double-membrane vesicles containing cargoes of multiple proteins, lipids, and nucleic acids, which are derived from their cells of origin, and EV cargoes can change depending on the status of their originating cells. Importantly, EVs are found in all body fluids and can carry their cargoes to distant sites within the body as well as neighboring cells. Reviews in this series discuss the role of EV-mediated signaling in physiological and pathophysiological conditions, including infection, host immune responses, and cancer. Additionally, these reviews cover the potential clinical use of EVs as therapeutics and diagnostic biomarkers.

×