Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 4 patents
62 readers on Mendeley
1 readers on CiteULike
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118082

Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier Disease.

G A Francis, R H Knopp, and J F Oram

Department of Medicine, University of Washington, Seattle 98195, USA.

Find articles by Francis, G. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle 98195, USA.

Find articles by Knopp, R. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle 98195, USA.

Find articles by Oram, J. in: JCI | PubMed | Google Scholar

Published July 1, 1995 - More info

Published in Volume 96, Issue 1 on July 1, 1995
J Clin Invest. 1995;96(1):78–87. https://doi.org/10.1172/JCI118082.
© 1995 The American Society for Clinical Investigation
Published July 1, 1995 - Version history
View PDF
Abstract

Tangier disease is a rare genetic disorder characterized by extremely low plasma levels of HDL and apo A-I, deposition of cholesteryl esters in tissues, and a high prevalence of cardiovascular disease. We examined the possibility that HDL apolipoprotein-mediated removal of cellular lipids may be defective in Tangier disease. With fibroblasts from normal subjects, purified apo A-I cleared cells of cholesteryl esters, depleted cellular free cholesterol pools available for esterification, and stimulated efflux of radiolabeled cholesterol, phosphatidylcholine, and sphingomyelin. With fibroblasts from two unrelated Tangier patients, however, apo A-I had little or no effect on any of these lipid transport processes. Intact HDL also was unable to clear cholesteryl esters from Tangier cells even though it promoted radiolabeled cholesterol efflux to levels 50-70% normal. Passive desorption of radiolabeled cholesterol or phospholipids into medium containing albumin or trypsinized HDL was normal for Tangier cells. Binding studies showed that the interaction of apo A-I with high-affinity binding sites on Tangier fibroblasts was abnormal. These results indicate that apo A-I has an impaired ability to remove cholesterol and phospholipid from Tangier fibroblasts, possibly because of a defective interaction of apo A-I with cell-surface binding sites. Failure of apo A-I to acquire cellular lipids may account for the rapid catabolism of nascent HDL particles and the low plasma HDL levels in Tangier disease.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 78
page 78
icon of scanned page 79
page 79
icon of scanned page 80
page 80
icon of scanned page 81
page 81
icon of scanned page 82
page 82
icon of scanned page 83
page 83
icon of scanned page 84
page 84
icon of scanned page 85
page 85
icon of scanned page 86
page 86
icon of scanned page 87
page 87
Version history
  • Version 1 (July 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 4 patents
62 readers on Mendeley
1 readers on CiteULike
See more details