Recently published - More

Abstract

The mechanism by which leptin reverses diabetic ketoacidosis (DKA) is unknown. We examined the acute insulin-independent effects of leptin replacement therapy in a streptozotocin-induced rat model of DKA. Leptin infusion reduced rates of lipolysis, hepatic glucose production (HGP), and hepatic ketogenesis by 50% within 6 hours and were independent of any changes in plasma glucagon concentrations; these effects were abrogated by coinfusion of corticosterone. Treating leptin- and corticosterone-infused rats with an adipose triglyceride lipase inhibitor blocked corticosterone-induced increases in plasma glucose concentrations and rates of HGP and ketogenesis. Similarly, adrenalectomized type 1 diabetic (T1D) rats exhibited decreased rates of lipolysis, HGP, and ketogenesis; these effects were reversed by corticosterone infusion. Leptin-induced decreases in lipolysis, HGP, and ketogenesis in DKA were also nullified by relatively small increases (15 to 70 pM) in plasma insulin concentrations. In contrast, the chronic glucose-lowering effect of leptin in a STZ-induced mouse model of poorly controlled T1D was associated with decreased food intake, reduced plasma glucagon and corticosterone concentrations, and decreased ectopic lipid (triacylglycerol/diacylglycerol) content in liver and muscle. Collectively, these studies demonstrate marked differences in the acute insulin-independent effects by which leptin reverses fasting hyperglycemia and ketoacidosis in a rodent model of DKA versus the chronic pleotropic effects by which leptin reverses hyperglycemia in a non-DKA rodent model of T1D.

Authors

Rachel J. Perry, Liang Peng, Abudukadier Abulizi, Lynn Kennedy, Gary W. Cline, Gerald I. Shulman

×

Abstract

We recently demonstrated that selective expression of the Rho GTPase-activating protein ARHGAP42 in smooth muscle cells (SMCs) controls blood pressure by inhibiting RhoA-dependent contractility, providing a mechanism for the blood pressure–associated locus within the ARHGAP42 gene. The goals of the current study were to identify polymorphisms that affect ARHGAP42 expression and to better assess ARHGAP42’s role in the development of hypertension. Using DNase I hypersensitivity methods and ENCODE data, we have identified a regulatory element encompassing the ARHGAP42 SNP rs604723 that exhibits strong SMC-selective, allele-specific activity. Importantly, CRISPR/Cas9–mediated deletion of this element in cultured human SMCs markedly reduced endogenous ARHGAP42 expression. DNA binding and transcription assays demonstrated that the minor T allele variation at rs604723 increased the activity of this fragment by promoting serum response transcription factor binding to a cryptic cis-element. ARHGAP42 expression was increased by cell stretch and sphingosine 1-phosphate in a RhoA-dependent manner, and deletion of ARHGAP42 enhanced the progression of hypertension in mice treated with DOCA-salt. Our analysis of a well-characterized cohort of untreated borderline hypertensive patients suggested that ARHGAP42 genotype has important implications in regard to hypertension risk. Taken together, our data add insight into the genetic mechanisms that control blood pressure and provide a potential target for individualized antihypertensive therapies.

Authors

Xue Bai, Kevin D. Mangum, Rachel A. Dee, George A. Stouffer, Craig R. Lee, Akinyemi Oni-Orisan, Cam Patterson, Jonathan C. Schisler, Anthony J. Viera, Joan M. Taylor, Christopher P. Mack

×

Abstract

Olfactory dysfunction is broadly associated with neurodevelopmental and neurodegenerative diseases and predicts increased mortality rates in healthy individuals. Conventional measurements of olfactory health assess odor processing pathways within the brain and provide a limited understanding of primary odor detection. Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality. Notably, OSNs are continually replenished by adult neurogenesis in mammals, including humans, so OSN measurements are primed to provide specialized insights into neurological disease. Here, we have evaluated a PET radiotracer, [11C]GV1-57, that specifically binds mature OSNs and quantifies the mature OSN population in vivo. [11C]GV1-57 monitored native OSN population dynamics in rodents, detecting OSN generation during postnatal development and aging-associated neurodegeneration. [11C]GV1-57 additionally measured rates of neuron regeneration after acute injury and early-stage OSN deficits in a rodent tauopathy model of neurodegenerative disease. Preliminary assessment in nonhuman primates suggested maintained uptake and saturable binding of [18F]GV1-57 in primate nasal epithelium, supporting its translational potential. Future applications for GV1-57 include monitoring additional diseases or conditions associated with olfactory dysregulation, including cognitive decline, as well as monitoring effects of neuroregenerative or neuroprotective therapeutics.

Authors

Genevieve C. Van de Bittner, Misha M. Riley, Luxiang Cao, Janina Ehses, Scott P. Herrick, Emily L. Ricq, Hsiao-Ying Wey, Michael J. O’Neill, Zeshan Ahmed, Tracey K. Murray, Jaclyn E. Smith, Changning Wang, Frederick A. Schroeder, Mark W. Albers, Jacob M. Hooker

×

Abstract

BACKGROUND. Dietary intake of saturated fat is a likely contributor to nonalcoholic fatty liver disease (NAFLD) and insulin resistance, but the mechanisms that initiate these abnormalities in humans remain unclear. We examined the effects of a single oral saturated fat load on insulin sensitivity, hepatic glucose metabolism, and lipid metabolism in humans. Similarly, initiating mechanisms were examined after an equivalent challenge in mice.

METHODS. Fourteen lean, healthy individuals randomly received either palm oil (PO) or vehicle (VCL). Hepatic metabolism was analyzed using in vivo 13C/31P/1H and ex vivo 2H magnetic resonance spectroscopy before and during hyperinsulinemic-euglycemic clamps with isotope dilution. Mice underwent identical clamp procedures and hepatic transcriptome analyses.

RESULTS. PO administration decreased whole-body, hepatic, and adipose tissue insulin sensitivity by 25%, 15%, and 34%, respectively. Hepatic triglyceride and ATP content rose by 35% and 16%, respectively. Hepatic gluconeogenesis increased by 70%, and net glycogenolysis declined by 20%. Mouse transcriptomics revealed that PO differentially regulates predicted upstream regulators and pathways, including LPS, members of the TLR and PPAR families, NF-κB, and TNF-related weak inducer of apoptosis (TWEAK).

CONCLUSION. Saturated fat ingestion rapidly increases hepatic lipid storage, energy metabolism, and insulin resistance. This is accompanied by regulation of hepatic gene expression and signaling that may contribute to development of NAFLD.

REGISTRATION. ClinicalTrials.gov NCT01736202.

FUNDING. Germany: Ministry of Innovation, Science, and Research North Rhine–Westfalia, German Federal Ministry of Health, Federal Ministry of Education and Research, German Center for Diabetes Research, German Research Foundation, and German Diabetes Association. Portugal: Portuguese Foundation for Science and Technology, FEDER – European Regional Development Fund, Portuguese Foundation for Science and Technology, and Rede Nacional de Ressonância Magnética Nuclear.

Authors

Elisa Álvarez Hernández, Sabine Kahl, Anett Seelig, Paul Begovatz, Martin Irmler, Yuliya Kupriyanova, Bettina Nowotny, Peter Nowotny, Christian Herder, Cristina Barosa, Filipa Carvalho, Jan Rozman, Susanne Neschen, John G. Jones, Johannes Beckers, Martin Hrabě de Angelis, Michael Roden

×

Abstract

BACKGROUND. Sex, emotion, and reproduction are fundamental and tightly entwined aspects of human behavior. At a population level in humans, both the desire for sexual stimulation and the desire to bond with a partner are important precursors to reproduction. However, the relationships between these processes are incompletely understood. The limbic brain system has key roles in sexual and emotional behaviors, and is a likely candidate system for the integration of behavior with the hormonal reproductive axis. We investigated the effects of kisspeptin, a recently identified key reproductive hormone, on limbic brain activity and behavior.

METHODS. Using a combination of functional neuroimaging and hormonal and psychometric analyses, we compared the effects of kisspeptin versus vehicle administration in 29 healthy heterosexual young men.

RESULTS. We demonstrated that kisspeptin administration enhanced limbic brain activity specifically in response to sexual and couple-bonding stimuli. Furthermore, kisspeptin’s enhancement of limbic brain structures correlated with psychometric measures of reward, drive, mood, and sexual aversion, providing functional significance. In addition, kisspeptin administration attenuated negative mood.

CONCLUSIONS. Collectively, our data provide evidence of an undescribed role for kisspeptin in integrating sexual and emotional brain processing with reproduction in humans. These results have important implications for our understanding of reproductive biology and are highly relevant to the current pharmacological development of kisspeptin as a potential therapeutic agent for patients with common disorders of reproductive function.

FUNDING. National Institute for Health Research (NIHR), Wellcome Trust (Ref 080268), and the Medical Research Council (MRC).

Authors

Alexander N. Comninos, Matthew B. Wall, Lysia Demetriou, Amar J. Shah, Sophie A. Clarke, Shakunthala Narayanaswamy, Alexander Nesbitt, Chioma Izzi-Engbeaya, Julia K. Prague, Ali Abbara, Risheka Ratnasabapathy, Victoria Salem, Gurjinder M. Nijher, Channa N. Jayasena, Mark Tanner, Paul Bassett, Amrish Mehta, Eugenii A. Rabiner, Christoph Hönigsperger, Meire Ribeiro Silva, Ole Kristian Brandtzaeg, Elsa Lundanes, Steven Ray Wilson, Rachel C. Brown, Sarah A. Thomas, Stephen R. Bloom, Waljit S. Dhillo

×

Abstract

Parkinson’s disease (PD) patients experience loss of normal motor function (hypokinesia), but can develop uncontrollable movements known as dyskinesia upon treatment with L-DOPA. Poverty or excess of movement in PD has been attributed to overactivity of striatal projection neurons forming either the indirect (iSPNs) or the direct (dSPNs) pathway, respectively. Here, we investigated the two pathways’ contribution to different motor features using SPN type–specific chemogenetic stimulation in rodent models of PD (PD mice) and L-DOPA–induced dyskinesia (LID mice). Using the activatory Gq-coupled human M3 muscarinic receptor (hM3Dq), we found that chemogenetic stimulation of dSPNs mimicked, while stimulation of iSPNs abolished the therapeutic action of L-DOPA in PD mice. In LID mice, hM3Dq stimulation of dSPNs exacerbated dyskinetic responses to L-DOPA, while stimulation of iSPNs inhibited these responses. In the absence of L-DOPA, only chemogenetic stimulation of dSPNs mediated through the Gs-coupled modified rat muscarinic M3 receptor (rM3Ds) induced appreciable dyskinesia in PD mice. Combining D2 receptor agonist treatment with rM3Ds-dSPN stimulation reproduced all symptoms of LID. These results demonstrate that dSPNs and iSPNs oppositely modulate both therapeutic and dyskinetic responses to dopamine replacement therapy in PD. We also show that chemogenetic stimulation of different signaling pathways in dSPNs leads to markedly different motor outcomes. Our findings have important implications for the design of effective antiparkinsonian and antidyskinetic drug therapies.

Authors

Cristina Alcacer, Laura Andreoli, Irene Sebastianutto, Johan Jakobsson, Tim Fieblinger, Maria Angela Cenci

×

Abstract

PET allows noninvasive imaging of a variety of events in the body, including the activity of neuronal circuits in the brain that are involved in cognition and behaviors, by using radiotracers that detect relevant biological reactions. A major impediment to expanding PET applications to study the brain has been the lack of radiotracers that can identify and measure specific types of neurons or glial cells. In this issue of the JCI, Van de Bittner and colleagues describe a promising step toward solving this problem by identifying and describing a radiotracer, [11C]GV1-57, that appears to specifically label olfactory sensory neurons (OSNs), which are essential for olfaction (Figure 1). This tracer, if its specificity is confirmed, has the potential to become a prototype for future radiotracers that can identify other neuronal cell types and would allow visualization and in-depth characterization of these neurons and their genesis.

Authors

Helene Benveniste, Yuri Lazebnik, Nora D. Volkow

×

Abstract

Insulin replacement is the cornerstone of type 1 diabetes (T1D) treatment; however, glycemic control remains a challenge. Leptin has been shown to effectively restore euglycemia in rodent models of T1D; however, the mechanism or mechanisms by which leptin exerts glycemic control are unclear. In this issue of the JCI, Perry and colleagues provide evidence that suppression of lipolysis is a key facet of leptin-mediated restoration of euglycemia. However, more work remains to be done to fully understand the antidiabetic mechanisms of leptin.

Authors

Douglas Oberlin, Christoph Buettner

×

Abstract

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess accumulation of fat in the liver. In some cases, NAFLD is also accompanied by insulin resistance, resulting in metabolic dysfunction. Dietary fat content probably influences both NAFLD and insulin resistance; however, the immediate effects of fat consumption have not been fully explored. In this issue of the JCI, Hernández et al. evaluated hepatic glucose and lipid metabolism in humans and mice following a single oral dose of saturated fat. This one bolus of fat resulted in a measurable increase in insulin resistance, hepatic triglycerides, and gluconeogenesis. In mice, the saturated fat bolus resulted in the induction of several NAFLD-associated genes. Together, the results of this study indicate that saturated fat intake has immediate effects on metabolic function.

Authors

Elizabeth Parks, Hannele Yki-Järvinen, Meredith Hawkins

×


Advertisement

January 2017

127 1 cover

January 2017 Issue

On the cover:
Metastatic vesicle trafficking in EMT

Tan et al. uncover a role for Golgi apparatus compaction in regulating secretory vesicle trafficking during metastatic epithelial-to-mesenchymal transition. The cover image shows a normal bronchus within a human lung adenocarcinoma tissue section co-stained with DAPI (magenta) and antibodies against the Golgi protein GM130 (yellow) and collagen I (blue).

×
Jci tm 2017 01

January 2017 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Metabolism and Inflammation

Series edited by Alan R. Saltiel and Jerrold M. Olefsky

Metabolic syndrome comprises a constellation of conditions including central obesity, glucose intolerance, and dyslipidemia. These conditions enhance the risk of type 2 diabetes, cardiovascular disease, fatty liver/cirrhosis, hypertension, and cancer. The finding over 20 years ago that the inflammatory mediator TNF is overexpressed in adipose fundamentally changed our understanding of obesity and metabolic syndrome. We now know that metabolic syndrome in humans is characterized by chronic low-grade inflammation in multiple organs and we are now beginning to delineate the mechanisms by which inflammation and metabolism influence each other. Reviews in this series examine the activation of the innate and adaptive immune system in obesity; inflammation within diabetic islets, brain, liver, gut, and muscle; the role of inflammation in fibrosis and angiogenesis; the factors that contribute to the initiation of inflammation; and therapeutic approaches to modulate inflammation in the context of obesity and metabolic syndrome. We now know that an inflammatory program is activated early in adipose expansion and during chronic obesity, permanently skewing the immune system to a pro-inflammatory phenotype.

×