J G Umans, M Lindheimer
The tyrosine kinase activity of insulin receptor isolated from the skeletal muscle of NIDDM patients has previously been found to be decreased compared with the activity of receptor from nondiabetic subjects but the mechanism underlying this defect is unknown. Phosphorylation of receptor serine/threonine residues has been proposed to exert an inhibitory influence on receptor tyrosine kinase activity and Ser 1327 and Thr 1348 have been identified as specific sites of phosphorylation in the insulin receptor COOH terminal domain. To address the potential negative regulatory role of phosphorylation of these residues in vivo, we assessed the extent of phosphorylation of each site in insulin receptor isolated from the skeletal muscle of 12 NIDDM patients and 13 nondiabetic, control subjects. Phosphorylation of Ser 1327 and Thr 1348 was determined using antibodies that specifically recognize insulin receptor phosphorylated at these sites. In addition, a phosphotyrosine-specific antibody was used to monitor receptor tyrosine phosphorylation. The extent of insulin-induced tyrosine autophosphorylation was decreased in receptor isolated from diabetic versus nondiabetic muscle, thus confirming earlier reports. In contrast, there was no significant difference in the extent of phosphorylation of either Ser 1327 or Thr 1348 in receptor isolated from diabetic or nondiabetic muscle as assessed by immunoprecipitation (Ser 1327: 5.6 +/- 1.6% diabetics vs. 4.7 +/- 2.0% control; Thr 1348: 3.8 +/- 1.0% diabetics vs. 3.2 +/- 1.2% control). Moreover, within each group there was no correlation between the level of tyrosine kinase activity and the extent of serine/threonine phosphorylation. It is concluded that the stoichiometry of serine/threonine phosphorylation of insulin receptor in vivo is low, and that increased phosphorylation of Ser 1327 or Thr 1348 is not responsible for the decreased insulin receptor tyrosine kinase activity observed in the skeletal muscle of NIDDM patients.
M Kellerer, M Coghlan, E Capp, A Mühlhöfer, G Kroder, L Mosthaf, P Galante, K Siddle, H U Häring
We studied the perception of bronchoconstriction in asthmatic subjects who were randomly treated with inhaled beta 2 agonist given either alone (n = 9) or associated with inhaled corticosteroids (n = 9). Methacholine and bradykinin challenges, bronchoalveolar lavage, and bronchial biopsies were performed in all subjects. After each dose of agonist, breathlessness was assessed using a visual analog scale (VAS) and the forced expiratory volume in 1 s (FEV1) was measured. The relationship between VAS scores and FEV1 and the slope of the regression line of VAS scores on the corresponding FEV1 (VAS/FEV1 slope) were analyzed for each agonist. Subjects without corticosteroids had good perception of methacholine but poor perception of bradykinin-induced bronchoconstriction. In subjects with corticosteroids, bronchoconstriction was well perceived whatever the agonist. VAS/FEV1 slopes for bradykinin but not for methacholine correlated negatively with the magnitude of eosinophilic inflammation in airway mucosa. VAS/FEV1 slopes for each agonist correlated positively with the percentage of basement membrane covered by airway epithelium. We conclude that in asthmatic patients perception of bronchoconstriction is related to eosinophilic inflammation and to epithelial damage in airways and that corticosteroid treatment is associated with improved perception of bronchoconstriction induced by bradykinin, a mediator endogenously produced in asthma.
G L Roisman, C Peiffer, J G Lacronique, A Le Cae, D J Dusser
To characterize the defect in glomerular permselectivity responsible for proteinuria after renal transplantation, we studied 10 patients with moderate proteinuria (median 0.37 g/d, range 0.20-0.79), 16 patients with the nephrotic syndrome (6.73 g/d, 3.9-14.6), 8 living related donor transplant recipients without any history of rejection (median proteinuria 0.26 g/d, 0.06-0.58), and 12 healthy volunteers. The fractional clearance of neutral dextrans > 54 A was significantly higher in nephrotic patients, demonstrating a defect in glomerular size selectivity. Using a log-normal model of glomerular pore size distribution, r*(5%) and r*(1%), indices for the presence of large pores, were increased in the nephrotic patients. The fractional clearance of negatively charged dextran sulfate was significantly higher in all patient groups, indicating a loss of glomerular charge selectivity. Biopsy findings showed more prominent glomerular lesions in the nephrotic group compared with the moderately proteinuric group. We conclude that mild proteinuria late after renal transplantation is associated with a defect in glomerular charge selectivity. The development of nephrotic range proteinuria is associated also with a defect of glomerular size selectivity, which correlates with prominent glomerular pathology.
R Oberbauer, M Haas, H Regele, U Barnas, A Schmidt, G Mayer
The importance of thyrotropin receptor (TSHR) agonist antibodies in the manifestations of Graves' disease (GD) is recognized. There are, however, no convincing reports of TSHR-specific T cells. We have previously cloned T cells specific for thyroglobulin and thyroid peroxidase (TPO) from GD lymphoid infiltrates and used autologous EBV-transformed B cell lines (EBVL) transfected with an expression vector encoding TPO to efficiently detect TPO-specific T cells. Here we used EBVL transfected with TSHR to seek TSHR-specific T cells in the GD infiltrates, after cloning the in vivo activated T cells without antigen. 3 out of 30 clones responded vigorously and reproducibly to EBVL-TSHR, with a mean stimulation index > 7. Their release of IL-2, IL-4, and IL-10 after stimulation with soluble anti-CD3 and phorbol ester was indistinguishable from the other clones from this thyroid. However, they produced relatively little IFN gamma (median IL-4/IFN gamma ratio of 0.80) compared with the other clones (median IL-4/IFN gamma ratio 0.06). Thus, this new potent method of antigen presentation, using autoantigen-transfected EBVL, has permitted the first unequivocal identification of TSHR T cells in GD thyroid, with distinct Th0/Th2 characteristics, unlike previously cloned TPO-responsive cells which have Th1 characteristics.
R J Mullins, S B Cohen, L M Webb, Y Chernajovsky, C M Dayan, M Londei, M Feldmann
Interleukin-1 (IL-1) is a major proinflammatory cytokine produced by monocytes/macrophages. At the inflammatory site, IL-1 is a potent inducer of the production of prostaglandin E2 (PGE2) and metalloproteinases on fibroblast-like cells, thus triggering tissue damage. The biological activity of IL-1 is counterbalanced by two types of inhibitors: the IL-1 receptor antagonist (IL-1Ra) which competitively binds IL-1 receptor without inducing signal transduction; and IL-1 soluble receptors (IL-1sR) which bind IL-1 and diminish the free concentration of soluble cytokine, thus hampering its binding to the cell surface receptor. Since IL-1sR can also bind IL-1Ra, we studied the simultaneous effects of both inhibitors on the production of interstitial collagenase (C'ase) and PGE2 by human dermal fibroblasts and synovial cells stimulated by either IL-1 alpha or IL-1 beta. IL-1Ra inhibited fibroblast and synovial cell stimulation by approximately 90%, with the exception of C'ase production by synovial cells which was inhibited by approximately 55%. Type I IL-1sR (IL-1sRI) preferentially inhibited IL-1 alpha, whereas type II IL-1sR (IL-1sRII) mainly inhibited IL-1 beta. When IL-1Ra was used simultaneously with IL-1sRI, the final inhibition was lower than that of either of the inhibitors. The simultaneous presence of IL-1Ra and IL-1sRII abolished the IL-1-induced production of PGE2 and C'ase on both dermal fibroblasts and synovial cells, demonstrating that concurrently these two inhibitors are able to abolish most of the inflammatory response. To our knowledge, this is the first example of two types of inhibitors that abolish each other's effects, one of which acts at the receptor level and the other at the ligand level, thus leaving ligand activity unimpaired.
D Burger, R Chicheportiche, J G Giri, J M Dayer
Ito cells play a pivotal role in the development of liver fibrosis associated with chronic liver diseases. During this process, Ito cells acquire myofibroblastic features, proliferate, and synthesize fibrosis components. Considering the reported mitogenic properties of endothelin-1 (ET-1), we investigated its effects on the proliferation of human Ito cells in their myofibroblastic phenotype. Both ET receptor A (ETA: 20%) and ET receptor B (ETB: 80%) binding sites were identified, using a selective ETA antagonist, BQ 123, and a selective ETB agonist, sarafotoxin S6C (SRTX-C). ET-1 did not stimulate proliferation of myofibroblastic Ito cells. In contrast, ET-1 inhibited by 60% DNA synthesis and proliferation of cells stimulated with either human serum or platelet-derived growth factor -BB (PDGF-BB). PD 142893, a nonselective ETA/ETB antagonist totally blunted this effect. SRTX-C was as potent as ET-1, while BQ 123 did not affect ET-1-induced growth inhibition. Analysis of the intermediate steps leading to growth-inhibition by ET-1 revealed that activation of mitogen-activated protein kinase by serum or PDGF-BB was decreased by 50% in the presence of SRTX-C. In serum-stimulated cells, SRTX-C reduced c-jun mRNA expression by 50% whereas c-fos or krox 24 mRNA expression were not affected. We conclude that ET-1 binding to ETB receptors causes a potent growth inhibition of human myofibroblastic Ito cells, which suggests that this peptide could play a key role in the negative control of liver fibrogenesis. Our results also point out that, in addition to its well known promitogenic effects, ET-1 may also exert negative control of growth on specific cells.
A Mallat, L Fouassier, A M Préaux, C S Gal, D Raufaste, J Rosenbaum, D Dhumeaux, C Jouneaux, P Mavier, S Lotersztajn
The genomic action of calcitriol (1,25-dihydroxy-vitamin D3) is mediated through the interaction of the calcitriol receptor (VDR) with vitamin D response elements (VDREs). Although renal failure is associated with resistance to the action of calcitriol, the mechanism of this resistance is not well understood. Therefore, we used the electrophoretic mobility shift assay to compare the ability of VDRs from normal and renal failure rats to bind to the osteocalcin gene VDRE. The results indicate that VDRs from renal failure rats have only half the DNA binding capacity as VDRs from control rats, despite identical calcitriol binding. Furthermore, incubation of normal VDRs with a uremic plasma ultrafiltrate resulted in a loss of > 50% of the binding sites for the osteocalcin VDRE. When VDRs bound to DNA as heterodimers with retinoid X receptors, the inhibitory effect of the uremic ultrafiltrate was due to a specific interaction with the VDR, not retinoid X receptors. In addition, uremic ultrafiltrate blocked calcitriol-induced reporter gene activity in transfected JEG-3 cells. Taken together, the results indicate that an inhibitory effect of a uremic toxin(s) on VDR-VDRE binding could underlie the calcitriol resistance of renal failure.
S R Patel, H Q Ke, R Vanholder, R J Koenig, C H Hsu
To test the hypothesis that nitric oxide (NO) limits endothelial activation, we treated cytokine-stimulated human saphenous vein endothelial cells with several NO donors and assessed their effects on the inducible expression of vascular cell adhesion molecule-1 (VCAM-1). In a concentration-dependent manner, NO inhibited interleukin (IL)-1 alpha-stimulated VCAM-1 expression by 35-55% as determined by cell surface enzyme immunoassays and flow cytometry. This inhibition was paralleled by reduced monocyte adhesion to endothelial monolayers in nonstatic assays, was unaffected by cGMP analogues, and was quantitatively similar after stimulation by either IL-1 alpha, IL-1 beta, IL-4, tumor necrosis factor (TNF alpha), or bacterial lipopolysaccharide. NO also decreased the endothelial expression of other leukocyte adhesion molecules (E-selectin and to a lesser extent, intercellular adhesion molecule-1) and secretable cytokines (IL-6 and IL-8). Inhibition of endogenous NO production by L-N-monomethyl-arginine also induced the expression of VCAM-1, but did not augment cytokine-induced VCAM-1 expression. Nuclear run-on assays, transfection studies using various VCAM-1 promoter reporter gene constructs, and electrophoretic mobility shift assays indicated that NO represses VCAM-1 gene transcription, in part, by inhibiting NF-kappa B. We propose that NO's ability to limit endothelial activation and inhibit monocyte adhesion may contribute to some of its antiatherogenic and antiinflammatory properties within the vessel wall.
R De Caterina, P Libby, H B Peng, V J Thannickal, T B Rajavashisth, M A Gimbrone Jr, W S Shin, J K Liao
To investigate how cardiac myocytes recover from a brief period of ischemia, we used a metabolic inhibition (MI) model, one of the in vitro ischemic models, of chick embryo ventricular myocytes, and examined the induction of immediate-early (IE) genes mRNAs and the activity of mitogen-activated protein (MAP) kinase. We performed Northern blot analysis to study the expression of c-jun, c-fos, and c-myc mRNAs during MI using 1 mM NaCN and 20 mM 2-deoxy-d-glucose, and also during the recovery from MI of 30 min. The c-fos mRNA was induced transiently at 30 and 60 min during the recovery. The expression of c-jun mRNA was significantly augmented at 30, 60, 90, and 120 min during the recovery (3.0-, 4.7-, 2.4-, and 1.9-fold induction, respectively) and so did the expression of c-myc mRNA (1.4-, 1.7-, 1.8-, and 2.0-fold induction, respectively). In contrast, the levels of these mRNAs remained unchanged during MI. The electrophoretic mobility shift assay revealed that AP-1 DNA binding activity markedly increased at 120 min during the recovery. When the cells were pretreated with protein kinase C (PKC) inhibitors, 100 microM H-7 or 1 microM staurosporine, the induction of c-jun mRNA at 60 min during the recovery was markedly suppressed (95 or 82% reduction, respectively). The c-jun induction was partially inhibited when the cells were treated with 2 mM EGTA during MI and the recovery (42% reduction). MAP kinase activity quantified with in-gel kinase assay was unchanged during MI, but significantly increased at 5, 10, and 15 min during the recovery (3.0-, 4.1-, and 3.4-fold increase, respectively). S6 kinase activity was also augmented significantly at 15 min during the recovery. Thus, these data suggest that IE genes as well as MAP kinase may play roles in the recovery process of cardiac myocytes from MI, and that the augmentation of c-jun expression needs the activation of PKC and to some extent, [Ca2+]i.
A Yao, T Takahashi, T Aoyagi, K Kinugawa, O Kohmoto, S Sugiura, T Serizawa
Tangier disease is a rare genetic disorder characterized by extremely low plasma levels of HDL and apo A-I, deposition of cholesteryl esters in tissues, and a high prevalence of cardiovascular disease. We examined the possibility that HDL apolipoprotein-mediated removal of cellular lipids may be defective in Tangier disease. With fibroblasts from normal subjects, purified apo A-I cleared cells of cholesteryl esters, depleted cellular free cholesterol pools available for esterification, and stimulated efflux of radiolabeled cholesterol, phosphatidylcholine, and sphingomyelin. With fibroblasts from two unrelated Tangier patients, however, apo A-I had little or no effect on any of these lipid transport processes. Intact HDL also was unable to clear cholesteryl esters from Tangier cells even though it promoted radiolabeled cholesterol efflux to levels 50-70% normal. Passive desorption of radiolabeled cholesterol or phospholipids into medium containing albumin or trypsinized HDL was normal for Tangier cells. Binding studies showed that the interaction of apo A-I with high-affinity binding sites on Tangier fibroblasts was abnormal. These results indicate that apo A-I has an impaired ability to remove cholesterol and phospholipid from Tangier fibroblasts, possibly because of a defective interaction of apo A-I with cell-surface binding sites. Failure of apo A-I to acquire cellular lipids may account for the rapid catabolism of nascent HDL particles and the low plasma HDL levels in Tangier disease.
G A Francis, R H Knopp, J F Oram
The relative impacts of regional and generalized adiposity on insulin sensitivity have not been fully defined. Therefore, we investigated the relationship of insulin sensitivity (measured using hyperinsulinemic, euglycemic clamp technique with [3-3H]glucose turnover) to total body adiposity (determined by hydrodensitometry) and regional adiposity. The latter was assessed by determining subcutaneous abdominal, intraperitoneal, and retroperitoneal fat masses (using magnetic resonance imaging) and the sum of truncal and peripheral skinfold thicknesses. 39 healthy middle-aged men with a wide range of adiposity were studied. Overall, the intraperitoneal and retroperitoneal fat constituted only 11 and 7% of the total body fat. Glucose disposal rate (Rd) and residual hepatic glucose output (rHGO) values during the 40 mU/m2.min insulin infusion correlated significantly with total body fat (r = -0.61 and 0.50, respectively), subcutaneous abdominal fat (r = -0.62 and 0.50, respectively), sum of truncal skinfold thickness (r = -0.72 and 0.57, respectively), and intraperitoneal fat (r = -0.51 and 0.44, respectively) but not to retroperitoneal fat. After adjusting for total body fat, the Rd and rHGO values showed the highest correlation with the sum of truncal skinfold thickness (partial r = -0.40 and 0.33, respectively). We conclude that subcutaneous truncal fat plays a major role in obesity-related insulin resistance in men, whereas intraperitoneal fat and retroperitoneal fat have a lesser role.
N Abate, A Garg, R M Peshock, J Stray-Gundersen, S M Grundy
We investigated the in vivo effects of a glucocorticoid on beta-agonist-induced downregulation of beta 1- and beta 2-adrenergic receptors (determined by [125I]iodocyanopindolol binding), mRNA expression (assessed by Northern blotting), and gene transcription (using nuclear run-on assays) in rat lung. Dexamethasone (Dex) (0.2 mg/kg/d, days 1-8) increased beta 1- and beta 2-receptor numbers by 70 and 69% above control, respectively, but did not change their mRNA expression. Isoproterenol (Iso) (0.96 mg/kg/d, days 2-8) decreased beta 1- and beta 2-receptor numbers by 48 and 51%, respectively, and also reduced mRNA expression by 69 and 57%, respectively. The combination of Dex and Iso resulted in no net change in beta 2-receptor number and its mRNA expression, although there was a significant reduction in beta 1-receptor number and mRNA expression. The mapping of beta 1- and beta 2-receptors by receptor autoradiography confirmed these findings over alveoli, epithelium, endothelium, and airway and vascular smooth muscle. We also measured the activation of the transcription factor, cyclic AMP response element binding protein (CREB) using an electrophoretic mobility shift assay. CREB-like DNA-binding activity was decreased after Iso treatment but this decrease was prevented after treatment with Dex. Nuclear run-on assays revealed that the transcription rate of the beta 1-receptor gene did not alter after Dex treatment, but was reduced after Iso treatment. The transcription rate of the beta 2-receptor gene was increased after Dex treatment by approximately twofold, but there was no change after Iso treatment. We conclude that glucocorticoids can prevent homologous downregulation of beta 2-receptor number and mRNA expression at the transcriptional level without affecting beta 1-receptors and that the transcription factor CREB may be involved in this phenomenon. Such an effect may have clinical implications for preventing the development of tolerance to beta 2-agonists in asthmatic patients treated with beta-agonist bronchodilators.
J C Mak, M Nishikawa, H Shirasaki, K Miyayasu, P J Barnes
Acid aspiration lung injury may be mediated primarily by neutrophils recruited to the lung by acid-induced cytokines. We hypothesized that a major acid-induced cytokine was IL-8 and that a neutralizing anti-rabbit-IL-8 monoclonal antibody (ARIL8.2) would attenuate acid-induced lung injury in rabbits. Hydrochloric acid (pH = 1.5 in 1/3 normal saline) or 1/3 normal saline (4 ml/kg) was instilled into the lungs of ventilated, anesthetized rabbits. The rabbits were studied for 6 or 24 h. In acid-instilled rabbits without the anti-IL-8 monoclonal antibody, severe lung injury developed in the first 6 h; in the long-term experiments, all rabbits died with lung injury between 12 and 14 h. In acid-instilled rabbits given the anti-IL-8 monoclonal antibody (2 mg/kg, intravenously) either as pretreatment (5 min before the acid) or as treatment (1 h after the acid), acid-induced abnormalities in oxygenation and extravascular lung water were prevented and extravascular protein accumulation was reduced by 70%; in the long-term experiments, anti-IL-8 treatment similarly protected lung function throughout the 24-h period. The anti-IL-8 monoclonal antibody also significantly reduced air space neutrophil counts and IL-8 concentrations. This study establishes IL-8 as a critical cytokine for the development of acid-induced lung injury. Neutralization of IL-8 may provide the first useful therapy for this clinically important form of acute lung injury.
H G Folkesson, M A Matthay, C A Hébert, V C Broaddus
Intestinal ischemia is characterized by rapid early inhibition of absorptive function and the appearance of net secretion, although why active secretion persists in the setting of a mucosal energy deficit is unknown. The cryptlike epithelial line T84, a well-characterized model of intestinal Cl- secretion, develops a prominent increase in short-circuit current (Isc, indicative of active Cl- transport) in response to "hypoxia" induced by metabolic inhibitors. The increased Isc is associated with the initial decrease in monolayer ATP content. The Isc is transient and disappears with progressive energy depletion, although graded degrees of ATP depletion induce a more sustained Isc response. Chromatographic analysis and secretory bioassays show that the Isc response to metabolic inhibitors is related to the endogenous release of adenosine into the extracellular space in quantities sufficient to interact locally with stimulatory adenosine receptors. Unlike its classical role as a metabolic feedback inhibitor, adenosine appears to function as an autocrine "feed-forward" activator of active intestinal Cl- secretion. These studies suggest a novel role for adenosine in the conversion of the gut from an absorptive to a secretory organ during ischemic stress, thus contributing to the initial diarrheal manifestation of intestinal ischemia.
J B Matthews, K J Tally, J A Smith, A J Zeind, B J Hrnjez
Patients on long-term zidovudine (AZT) therapy experience muscle fatigue and weakness attributed to AZT-induced mitochondrial toxicity in skeletal muscle. To determine if the clinico-pathological abnormalities in these patients correspond to abnormal muscle energy metabolism, we used 31P in vivo magnetic resonance spectroscopy to follow phosphorylated metabolites during exercise. We studied 19 normal volunteers, 6 HIV-positive patients never treated with AZT, and 9 HIV-positive patients who had been treated with AZT for a mean period of 33 mo (range 12-48 mo) and had muscle biopsy-proven AZT-myopathy with abnormal mitochondria. Changes in phosphocreatine, ATP, and intracellular pH in the gastrocnemius muscle were followed during a graded steady state exercise protocol, and the recovery of phosphocreatine was followed on cessation of exercise. We found that graded steady state exercise produced a greater depletion of muscle phosphocreatine levels in the AZT-treated patients, compared to either HIV-positive patients who were not treated with AZT or normal controls. No differences in the effects of steady state exercise on muscle phosphocreatine levels were observed between the control group and the HIV-positive patients who had not been treated with AZT. The results suggest that the effect of AZT on muscle energy metabolism is significant, and similar to the effect observed in patients with known mitochondrial myopathies. Using a well-known model for control of mitochondrial metabolism, the observed differences in steady state phosphocreatine levels during exercise suggest that AZT treatment decreases the maximal work output and the maximal rate of muscle ATP synthesis.
T M Sinnwell, K Sivakumar, S Soueidan, C Jay, J A Frank, A C McLaughlin, M C Dalakas
To test the hypothesis that increased flux through the hexosamine biosynthetic pathway can induce insulin resistance in skeletal muscle in vivo, we monitored glucose uptake, glycolysis, and glycogen synthesis during insulin clamp studies in 6-h fasted conscious rats in the presence of a sustained (7-h) increase in glucosamine (GlcN) availability. Euglycemic (approximately 7 mM) insulin (approximately 2,500 pM) clamps with saline or GlcN infusions were performed in control (CON; plasma glucose [PG] = 7.4 +/- 0.2 mM), diabetic (D; PG = 19.7 +/- 1.1), and phlorizin-treated (3-wk) diabetic rats (D + PHL; PG = 7.6 +/- 0.9). 7-h euglycemic hyperinsulinemia with saline did not significantly decrease Rd (360-420 min = 39.2 +/- 3.6 vs. 60-120 min = 42.2 +/- 3.7 mg/kg.min; P = NS). GlcN infusion raised plasma GlcN concentrations to approximately 1.2 mM and increased muscle and liver UDP-GlcNAc levels by 4-5-fold in all groups. GlcN markedly decreased Rd in CON (360-420 min = 30.4 +/- 1.3 vs. 60-120 min = 44.1 +/- 3.5 mg/kg.min; P < 0.01) and D + PHL (360-420 min = 29.4 +/- 2.5 vs. 60-120 min = 43.8 +/- 2.9 mg/kg.min; P < 0.01), but not in D (5-7 h = 21.5 +/- 0.8 vs. 0-2 h = 24.3 +/- 1.1 mg/kg.min; P = NS). Thus, increased GlcN availability induces severe skeletal muscle insulin resistance in normoglycemic but not in chronically hyperglycemic rats. The lack of additive effects of GlcN and chronic hyperglycemia (experimental diabetes) provides support for the hypothesis that increased flux through the GlcN pathway in skeletal muscle may play an important role in glucose-induced insulin resistance in vivo.
L Rossetti, M Hawkins, W Chen, J Gindi, N Barzilai
Nitric oxide (NO) and angiotensin II (AII) can effect vascular smooth muscle cell (SMC) proliferation. However, the effects of such agents on SMC migration, an equally important phenomenon with regard to vascular pathophysiology, have received little attention. The objectives of the present study were: (a) to determine whether NO inhibits AII-induced migration of vascular SMCs; (b) to investigate the mechanism of the interaction of NO and AII on SMC migration; and (c) to evaluate the AII receptor subtype that mediates AII-induced SMC migration. Migration of rat SMCs was evaluated using a modified Boydens Chamber (transwell inserts with gelatin-coated polycarbonate membranes, 8 microns pore size). AII stimulated SMC migration in a concentration-dependent manner, and this effect was inhibited by sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine (SNAP). In the presence of L-arginine, but not D-arginine, IL-1 beta, an inducer of inducible NO synthase, also inhibited AII-induced SMC migration, and this effect was prevented by the NO-synthase inhibitor, N-nitro-L-arginine methyl ester. The effects of NO donors on AII-induced SMC migration were mimicked by 8-bromo-cGMP. Also, the antimigratory effects of SNAP were partially inhibited by LY83583 (an inhibitor of soluble guanylyl cyclase) and by KT5823 (an inhibitor of cGMP-dependent protein kinase). Although 8-bromo-cAMP (cAMP) also mimicked the antimigratory effects of NO donors, the antimigratory effects of SNAP were not altered by 2',5'-dideoxyadenosine (an inhibitor of adenyl cyclase) or by (R)-p-adenosine-3',5'-cyclic phosphorothioate (an inhibitor of the cAMP-dependent protein kinase). Low concentrations of the subtype AT1-receptor antagonist CGP 48933, but not the subtype AT2-receptor antagonist CGP 42112, blocked AII-induced SMC migration. These findings indicate that (a) NO inhibits AII-induced migration of vascular SMCs; (b) the antimigratory effect of NO is mediated in part via a cGMP-dependent mechanism; and (c) AII stimulates SMC migration via an AT1 receptor.
R K Dubey, E K Jackson, T F Lüscher
The enormous interindividual variation in the plasma concentrations of the atherogenic lipoprotein(a) [Lp(a)] is almost entirely controlled by the apo(a) locus on chromosome 6q26-q27. A variable number of transcribed kringle4 repeats (K4-VNTR) in the gene explains a large fraction of this variation, whereas the rest is presently unexplained. We here have analyzed the effect of the K4-VNTR and of a pentanucleotide repeat polymorphism (TTTTA)n (n = 6-11) in the 5' control region of the apo(a) gene on plasma Lp(a) levels in unrelated healthy Tyroleans (n = 130), Danes (n = 154), and Black South Africans (n = 112). The K4-VNTR had a significant effect on plasma Lp(a) levels in Caucasians and explained 41 and 45% of the variation in Lp(a) plasma concentration in Tyroleans and Danes, respectively. Both, the pentanucleotide repeat (PNR) allele frequencies and their effects on Lp(a) concentrations were heterogeneous among populations. A significant negative correlation between the number of pentanucleotide repeats and the plasma Lp(a) concentration was observed in Tyroleans and Danes. The effect of the 5' PNRP on plasma Lp(a) concentrations was independent from the K4-VNTR and explained from 10 to 14% of the variation in Lp(a) concentrations in Caucasians. No significant effect of the PNRP was present in Black Africans. This suggests allelic association between PNR alleles and sequences affecting Lp(a) levels in Caucasians. Thus, in Caucasians but not in Blacks, concentrations of the atherogenic Lp(a) particle are strongly associated with two repeat polymorphisms in the apo(a) gene.
M Trommsdorff, S Köchl, A Lingenhel, F Kronenberg, R Delport, H Vermaak, L Lemming, I C Klausen, O Faergeman, G Utermann
Because tumor necrosis factor-alpha (TNF-alpha) expression is increased in adipose tissue of both rodent models of obesity and obese humans, it has been considered as a candidate gene for obesity. Pima Indians were scored for genotypes at three polymorphic dinucleotide repeat loci (markers) near the gene TNF-alpha at 6p21.3. In a sib-pair linkage analysis, percent body fat, as measured by hydrostatic weighing, was linked (304 sib-pairs, P = 0.002) to the marker closest (10 kb) to TNF-alpha. The same marker was associated (P = 0.01) by analysis of variance with BMI. To search for possible DNA variants in TNF-alpha that contribute to obesity, single stranded conformational polymorphism analysis was performed from 20 obese and 20 lean subjects. Primer pairs were designed for the entire TNF-alpha protein coding region and part of the promoter. Only a single polymorphism located in the promoter region was detected. No association could be demonstrated between alleles at this polymorphism and percent body fat. We conclude that the linkage of TNF-alpha to obesity might be due to a sequence variant undetected in TNF-alpha or due to a variant in some other closely linked gene.
R A Norman, C Bogardus, E Ravussin
Neuropeptide Y administered intracerebroventricularly and into the paraventricular nucleus of the hypothalamus stimulates feeding and decreases brown adipose tissue thermogenesis. Although specific neuropeptide Y antagonists are not yet available, previous studies had shown that the opioid antagonist naloxone blocked neuropeptide Y-induced feeding when both drugs were injected intracerebroventricularly. We wanted to find out if naloxone injected into specific brain sites would block neuropeptide Y effects on feeding and brown fat thermogenesis. Rats were double injected in specific brain sites with neuropeptide Y and either naloxone or naltrexone (a congener of naloxone). Food intake and brown fat measures were assessed. Naloxone or naltrexone in the paraventricular nucleus weakly decreased paraventricular nucleus neuropeptide Y-induced feeding and did not affect neuropeptide Y-induced reductions in brown fat activity. Peripheral naloxone blocked intracerebroventricular neuropeptide Y-induced feeding and brown fat alterations. Fourth ventricular naloxone decreased paraventricular nucleus neuropeptide Y-induced feeding, and naltrexone given into the nucleus of the solitary tract blocked paraventricular nucleus neuropeptide Y-induced alterations in feeding and brown fat. These data indicate that neuropeptide Y in the paraventricular nucleus may act on feeding and brown fat thermogenesis through opioidergic pathways in the nucleus of the solitary tract.
C M Kotz, M K Grace, J Briggs, A S Levine, C J Billington
In acute inflammatory responses, selectins mediate initial rolling of neutrophils (PMNs) along the endothelial surface. This is followed by tight adhesion that requires activation-dependent up-regulation of CD11/CD18 integrins on PMNs. For emigration to occur, the initial bonds that are established at the endothelial surface must be disengaged. We show that activation of PMNs results in their detachment from P-selectin, a glycoprotein expressed at the surface of inflamed endothelium that mediates initial tethering of PMNs. Loosening of the bond occurs when PMNs are activated by platelet-activating factor, which is coexpressed with P-selectin, or by other signaling molecules. The time course of reduced adhesion to P-selectin, when compared to up-regulation of CD11/CD18 integrins, suggests that "bond trading" may occur as activated PMNs transmigrate in vivo. Activation of PMNs did not alter binding of fluid-phase P-selectin, indicating that the ligand(s) for P-selectin is not shed or internalized. Using microspheres coated with P-selectin, we found that ligands for P-selectin were randomly distributed over the surfaces of rounded, unactivated PMNs. An antibody against P-selectin glycoprotein ligand-1 (PSGL-1) completely inhibited binding of P-selectin-coated beads suggesting that P-selectin glycoprotein ligand-1 is the critical binding site in this assay. In contrast to the dispersed pattern on unactivated PMNs, the ligands for P-selectin were localized on the uropods of activated, polarized cells. Pretreating PMNs with cytochalasin D before activation prevented the change in cell shape, the redistribution of binding sites for P-selectin-coated beads, and the decrease in cellular adhesiveness for P-selectin. These experiments indicate that the distribution of ligands for P-selectin is influenced by cellular activation and by cytoskeletal interactions, and that redistribution of these ligands may influence adhesive interactions. Activation of PMNs may cause loosening or disengagement of bonds between P-selectin and its ligands, facilitating transendothelial migration.
D E Lorant, R P McEver, T M McIntyre, K L Moore, S M Prescott, G A Zimmerman
We tested the hypothesis that endothelin (ET) responsiveness in the renal medulla is modulated by ambient osmolarity. Cultured renal medullary interstitial cells (RMICs) were incubated from 3 to 24 h in isosmolar culture medium (300 mOsm/kg H2O) or media rendered hyperosmolar (600 mOsm/kg H2O) by the addition of urea. Under hyperosmolar conditions, the peak of ET-evoked Ca2+ transient was blunted by 45-58% (P < 0.02) and PGE2 accumulation decreased from 16- to 2-fold above basal values (P < 0.001). To explore whether hyperosmolar conditions blunt intracellular signaling via modulation of receptor number or expression, kinetics of ET binding and Northern blot analysis of ETA receptor mRNA was performed. Under hyperosmolar conditions, ETA receptor density was reduced by 84% versus isosmolar conditions (238 +/- 12 vs. 1450 +/- 184 fmol/mg) (P < 0.01). In contrast to the ligand binding studies, ETA receptor mRNA was increased by 58% (P < 0.05) in cells grown under hyperosmolar versus isosmolar media. These observations indicate that in the hyperosmolar setting, ET-evoked intracellular signaling is blunted in RMICs due to ET receptor downregulation. Since ETA receptor mRNA is increased under hyperosmolar conditions, we conclude that ET receptor downregulation is the consequence of either decreased translation of message, increased degradation of receptor peptide, or increased internalization of specific receptor sites.
M A Vernace, P F Mento, M E Maita, E P Girardi, M D Chang, E P Nord, B M Wilkes
In this study, we have used enterocyte-like differentiated HT29-D4 human colonic carcinoma cells cultured in a glucose-free medium (HT29-D4-GAL cells) on semi-permeable supports in order to investigate the polarity of the insulin-like growth factor (IGF) system. We report that these cells secrete endogenous IGF-II predominantly (66%) from the basolateral cell surface where type I IGF receptors are almost all (> 96%) localized. HT29-D4-GAL cells also secrete IGF-binding protein (IGFBP) -2, -4, and -6 as evidenced by Western ligand and immunoblot analyses of conditioned medium. IGFBP-2 and IGFBP-4 are secreted primarily into the basolateral side (71 and 87%, respectively), whereas IGFBP-6 is targeted to the apical surface (76%) as a possible consequence of an active sorting. Finally, HT29-D4-GAL cells are found to display responses to IGF-II added to the basolateral but not the apical membrane side in terms of intracellular tyrosine phosphorylation and long-term stimulation of amino acid uptake. This study indicates (a) that IGF-II is potentially capable of autocrine regulation on the basolateral side of HT29-D4-GAL cell, and (b) that IGFBP-6 has a unique pattern of secretory polarity. It supports the concept that a differential sorting of the various forms of IGFBPs might play a modulatory role in the maintenance of a functional polarity in the differentiated HT29-D4-GAL cells.
M Remacle-Bonnet, F Garrouste, F el Atiq, J Marvaldi, G Pommier
Paroxysmal nocturnal hemoglobinuria (PNH) erythrocytes lack complement regulatory membrane proteins and are susceptible to complement. Although the critical role of complement in intravascular hemolysis in PNH is accepted, the precise mechanism of complement activation in vivo is unknown. Accordingly, in a PNH patient who was suffering from a hemolytic precipitation soon after a common cold-like upper respiratory infection, we analyzed the erythrocytes with lectins and by flow cytometry to detect membrane alteration that lead to complement activation. The lectin reactivity of erythrocytes showed the expression of cryptantigen Th. The patient serum at the time of the hemolysis induced the expression of Th on erythrocytes from PNH patients and from healthy volunteers in vitro, whereas neither the patient serum after recovery from the hemolysis nor blood type-matched control serum from healthy donor showed this activity. Moreover, autologous serum selectively hemolyzed Th+ PNH erythrocytes, but not Th- PNH erythrocytes, or Th+ control erythrocytes. Hemolysis was not observed either in complement-inactivated serum or in blood type-matched cord blood serum, which lacks natural antibodies to cryptantigens. These findings indicate that the immunoreaction of infection-induced Th with natural antibody on PNH erythrocytes is a trigger of the complement activation, leading to intravascular hemolysis.
H Nakakuma, M Hidaka, S Nagakura, Y Nishimura, N Iwamoto, K Horikawa, T Kawaguchi, T Kagimoto, K Takatsuki
Glucocorticoids are important regulators of renal phosphate transport. This study investigates the role of alterations in renal brush border membrane (BBM) sodium gradient-dependent phosphate transport (Na-Pi cotransporter) mRNA and protein abundance in the dexamethasone induced inhibition of Na-Pi cotransport in the rat. Dexamethasone administration for 4 d caused a 1.5-fold increase in the Vmax of Na-Pi cotransport (1785 +/- 119 vs. 2759 +/- 375 pmol/5 s per mg BBM protein in control, P < 0.01), which was paralleled by a 2.5-fold decrease in the abundance of Na-Pi mRNA and Na-Pi protein. There was also a 1.7-fold increase in BBM glucosylceramide content (528 +/- 63 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02). To determine whether the alteration in glucosylceramide content per se played a functional role in the decrease in Na-Pi cotransport, control rats were treated with the glucosylceramide synthase inhibitor, D-threo-1-phenyl-2-decanoyl-amino-3-morpholino-1-propanol (PDMP). The resultant 1.5-fold decrease in BBM glucosylceramide content (199 +/- 19 vs. 312 +/- 41 ng/mg BBM protein in control, P < 0.02) was associated with a 1.4-fold increase in Na-Pi cotransport activity (1422 +/- 73 vs. 1048 +/- 85 pmol/5 s per mg BBM protein in control, P < 0.01), and a 1.5-fold increase in BBM Na-Pi protein abundance. Thus, dexamethasone-induced inhibition of Na-Pi cotransport is associated with a decrease in BBM Na-Pi cotransporter abundance, and an increase in glucosylceramide. Since primary alteration in BBM glucosylceramide content per se directly and selectively modulates BBM Na-Pi cotransport activity and Na-Pi protein abundance, we propose that the increase in BBM glucosylceramide content plays an important role in mediating the inhibitory effect of dexamethasone on Na-Pi cotransport activity.
M Levi, J A Shayman, A Abe, S K Gross, R H McCluer, J Biber, H Murer, M Lötscher, R E Cronin
The absence of HLA class II gene expression in type II bare lymphocyte syndrome (BLS) results from defective transcriptional activation of class II histocompatibility genes. Genetic studies have revealed that distinct defects in multiple trans-acting factors result in the immunodeficient BLS phenotype. We studied antigen-presenting cell (APC) function in DR-transfected BLS cells derived from multiple complementation groups. Each BLS cell line displayed the same defective APC phenotype: an inability to mediate class II-restricted presentation of exogenous protein antigens, and structurally altered class II alpha beta dimers. Expression of the HLA class II-like genes DMA and DMB, previously implicated in antigen presentation, was reduced or absent in the BLS cells. Fusion of BLS cells with cell line 721.174, which has a genomic deletion of HLA class II genes, coordinately restores class II structural gene and DM gene expression and a wild-type APC phenotype. Thus each of the molecular defects that silences class II structural gene transcription also results in a defective APC phenotype, providing strong evidence for coregulation of these two functionally linked pathways.
S Kovats, G T Nepom, M Coleman, B Nepom, W W Kwok, J S Blum
We have previously demonstrated that sensitivity to interferon is different among hepatitis C virus (HCV) quasispecies simultaneously detected in same individuals and that interferon-resistant HCV quasispecies are selected during the treatment. To determine the genetic basis of their resistance to interferon, HCV genotype-1b was obtained from serum of three patients before and during interferon therapy, and their full-length nucleotide and deduced amino acid sequences were determined. Comparison of the pairs of interferon-resistant and interferon-sensitive HCV isolates in respective individuals demonstrated clusters of amino acid differences in the COOH-terminal half of the NS5A region (codon 2154-2383), which contained a common unique amino acid difference at codon 2218. Additional sequence data of the COOH-terminal half of the NS5A region obtained from six interferon-resistant and nine interferon-sensitive HCV confirmed the exclusive existence of missense mutations in a 40 amino acid stretch of the NS5A region around codon 2218 (from codon 2209 to 2248) in interferon-sensitive HCV. On the other hand, this region of interferon-resistant HCV was identical to that of prototype HCV genotype-1b (HCV-J, HCV-JTa, or HC-J4). We designated this region as the interferon sensitivity determining region. Thus, HCV genotype-1b with the prototype interferon sensitivity determining region appears to be interferon-resistant strains. The specific nature of these mutations might make it possible to predict prognostic effects of interferon treatment.
N Enomoto, I Sakuma, Y Asahina, M Kurosaki, T Murakami, C Yamamoto, N Izumi, F Marumo, C Sato
Intronic in situ hybridization methodology provides a means of determining the rate of gene transcription under basal and stimulated conditions. In the present study, we have used intronic in situ hybridization to the corticotropin-releasing factor (CRF) gene to measure hypothalamic CRF gene transcription after stress as well as its modulation by glucocorticoids. Using this and conventional exonic in situ hybridization we examined the time course of changes in c-fos mRNA, and CRF heteronuclear RNA (hnRNA) and mRNA concentrations in the paraventricular nucleus (PVN) of male Wistar rats after restraint stress. In addition, we determined the effects of adrenalectomy and dexamethasone administration on c-fos and CRF gene expression in the PVN. Restraint stress induced a rapid induction (within 5 min) of c-fos mRNA and CRF hnRNA expression in the PVN. Both RNA concentrations peaked at 30 min then decreased and were undetectable 2 h after stress onset. In contrast, the concentration of CRF mRNA increased gradually and a significant elevation was first detected 60 min after the beginning of stress. Adrenalectomy augmented and dexamethasone pretreatment inhibited c-fos mRNA, CRF hnRNA, and mRNA induction after stress. The data suggest that stress-induced activation of neurons, CRF gene transcription, and CRF synthesis in the PVN are modulated by glucocorticoids.
T Imaki, W Xiao-Quan, T Shibasaki, K Yamada, S Harada, N Chikada, M Naruse, H Demura
Previous data in rat conductance vessels indicated that cellular mevalonate contributes to vascular tone and systemic blood pressure control. Using exogenous mevalonate (M) or lovastatin, a 3-hydroxy-3-methyl-glutaryl CoA (HMG-CoA) reductase inhibitor (L), we characterized the role of mevalonate availability in resistance artery function, both in experimental animals and humans. Rat mesenteric artery resistance vessels (MARV, n = 9) were incubated for 48 h with either L, M, L + M, or vehicle (V) and tested for reactivity to NE, serotonin, acetylcholine, atrial natriuretic peptide, and sodium nitroprusside (SNP). Lovastatin increased sensitivity to NE (P < 0.03) and serotonin (P < 0.003), and significantly impaired the response to all three vasodilators. These effects were reversed by co-incubation with mevalonate. Mevalonate alone had no effect. In separate experiments, intravascular free Ca2+ concentration (ivfCa2+) was determined in fura-2AM loaded MARV. Basal ivfCa2+ was increased after a 48-h exposure to L (52.7 +/- 4.6 nM, L, vs. 29.7 +/- 2.4 nM, V, n = 12, P < 0.003), as were ivfCa2+ levels following stimulation with low (100 nM) NE concentrations. Similar ivfCa2+ concentrations were achieved during maximum contraction with NE (10 mM) in both groups. Human resistance arteries of human adipose tissue were also studied. Lovastatin increased the sensitivity to NE (ED50 = 372 +/- 56 nM, V, and 99 +/- 33 nM, L, P < 0.001) and significantly decreased the relaxation to acetylcholine and SNP of human vessels. We conclude that mevalonate availability directly contribute to resistance vessel function and vascular signal transduction systems in both experimental animals and humans. The study calls for the identification of non-sterol, mevalonate-derived vasoactive metabolites, and suggests that disorders of the mevalonate pathway can alter vascular tone and cause hypertension.
J B Roullet, H Xue, C M Roullet, W S Fletcher, M J Cipolla, C T Harker, D A McCarron
Using phosphorimager technology to quantitate differences in protein expression, we have investigated the modulation of protein synthesis by Mycobacterium tuberculosis in response to intracellular residence in human macrophages and, for comparison, in response to various stress conditions during extracellular growth. Proteins of M. tuberculosis growing intracellularly in human THP-1 cells and extracellularly in broth were labeled with [35S]methionine; during intracellular growth, host cell protein synthesis was inhibited with cycloheximide. The metabolically labeled proteins were separated by two-dimensional gel electrophoresis and quantitatively analyzed. Intracellular residence in macrophages induced a profound change in the overall phenotype of M. tuberculosis. The expression of at least 16 M. tuberculosis proteins was induced (at least a twofold increase compared with growth in broth) and 28 proteins repressed (at least a twofold decrease). Many of the phenotypic changes in protein expression induced during intracellular growth occurred during extracellular growth in response to stress conditions including heat-shock, low pH, and H2O2. However, the pattern of induced and repressed proteins was unique to each stress condition. Of the 16 macrophage-induced proteins, 6 were absent during extracellular growth under both normal and stress conditions. Such proteins are potential virulence determinants and/or they may be important in the cell-mediated and protective immune response to M. tuberculosis infection.
B Y Lee, M A Horwitz
The murine TNF-alpha gene was expressed under the control of the human surfactant protein SP-C promoter in transgenic mice. A number of the SP-C TNF-alpha mice died at birth or after a few weeks with very severe lung lesions. Surviving mice transmitted a pulmonary disease to their offspring, the severity and evolution of which was related to the level of TNF-alpha mRNA in the lung; TNF-alpha RNA was detected in alveolar epithelium, presumably in type II epithelial cells. In a longitudinal study of two independent mouse lines, pulmonary pathology, at 1-2 mo of age, consisted of a leukocytic alveolitis with a predominance of T lymphocytes. Leukocyte infiltration was associated with endothelial changes and increased levels of mRNA for the endothelial adhesion molecule VCAM-1. In the following months, alveolar spaces enlarged in association with thickening of the alveolar walls due to an accumulation of desmin-containing fibroblasts, collagen fibers, and lymphocytes. Alveolar surfaces were lined by regenerating type II epithelial cells, and alveolar spaces contained desquamating epithelial cells in places. Platelet trapping in the damaged alveolar capillaries was observed. Pulmonary pathology in the SP-C TNF-alpha mice bears a striking resemblance to human idiopathic pulmonary fibrosis, in which increased expression of TNF-alpha in type II epithelial cells has also been noted. These mice provide a valuable animal model for understanding the pathogenesis of pulmonary fibrosis and exploring possible therapeutic approaches.
Y Miyazaki, K Araki, C Vesin, I Garcia, Y Kapanci, J A Whitsett, P F Piguet, P Vassalli
Hepatic scavenger receptors (SR) may play a protective role by clearing modified lipoproteins before they target the artery wall. To gain insight into this hypothesized function, transgenic mice expressing hepatic bovine SR (TgSR) were created and studied when fed chow, and during diet-induced hyperlipidemia. SR overexpression resulted in extensive hepatic parenchymal cell uptake of fluorescently labeled acetylated human low density lipoprotein (DiI ac-hLDL) and a twofold increase in 125I-acetylated-LDL clearance. Food intake and cholesterol absorption was indistinguishable between control and TgSR mice. In chow-fed mice, lipoprotein cholesterol was similar in control and TgSR mice. However, on a 3-wk high fat/cholesterol (HFHC) diet, the rise in apoB containing lipoproteins was suppressed in TgSR+/- and TgSR+/+ mice. The rise in HDL was similar in control and TgSR+/- mice, but significantly elevated in the TgSR+/+ mice. Overall, on chow, the ratio of apo-B containing lipoprotein cholesterol to HDL cholesterol was similar for all groups (control = 0.33; TgSR+/- = 0.32; TgSR+/+ = 0.38). However, after 3 wk on the HFHC diet, this ratio was markedly higher in control (2.34 +/- 0.21) than in either TgSR+/- (1.00 +/- 0.24) or TgSR+/+ (1.00 +/- 0.19) mice. In TgSR+/- mice, hepatic cholesteryl esters were reduced by 59%, 7 alpha-hydroxylase mRNA levels were elevated twofold, and a significant increase in fecal bile acid flux was observed after the 3-wk HFHC diet. These results suggest SR may play a protective role in liver by preventing diet-induced increases in apoB containing lipoproteins.
S Wölle, D P Via, L Chan, J A Cornicelli, C L Bisgaier
Medial thickening of the pulmonary arterial wall, secondary to smooth muscle cell (SMC) hyperplasia, is commonly observed in neonatal hypoxic pulmonary hypertension. Because recent studies have demonstrated the existence of multiple phenotypically distinct SMC populations within the arterial media, we hypothesized that these SMC subpopulations would differ in their proliferative responses to hypoxic pulmonary hypertension and thus contribute in selective ways to the vascular remodeling process. Expression of meta-vinculin, a muscle-specific cytoskeletal protein, has been shown to reliably distinguish two unique SMC subpopulations within the bovine pulmonary arterial media. Therefore, to assess the proliferative responses of phenotypically distinct SMC subpopulations in the setting of neonatal pulmonary hypertension, we performed double immunofluorescence staining on pulmonary artery cryosections from control and hypertensive calves with antibodies against meta-vinculin and the proliferation-associated nuclear antigen, Ki-67. We found that, although neonatal pulmonary hypertension caused significant increases in overall cell replication, proliferation occurred almost exclusively in one, the meta-vinculin-negative SMC population, but not the other SMC population expressing meta-vinculin. We also examined fetal pulmonary arteries, where proliferative rates were high and meta-vinculin expression again reliably distinguished two SMC subpopulations. In contrast to the hypertensive neonate, we found in the fetus that the relative proliferative rates of both SMC subpopulations were equal, thus suggesting the existence of different mechanisms controlling proliferation and expression of cytoskeletal proteins in the fetus and neonate. We conclude that phenotypically distinct SMC populations in the bovine arterial media exhibit specific and selective proliferative responses to neonatal pulmonary hypertension. Distinct SMC subpopulations may, thus, contribute in unique ways to vascular homeostasis under both normal and pathologic conditions.
J D Wohrley, M G Frid, E P Moiseeva, E C Orton, J K Belknap, K R Stenmark
The cloned Kv1.5 K+ channel displays similar kinetics and pharmacology to a delayed rectifier channel found in atrial myocytes. To determine whether the Kv1.5 isoform plays a role in the cardiac action potential, it is necessary to confirm the expression of this channel in cardiac myocytes. Using antibodies directed against two distinct channel epitopes, the Kv1.5 isoform was localized in human atrium and ventricle. Kv1.5 was highly localized at intercalated disk regions as determined by colocalization with connexin and N-cadherin specific antibodies. While both antichannel antibodies localized the Kv1.5 protein in cardiac myocytes, only the NH2-terminal antibodies stained vascular smooth muscle. The selective staining of vasculature by this antiserum suggests that epitope accessibility, and perhaps channel structure, varies between cardiac and vascular myocytes. Kv1.5 expression was localized less in newborn tissue, with punctate antibody staining dispersed on the myocyte surface. This increasing organization with age was similar to that observed for connexin. Future work will address whether altered K+ channel localization is associated with cardiac disease in addition to changing with development.
D J Mays, J M Foose, L H Philipson, M M Tamkun
Y Kurihara, H Kurihara, H Oda, K Maemura, R Nagai, T Ishikawa, Y Yazaki
We have recently put forward the hypothesis that the dual inhibition of proinflammatory nitric oxide (NO) and prostaglandins (PG) may contribute to the antiinflammatory properties of nitric oxide synthase (NOS) inhibitors. This hypothesis was tested in the present study. A rapid inflammatory response characterized by edema, high levels of nitrites (NO2-, a breakdown product of NO), PG, and cellular infiltration into a fluid exudate was induced by the administration of carrageenan into the subcutaneous rat air pouch. The time course of the induction of inducible nitric oxide synthase (iNOS) protein in the pouch tissue was found to coincide with the production of NO2-. Dexamethasone inhibited both iNOS protein expression and NO2- synthesis in the fluid exudate (IC50 = 0.16 mg/kg). Oral administration of N-iminoethyl-L-lysine (L-NIL) or NG-nitro-L-arginine methyl ester (NO2Arg) not only blocked nitrite accumulation in the pouch fluid in a dose-dependent fashion but also attenuated the elevated release of PG. Finally, carrageenan administration produced a time-dependent increase in cellular infiltration into the pouch exudate that was inhibited by dexamethasone and NOS inhibitors. At early times, i.e., 6 h, the cellular infiltrate is composed primarily of neutrophils (98%). Pretreatment with colchicine reduced both neutrophil infiltration and leukotriene B4 accumulation in the air pouch by 98% but did not affect either NO2- or PG levels. In conclusion, the major findings of this paper are that (a) selective inhibitors of iNOS are clearly antiinflammatory agents by inhibiting not only NO but also PG and cellular infiltration and (b) that neutrophils are not responsible for high levels of NO and PG produced.
D Salvemini, P T Manning, B S Zweifel, K Seibert, J Connor, M G Currie, P Needleman, J L Masferrer
The localization of the two major placental glucose transporter isoforms, GLUT1 and GLUT3 was studied in 20-d pregnant rats. Immunocytochemical studies revealed that GLUT1 protein is expressed ubiquitously in the junctional zone (maternal side) and the labyrinthine zone (fetal side) of the placenta. In contrast, expression of GLUT3 protein is restricted to the labyrinthine zone, specialized in nutrient transfer. After 19-d maternal insulinopenic diabetes (streptozotocin), placental GLUT3 mRNA and protein levels were increased four-to-fivefold compared to nondiabetic rats, whereas GLUT1 mRNA and protein levels remained unmodified. Placental 2-deoxyglucose uptake and glycogen concentration were also increased fivefold in diabetic rats. These data suggest that GLUT3 plays a major role in placental glucose uptake and metabolism. The role of hyperglycemia in the regulation of GLUT3 expression was assessed by lowering the glycemia of diabetic pregnant rats. After a 5-d phlorizin infusion to pregnant diabetic rats, placental GLUT3 mRNA and protein levels returned to levels similar to those observed in nondiabetic rats. Furthermore, a short-term hyperglycemia (12 h), achieved by performing hyperglycemic clamps induced a fourfold increase in placental GLUT3 mRNA and protein with no concomitant change in GLUT1 expression. This study provides the first evidence that placental GLUT3 mRNA and protein expression can be stimulated in vivo under hyperglycemic conditions. Thus, GLUT3 transporter isoform appears to be highly sensitive to ambient glucose levels and may play a pivotal role in the severe alterations of placental function observed in diabetic pregnancies.
P Boileau, C Mrejen, J Girard, S Hauguel-de Mouzon
Abdominal aortic aneurysms (AAA) are characterized by disruption and degradation of the elastic media, yet the elastolytic proteinases involved and their cellular sources are undefined. We examined if 92-kD gelatinase, an elastolytic matrix metalloproteinase, participates in the pathobiology of AAA. Gelatin zymography of conditioned medium from normal, atheroocclusive disease (AOD), or AAA tissues in organ culture showed that all tissues produced 72-kD gelatinase. AOD and AAA cultures also secreted 92-kD gelatinase, but significantly more enzyme was released from AAA tissues. ELISA confirmed that AAA tissues released approximately 2-fold more 92-kD gelatinase than AOD tissue and approximately 10-fold more than normal aorta. Phorbol ester induced a 5.3-fold increase in 92-kD gelatinase secretion by normal aorta and AOD and an 11.5-fold increase by AAA. By immunohistochemistry, 92-kD gelatinase was not detected in normal aorta and was only occasionally seen within the neointimal lesions of AOD tissue. In all AAA specimens, however, 92-kD gelatinase was readily localized to numerous macrophages in the media and at the adventitial-medial junction. The expression of 92-kD gelatinase mRNA by aneurysm-infiltrating macrophages was confirmed by in situ hybridization. These results demonstrate that diseased aortic tissues secrete greater amounts of gelatinolytic activity than normal aorta primarily due to increased production of 92-kD gelatinase. In addition, the localization of 92-kD gelatinase to macrophages in the damaged wall of aneurysmal aortas suggests that chronic release of this elastolytic metalloproteinase contributes to extracellular matrix degradation in AAA.
R W Thompson, D R Holmes, R A Mertens, S Liao, M D Botney, R P Mecham, H G Welgus, W C Parks
Phosphate is central to bone metabolism and we have therefore studied whether parathyroid hormone (PTH) is regulated by dietary phosphate in vivo. Weanling rats were fed diets with different phosphate contents for 3 wk: low phosphate (0.02%), normal calcium (0.6%), normal phosphate (0.3%), and calcium (0.6%); high phosphate (1.2%), high calcium (1.2%). The low phosphate diet led to hypophosphatemia, hypercalcemia, and increased serum 1,25(OH)2D3 together with decreased PTH mRNA levels (25 +/- 8% of controls, P < 0.01) and serum immunoreactive PTH (4.7 +/- 0.8: 22.1 +/- 3.7 pg/ml; low phosphate: control, P < 0.05). A high phosphate diet led to increased PTH mRNA levels. In situ hybridization showed that hypophosphatemia decreased PTH mRNA in all the parathyroid cells. To separate the effect of low phosphate from changes in calcium and vitamin D rats were fed diets to maintain them as vitamin D-deficient and normocalcemic despite the hypophosphatemia. Hypophosphatemic, normocalemic rats with normal serum 1,25(OH)2D3 levels still had decreased PTH mRNAs. Nuclear transcript run-ons showed that the effect of low phosphate was posttranscriptional. Calcium and 1,25(OH)2D3 regulate the parathyroid and we now show that dietary phosphate also regulates the parathyroid by a mechanism which remains to be defined.
R Kilav, J Silver, T Naveh-Many
We have generated an IgG1 murine monoclonal anti-idiotype antibody (Ab2) designated 3H1, which mimics a specific epitope on the carcinoembryonic antigen (CEA). Patients with CEA positive tumors are immunologically "tolerant" to CEA. We used 3H1 as a surrogate for CEA for vaccine therapy of 12 patients with advanced colorectal cancer. Each of the patients received a minimum of four intracutaneous injections of aluminum hydroxide precipitated 3H1 at either 1, 2, or 4 mg dosage per injection. 9 of 12 patients demonstrated anti-anti-idiotypic (Ab3) response to 3H1. All nine patients generated specific anti-CEA antibody demonstrated by reactivity with radiolabeled purified CEA; some cases were confirmed by immunoprecipitation of purified CEA. We also demonstrated Ab3 stained both autologous and allogeneic colonic tumors. 7 of 12 patients demonstrated idiotype specific T cell proliferative responses and four also showed T cell proliferation to CEA. Toxicity was limited to local reaction with mild fever and chills. All 12 patients eventually progressed after finishing 4-13 dosages. This is the first report demonstrating that a vaccine therapy is capable of breaking "immune tolerance" to CEA in patients with CEA positive tumors. Future studies will focus on treating patients with minimal residual disease.
K A Foon, M Chakraborty, W J John, A Sherratt, H Köhler, M Bhattacharya-Chatterjee
Uteroglobin (UG) gene encodes a cytokine-like, multifunctional, antiinflammatory protein, with potent phospholipase A2-inhibitory activity. It has been suggested that during implantation this protein protects the embryos from maternal immunological assault, facilitates the maintenance of quiescence in the uterus throughout pregnancy, prevents the onset of premature labor, and helps maintain an inflammation-free respiratory organ. This latter function of UG is suggested to be accomplished by preventing hydrolysis of surfactant phospholipids by a lung-specific phospholipase A2. Using reverse transcription polymerase chain reaction, in situ hybridization, immunofluorescence, and radioimmunoassay, we studied UG gene expression in the rabbit uterus throughout gestation and in the fetal lung. Here, we report that: (a) contrary to previous reports, UG gene expression in the rabbit uterus occurs throughout gestation with a precipitous decline just before parturition; (b) this gene expression is dramatically increased in the fetal lung with increasing gestational age; and (c) while there is an inverse relationship between the levels of UG, PGE2, and PGF2 alpha, a positive correlation was found in that of UG and leukotriene C4 in the fetal lung. Our results raise the possibility that dysregulation of UG gene expression, at least in part, may contribute to the onset of premature labor and the development of inflammatory lung disease in premature neonates.
A Peri, N H Dubin, R Dhanireddy, A B Mukherjee
To examine potential mechanisms for the blood pressure-lowering action of the thiazolidinedione compound, pioglitazone (PIO), we studied the effects of the drug on blood pressure and insulin action in vivo and on vascular tissue in vitro. In vivo, PIO lowered blood pressure in fructose-fed and chow-fed rats to an extent that could not be explained by alterations in fasting plasma insulin or free magnesium concentrations or by alterations in whole-body insulin sensitivity. In vitro, PIO caused significant blunting of the contractile responses of aortic rings to NE, arginine vasopressin (AVP), and potassium chloride; the blunting of responses to NE was maintained after removal of the endothelium. To assess the potential importance of extracellular calcium to the vasodepressor effect of PIO, we measured contractile responses to NE in the absence of calcium, and then after acute restoration of calcium in the presence of NE. PIO had no effect on the contractile response in the absence of calcium. By contrast, PIO blunted by 42% the contractile response that occurred when the extracellular calcium supply was acutely restored in the presence of NE, suggesting that the blunting was mediated by blockade of calcium uptake by vascular smooth muscle. Such an effect was confirmed in cultured a7r5 vascular smooth muscle cells, which exhibited a brisk increase in intracellular calcium in response to AVP that was blocked by PIO in a dose-dependent fashion. Our data indicate that PIO has a direct vascular effect that appears to be mediated at least in part by inhibition of agonist-mediated calcium uptake by vascular smooth muscle. The direct vascular effect may contribute to the blood pressure-lowering actions of PIO in vivo, because that effect could not be explained by alterations in whole-body insulin sensitivity.
T A Buchanan, W P Meehan, Y Y Jeng, D Yang, T M Chan, J L Nadler, S Scott, R K Rude, W A Hsueh
The human colon carcinoma cell lines Caco-2 and HT-29 take up taurine actively. Treatment of Caco-2 cells with Escherichia coli heat-stable enterotoxin (STa) or with guanylin inhibited taurine uptake by approximately 40%. In contrast, neither STa nor guanylin changed the uptake of taurine in HT-29 cells. The inhibition in Caco-2 cells was associated with a decrease in the maximal velocity as well as in the affinity of the transporter. STa caused a 21-fold increase in guanosine 3',5'-cyclic monophosphate (cGMP) levels in Caco-2 cells with no change in cAMP levels. Neither cGMP nor cAMP levels were affected by STa treatment in HT-29 cells. Experiments with protein kinase inhibitors suggested that protein kinase A may mediate the observed effects of STa on taurine uptake. In accordance with this suggestion, treatment of Caco-2 cells with cholera toxin, which elevated intracellular cAMP levels, was found to inhibit taurine uptake. The steady state levels of the taurine transporter mRNA transcripts were not altered as a result of STa treatment. Studies with Caco-2 cells grown on permeable filters revealed that STa acts from the apical side. The taurine uptake from the apical side was inhibited by STa, but the taurine uptake from the basolateral side remained unaffected. It is suggested that the activity of the intestinal taurine transporter may be regulated by protein kinase A at a posttranslational level and that the intestinal absorption of taurine may be impaired during infection with enterotoxigenic strains of E. coli.
M Brandsch, S Ramamoorthy, N Marczin, J D Catravas, J W Leibach, V Ganapathy, F H Leibach
To determine the relationship between circulating metabolic fuels and their local concentrations in peripheral tissues we measured glycerol, glucose, and amino acids by microdialysis in muscle and adipose interstitium of 10 fasted, nonobese human subjects during (a) baseline, (b) euglycemic hyperinsulinemia (3 mU/kg per min for 3 h) and, (c) local norepinephrine reuptake blockade (NOR). At baseline, interstitial glycerol was strikingly higher (P < 0.0001) in muscle (3710 microM) and adipose tissue (2760 microM) compared with plasma (87 microM), whereas interstitial glucose (muscle 3.3, fat 3.6 mM) was lower (P < 0.01) than plasma levels (4.8 mM). Taurine, glutamine, and alanine levels were higher in muscle than in adipose or plasma (P < 0.05). Euglycemic hyperinsulinemia did not affect interstitial glucose, but induced a fall in plasma glycerol and amino acids paralleled by similar changes in the interstitium of both tissues. Local NOR provoked a fivefold increase in glycerol (P < 0.001) and twofold increase in norepinephrine (P < 0.01) in both muscle and adipose tissues. To conclude, interstitial substrate levels in human skeletal muscle and adipose tissue differ substantially from those in the circulation and this disparity is most pronounced for glycerol which is raised in muscle as well as adipose tissue. In muscle, insulin suppressed and NOR increased interstitial glycerol concentrations. Our data suggest unexpectedly high rates of intramuscular lipolysis in humans that may play an important role in fuel metabolism.
D G Maggs, R Jacob, F Rife, R Lange, P Leone, M J During, W V Tamborlane, R S Sherwin
Studies were performed to determine the mechanism underlying deficient arginine vasopressin (AVP)-stimulated adenylyl cyclase activity in chronic renal failure (CRF). As compared to control, principal cells cultured from the inner medullary collecting tubule of rats previously made uremic by 5/6 nephrectomy fail to accumulate cAMP when stimulated with AVP. CRF cells do respond normally to forskolin or cholera toxin and the defect in AVP responsiveness is not prevented by treatment with pertussis toxin, by cyclooxygenase inhibition, or by inhibition or down-regulation of protein kinase C. In contrast to their lack of responsiveness to AVP, CRF cells respond normally to other agonists of adenylyl cyclase such as isoproterenol or prostaglandin E2. Plasma membranes prepared from the inner medullae of CRF rats exhibit a marked decrease in apparent AVP receptor number but no change in the apparent number of beta adrenergic receptors. Reverse transcriptase PCR of total RNA from the inner medullae of CRF animals reveals virtual absence of V2 receptor mRNA; mRNA for alpha s is present in normal abundance. These studies indicate that AVP resistance in CRF is due, at least in part, to selective down-regulation of the V2 receptor as a consequence of decreased V2 receptor mRNA.
I Teitelbaum, S McGuinness
Treatment of various cells with combinations of agents that increase either cAMP or cytosolic calcium can lead to synergistic responses. This study examined interactions, or cross-talk, between these two intracellular messengers and its implication for signaling in two secretory cell types, T84 human colonic epithelial cells and rat pancreatic acinar cells. T84 cell chloride secretion was measured in Ussing chambers. Acinar cell activation was monitored as amylase secretion. Cytosolic calcium was assessed via fura-2 microfluorimetry. A cell-permeant analogue of cAMP synergistically enhanced secretory responses to calcium-mobilizing hormones in both cell types, but paradoxically reduced overall calcium mobilization. The reduction in calcium mobilization could be attributed to an inhibition of calcium influx in T84 cells, although a different mechanism likely operates in acinar cells. The effects of the cAMP analogue were reproduced by other agents that increase cAMP. Furthermore, econazole, an inhibitor of calcium influx, potentiated secretory responses to calcium-dependent stimulation in T84 cells without itself inducing secretion. We conclude that there is cross-talk between calcium and cAMP-dependent signaling pathways at the level of second messenger generation in two secretory cell types. This cross-talk appears to regulate the extent of secretory responses.
M Vajanaphanich, C Schultz, R Y Tsien, A E Traynor-Kaplan, S J Pandol, K E Barrett
GSH peroxidase (Px) catalyzes the reduction of lipid hydroperoxides (LOOH), known metabolic products of platelets and vascular cells. Because interactions between these cells are modulated by nitric oxide (NO) and LOOH inactivate NO, we investigated the effect of GSH-Px on the inhibition of platelet function by the naturally occurring S-nitrosothiol, S-nitroso-glutathione (SNO-Glu). Concentrations of SNO-Glu that alone did not inhibit platelet function (subthreshold inhibitory concentrations) were added to platelet-rich plasma together with GSH-Px (0.2-20 U/ml); this led to a dose-dependent inhibition of platelet aggregation with an IC50 of 0.6 U/ml GSH-Px. In the presence of subthreshold inhibitory concentrations of SNO-Glu, the LOOH, 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid, increased platelet aggregation, an effect reversed by GSH-Px. Glutathione and SNO-Glu were equally effective as cosubstrates for GSH-Px. Incubation of SNO-Glu with GSH-Px for 1 min led to a 48.5% decrease in the concentration of SNO-Glu. Incubation of SNO-Glu with serum albumin led to the formation of S-nitroso-albumin, an effect enhanced by GSH-Px. These observations suggest that GSH-Px has two functions: reduction of LOOH, thereby preventing inactivation of NO, and metabolism of SNO-Glu, thereby liberating NO and/or supporting further transnitrosation reactions.
J E Freedman, B Frei, G N Welch, J Loscalzo
We studied interactions between the mitogen-activated protein kinase (MAPK) signalling pathway and cAMP-protein kinase (PKA) signaling pathway in regulation of mitogenesis of mesangial cells (MC) determined by [3H]thymidine incorporation, with or without added EGF. Forskolin or dibutyryl cAMP strongly (by 60-70%) inhibited [3H]thymidine incorporation into MC. Cilostamide, lixazinone or cilostazol selective inhibitors of cAMP-phosphodiesterase (PDE) isozyme PDE-III, inhibited mitogenesis to similar extent as forskolin and DBcAMP and activated in situ PKA, but without detectable increase in cAMP levels. Cilostamide and cilostazol were more than three times more effective at inhibiting mesangial mitogenesis than rolipram and denbufylline, inhibitors of isozyme PDE-IV, even though PDE-IV was two times more abundant in MC than was PDE-III. On the other hand, when incubated with forskolin, rolipram-enhanced cAMP accumulation was far greater (10-100x) than with cilostamide. EGF increased MAPK activity (+300%); PDE isozyme inhibitors which suppressed mitogenesis also inhibited MAPK. PDE isozyme inhibitors also suppressed PDGF-stimulated MC proliferation. We conclude that cAMP inhibits the mitogen-dependent MAPK-signaling pathway probably by decreasing the activity of Raf-1 due to PKA-catalyzed phosphorylation. Further, we surmise that minor increase in the cAMP pool metabolized by PDE-III is intimately related to regulation of mesangial proliferation. Thus, PDE isozyme inhibitors have the potential to suppress MC proliferation by a focused effect upon signaling pathways.
K Matousovic, J P Grande, C C Chini, E N Chini, T P Dousa
Renomedullary interstitial cells (RMIC) are unique to the renal medulla. By virtue of their anatomic location and arrangement, RMIC may hinder axial dissipation of the concentration gradient, thereby aiding urinary concentration. A more active role in urinary concentration has been postulated on the basis of speculations about RMIC contractile potential, however, RMIC contraction has not been investigated. To determine if these cells are contractile, cultured rat RMIC were exposed to endothelin-1 (ET-1), a potent vasoconstrictor which binds to RMIC, and examined using video microscopy. ET-1 (as low as 10 pM) caused a slowly developing and dose-dependent reduction in RMIC surface area. ET-1 markedly increased the number and intensity of F-actin microfilament staining. ET-1-induced RMIC contraction was not altered by nifedipine, was partially reduced by nickel, and was completely inhibited by H7, indicating that ET-1 action is mediated by protein kinase C and is partially dependent upon receptor-operated calcium channels. The ET-1 effect does not involve nitric oxide since NG-monomethyl-L-arginine did not alter ET-1-induced RMIC contraction; in addition, ET-1 had only a minor effect on cGMP levels and no effect on nitrite production. PGE2 acts in an autocrine manner to dampen ET action since indomethacin potentiates, while PGE2 inhibits, ET-1-induced RMIC contraction. The contractile response is not unique to ET-1 since vasopressin also reduces RMIC surface area and increases F-actin microfiliment staining. These studies demonstrate that RMIC in culture are contractile. The possibility is raised that contraction of RMIC plays a role in modifying urinary concentration as well as regulation of other renal medullary functions.
A K Hughes, W H Barry, D E Kohan
Protein Fv (pFv) is a recently described 175-kD gut-associated sialoprotein with a potent capacity for augmentation of antibody-dependent immune functions. To investigate the molecular basis for Fab-mediated binding of pFv, we evaluated a panel of 52 monoclonal IgM and found that approximately 40% bound pFv. Whereas the majority (> or = 75%) of V H3 and V H6 IgM strongly bound pFv, only a small minority (< 20%) of IgM from other V H families bound pFv, and these antibodies had weaker binding interactions. Inhibition studies suggested that all binding occurred at the same (or overlapping) site(s) on pFv. Surface plasmon resonance studies demonstrated binding affinity constants up to 6.7 x 10(8) M-1 for pFv. Biopanning of IgM and IgG Fab phage-display libraries with pFv preferentially selected for V H3 and V H6 antibodies, but also obtained certain V H4 IgM. V H sequence analyses of 36 pFv-binding antibodies revealed that binding did not correlate with CDR sequence, JH, or L chain usage. However, there was preferential selection of pFv binders with V H CDR3 of small size. These studies demonstrate that a protein which enhances immune defense in the gut has structural and functional properties similar to known superantigens.
G J Silverman, P Roben, J P Bouvet, M Sasano
Skeletal muscle glucose transport is altered in diabetes in humans, as well as in rats. To investigate the mechanisms of this abnormality, we measured glucose transport Vmax, the total transporter number, their average intrinsic activity, GLUT4 and GLUT1 contents in skeletal muscle plasma membrane vesicles from basal or insulin-stimulated streptozocin diabetic rats with different duration of diabetes, treated or not with phlorizin. The glucose transport Vmax progressively decreased with the duration of diabetes. In the basal state, this decrease was primarily associated with the reduction of transporter intrinsic activity, which appeared earlier than any change in transporter number or GLUT4 and GLUT1 content. In the insulin-stimulated state, the decrease of transport was mainly associated with severe defects in transporter translocation. Phlorizin treatment partially increased the insulin-stimulated glucose transport by improving the transporter translocation defects. In conclusion, in streptozocin diabetes (a) reduction of intrinsic activity plays a major and early role in the impairment of basal glucose transport; (b) a defect in transporter translocation is the mechanism responsible for the decrease in insulin-stimulated glucose transport; and (c) hyperglycemia per se affects the insulin-stimulated glucose transport by altering the transporter translocation.
R Napoli, M F Hirshman, E S Horton
We have previously shown that stretching cardiac myocytes evokes activation of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs), and 90-kD ribosomal S6 kinase (p90rsk). To clarify the signal transduction pathways from external mechanical stress to nuclear gene expression in stretch-induced cardiac hypertrophy, we have elucidated protein kinase cascade of phosphorylation by examining the time course of activation of MAP kinase kinase kinases (MAPKKKs), MAP kinase kinase (MAPKK), MAPKs, and p90rsk in neonatal rat cardiac myocytes. Mechanical stretch transiently increased the activity of MAPKKKs. An increase in MAPKKKs activity was first detected at 1 min and maximal activation was observed at 2 min after stretch. The activity of MAPKK was increased by stretch from 1-2 min, with a peak at 5 min after stretch. In addition, MAPKs and p90rsk were maximally activated at 8 min and at 10 approximately 30 min after stretch, respectively. Raf-1 kinase (Raf-1) and (MAPK/extracellular signal-regulated kinase) kinase kinase (MEKK), both of which have MAPKKK activity, were also activated by stretching cardiac myocytes for 2 min. The angiotensin II receptor antagonist partially suppressed activation of Raf-1 and MAPKs by stretch. The stretch-induced hypertrophic responses such as activation of Raf-1 and MAPKs and an increase in amino acid uptake was partially dependent on PKC, while a PKC inhibitor completely abolished MAPK activation by angiotensin II. These results suggest that mechanical stress activates the protein kinase cascade of phosphorylation in cardiac myocytes in the order of Raf-1 and MEKK, MAPKK, MAPKs and p90rsk, and that angiotensin II, which may be secreted from stretched myocytes, may be partly involved in stretch-induced hypertrophic responses by activating PKC.
T Yamazaki, I Komuro, S Kudoh, Y Zou, I Shiojima, T Mizuno, H Takano, Y Hiroi, K Ueki, K Tobe
Expression of the group of cytokines known as transforming growth factor-beta (TGF-beta 1, -beta 2 and -beta 3) is increased during liver regeneration induced by a 70% partial hepatectomy. The origin of these changes was examined in purified isolates of hepatocytes, sinusoidal endothelial cells, Kupffer cells (liver macrophages), and lipocytes (Ito or stellate cells) from normal and regenerating liver. In normal liver, TGF-beta 1 and -beta 2 levels were relatively high in sinusoidal endothelial cells and Kupffer cells. After partial hepatectomy, an early peak of TGF-beta 2 and -beta 3 was present in all four cell types, followed by a sustained increase in mRNA for TGF-beta 1, -beta 2, and -beta 3 primarily in the hepatocyte population. The specificity of these changes was established by examining a mechanistically different injury model, fibrosis induced by ligation of the biliary duct. In this model, TGF beta mRNA was increased only in lipocytes and the increase was progressive over a 7-d period of observation. Secretion of TGF beta protein was examined in cell isolates placed in short-term primary culture and generally reflected the corresponding mRNA level. The TGF beta released by hepatocytes was entirely in the latent form, whereas the individual nonparenchymal cell isolates released 50-90% active TGF beta. Hepatocyte-conditioned culture medium, after treatment to activate latent TGF beta, inhibited hepatocellular DNA synthesis as did the authentic factor. The data indicate that after injury TGF beta increases selectively in the cells that are the target of the factor, i.e., in hepatocytes after partial hepatectomy and in lipocytes in inflammation and fibrosis. We conclude that the effects of TGF beta in liver regeneration and fibrogenesis are predominantly, if not exclusively, autocrine.
D M Bissell, S S Wang, W R Jarnagin, F J Roll
Infection of adherent primary monocytes with HIV-1Ba-L is significantly suppressed in the presence of human saliva. By reverse transcriptase (RT) levels, saliva, although present for only 1 h during monocyte viral exposure, inhibited HIV-1 infectivity for 3 wk after infection, whereas human plasma and synovial fluid failed to inhibit HIV-1 infectivity. Antiviral activity was identified in the saliva soluble fraction, and to determine the factor(s) responsible, individual saliva proteins were examined. Of those proteins examined, only secretory leukocyte protease inhibitor (SLPI) was found to possess anti-HIV-1 activity at physiological concentrations. SLPI anti-HIV-1 activity was dose dependent, with maximal inhibition at 1-10 micrograms/ml (> 90% inhibition of RT activity). SLPI also partially inhibited HIV-1IIIB infection in proliferating human T cells. SLPI appears to target a host cell-associated molecule, since no interaction with viral proteins could be demonstrated. However, SLPI anti-HIV-1 activity was not due to direct interaction with or downregulation of the CD4 antigen. Partial depletion of SLPI in whole saliva resulted in decreased anti-HIV-1 activity of saliva. These data indicate that SLPI has antiretroviral activity and may contribute to the important antiviral activity of saliva associated with the infrequent oral transmission of HIV-1.
T B McNeely, M Dealy, D J Dripps, J M Orenstein, S P Eisenberg, S M Wahl
Binding of urokinase to the glycolipid-anchored urokinase receptor (uPAR) has been implicated in macrophage differentiation. However, no biochemical markers of differentiation have yet been directly linked to uPAR occupancy. As extensive changes in proteolytic profile characterize monocytic differentiation, we have examined the role of uPAR occupancy on protease expression by differentiating phagocytes. Antibodies to either urokinase or to uPAR that prevent receptor binding inhibited induction of cathepsin B in cultured monocytes and both cathepsin B and 92-kD gelatinase mRNA and protein in phorbol diester-stimulated myeloid cells. Mannosamine, an inhibitor of glycolipid anchor assembly, also blocked protease expression. Anti-catalytic urokinase antibodies, excess inactive urokinase, or aprotinin had no effect, indicating that receptor occupancy per se regulated protease expression. Antibodies to the integrins CD11a and CD29 or to the glycolipid-anchored proteins CD14 and CD55 also had no effect. Protease induction was independent of matrix attachment. Antibodies to urokinase or uPAR affected neither the decrease in cathepsin G nor the increase in tumor necrosis factor-alpha in phorbol ester-stimulated cells. These data establish that uPAR is a multifunctional receptor, not only promoting pericellular proteolysis and matrix attachment, but also effecting cysteine- and metallo-protease expression during macrophage differentiation.
N K Rao, G P Shi, H A Chapman
The expression of the matrix-degrading enzymes collagenase and stromelysin is modulated by a variety of biologic and pharmacologic agents. IFN-gamma has potent effects on metalloproteinase production and therefore may play an important role in preventing excessive connective tissue degradation during inflammation and repair. We investigated the mechanisms of collagenase and stromelysin regulation by IFN-gamma in human dermal fibroblasts. IFN-gamma (300 U/ml) prevented the stimulation of metalloproteinase gene expression by IL-1 beta. In addition, incubation of fibroblasts with IFN-gamma resulted in a marked increase in cellular indoleamine 2,3-dioxygenase (IDO) mRNA, a > 90% depletion of tryptophan, and a corresponding > 30-fold increase in the tryptophan metabolite kynurenine in the culture media. Reducing the concentration of tryptophan from 25 microM to 0 markedly diminished the ability of fibroblasts to increase collagenase and stromelysin mRNA and collagenase production in response to IL-1 beta. Addition of exogenous tryptophan (25-50 micrograms/ml) to cultures that had been tryptophan depleted by pretreatment with IFN-gamma for 48 h restored the fibroblast response to IL-1 beta or PMA, but had no effect on IFN-gamma-induced HLA-DR alpha chain mRNA expression. These results indicate that inhibition of collagenase and stromelysin gene expression by IFN-gamma in fibroblasts is associated with activation of IDO and enhanced cellular tryptophan metabolism. Tryptophan degradation and ensuing tryptophan depletion may account, at least in part, for the inhibitory effect of IFN-gamma on metalloproteinase production in dermal fibroblasts.
J Varga, T Yufit, R R Brown
L A Danielson, K P Conrad
Nonsteroidal antiinflammatory drugs (NSAIDs), have cancer preventive and tumor regressive effects in the human colon. They lower the incidence of and mortality from colorectal cancer and sulindac reduces the number and size of polyps in patients with familial adenomatous polyposis. We studied the effect of sulindac, and its metabolite sulindac sulfide, on the proliferation of HT-29 colon adenocarcinoma cells. Both compounds reduced the proliferation rate of these cells, changed their morphology, and caused them to accumulate in the G0/G1 phase of the cell cycle. These responses were time- and concentration-dependent and reversible. In addition, these compounds reduced the level and activity of several cyclin-dependent kinases (cdks), which regulate cell cycle progression. Sulindac and sulindac sulfide also induced apoptosis in these cells at concentrations that affected their proliferation, morphology, and cell cycle phase distribution. Sulindac sulfide was approximately sixfold more potent than sulindac in inducing these cellular responses. Our results indicate that inhibition of cell cycle progression and induction of apoptotic cell death contribute to the anti-proliferative effects of sulindac and sulindac sulfide in HT-29 cells. These findings may be relevant to the cancer preventive and tumor regressive effects of these compounds in humans.
S J Shiff, L Qiao, L L Tsai, B Rigas
Oxidized LDL is present in human atherosclerotic lesions, but the mechanisms responsible for oxidation in vivo have not been definitively demonstrated. Circumstantial evidence has implicated the enzyme 15-lipoxygenase as a contributor to the formation of oxidized lipids in this disease. To assess whether oxidized lipids are indeed formed by the action of 15-lipoxygenase on polyunsaturated fatty acids (PUFAs) in vivo, we have used a sensitive and specific method (chiral phase HPLC) to analyze the lipid oxidation products present in human atherosclerotic lesions. Human 15-lipoxygenase is an omega-6 lipoxygenase that has previously been shown to oxidize esterified PUFA in a stereospecific manner, forming predominantly cholesteryl hydroperoxy-octadecadienoate (13(S)-HPODE) from cholesteryl linoleate substrate in LDL. This property allows its activity to be distinguished from nonenzymatic oxidation, which results in the formation of equal quantities of the S and R stereoisomers of the same oxidation product. A total of 80 specimens of human atherosclerotic plaque were analyzed. Esterified, oxidized linoleate was purified from human atherosclerotic lesions and from LDL oxidized by copper, and the chirality of these oxidation products was compared. There was significantly greater stereospecificity of oxidation in the oxidized linoleate from human atherosclerotic lesions. Even greater stereospecificity was detected in the HPODE derived from cholesteryl ester, purified from human lesions. Cholesteryl HPODE is the primary oxidation product from cholesteryl linoleate, the major esterified PUFA that accumulates in atherosclerotic vessels. Cholesteryl HPODE and its reduced form, cholesteryl hydroxy-octadecadienoate, were detected in all lesions analyzed. Neither the stereospecificity of oxidation nor the percentage of available substrate oxidized to primary oxidation products was correlated with the stage of disease of the lesions examined. We conclude that 15-lipoxygenase contributes to the formation of oxidized lipids in human atherosclerotic lesions.
V A Folcik, R A Nivar-Aristy, L P Krajewski, M K Cathcart
In long-term bone marrow cultures, stroma-adherent progenitors proliferate significantly less than nonadherent progenitors. Thus, close progenitor-stroma interactions may serve to regulate or restrict rather than promote hematopoietic progenitor proliferation. We hypothesized that signaling through adhesion receptors on hematopoietic cells may contribute to the inhibition of proliferation observed when progenitors are in contact with stroma. We demonstrate that progenitors cultured physically separated from stroma in a transwell proliferate significantly more than progenitors adherent to stroma. Furthermore, proliferation of colony forming cells (CFC) is reduced after specific adhesion to stroma, metabolically inactivated glutaraldehyde-fixed stroma, stromal-extracellular matrix, or the COOH-terminal heparin-binding domain of fibronectin. Nonspecific adhesion to poly-L-lysine fails to inhibit CFC proliferation. That the VLA-4 integrin is one of the receptors that transfers proliferation inhibitory signals was shown using blocking anti-alpha 4 monomeric F(ab) fragments. Furthermore, when synthetic peptides representing specific cell attachment sites within the heparin-binding domain of fibronectin were added to Dexter-type marrow cultures, significantly increased recovery and proliferation of CFC was observed, suggesting that these peptides disrupt adhesion-mediated proliferation inhibitory events. Thus, negative regulation of hematopoiesis may not only depend on the action of growth inhibitory cytokines but also on growth inhibitory signals resulting from direct adhesive interactions between progenitors and marrow stroma.
R W Hurley, J B McCarthy, C M Verfaillie
The increased prevalence of non-insulin-dependent diabetes mellitus (NIDDM) among women with polycystic ovary syndrome (PCOS) has been ascribed to the insulin resistance characteristic of PCOS. This study was undertaken to determine the role of defects in insulin secretion as well as familial factors to the predisposition to NIDDM seen in PCOS. We studied three groups of women: PCOS with a family history of NIDDM (PCOS FHx POS; n = 11), PCOS without a family history of NIDDM (PCOS FHx NEG; n = 13), and women without PCOS who have a family history of NIDDM (NON-PCOS FHx POS; n = 8). Beta cell function was evaluated during a frequently sampled intravenous glucose tolerance test, by a low dose graded glucose infusion, and by the ability of the beta cell to be entrained by an oscillatory glucose infusion. PCOS FHx POS women were significantly less likely to demonstrate appropriate beta cell compensation for the degree of insulin resistance. The ability of the beta cell to entrain, as judged by the spectral power for insulin secretion rate, was significantly reduced in PCOS FHx POS subjects. In conclusion, a history of NIDDM in a first-degree relative appears to define a subset of PCOS subjects with a greater prevalence of insulin secretory defects. The risk of developing NIDDM imparted by insulin resistance in PCOS may be enhanced by these defects in insulin secretion.
D A Ehrmann, J Sturis, M M Byrne, T Karrison, R L Rosenfield, K S Polonsky
We have used apolipoprotein genes to investigate the signal transduction mechanisms involved in the control of intestinal specific gene expression. The human apoAI, apoCIII, and apoAIV genes are tandemly organized within a 15-kb DNA segment and are expressed predominantly in the liver and intestine. Transient transfection of various human apoAI gene plasmid constructs into human hepatoma (HepG2) and colon carcinoma (Caco-2) cells showed that apoAI gene transcription is under the control of two separate and distinct cell-specific promoters. The region between nucleotides -192 and -41 is essential for expression in HepG2 cells, whereas the region from -595 to -192 is essential for expression in Caco-2 cells. A third 0.6 kb DNA fragment in the apoCIII gene promoter region, approximately 5 kb down-stream from the human apoAI gene, enhances transcription mediated by either of these two tissue-specific apoAI promoters. In Caco-2 cells, expression of the apoAI gene and activation by the distal enhancer required the presence of a nuclear hormone receptor response element (NHRRE) located in the -214 to -192 apoAI promoter region. Overexpression of the orphan receptor hepatocyte nuclear factor 4 (HNF-4), which binds to the NHRRE, dramatically stimulates apoAI gene expression in Caco-2 cells but not in HepG2 cells. Maximal stimulation of transcription by HNF-4 in Caco-2 cells required the presence of both the intestinal specific promoter, the NHRRE, and distal enhancer elements. Transactivation by HNF-4 thus appears to result from functional synergy between the NHRRE binding HNF-4 and distal DNA elements containing intestinal-specific DNA binding activities. The apoAI gene provides a model system to define the mechanism(s) governing intestinal cell specific gene regulation and the role of nuclear hormone receptors in the establishment and regulation of enterocytic gene transcription.
G S Ginsburg, J Ozer, S K Karathanasis
To examine PG production in estrogen deficiency, we studied effects on cultured neonatal mouse calvariae of bone marrow supernatants (MSup) from sham-operated (SHAM), ovariectomized (OVX), or 17 beta-estradiol (OVX+E)-treated mice. MSups were obtained 3 wk after OVX when bone density had decreased significantly. 10-60% MSup increased medium PGE2 and levels of mRNA for inducible and constitutive prostaglandin G/H synthase (PGHS-2 and PGHS-1) and cytosolic phospholipase A2 in calvarial cultures. OVX MSups had twofold greater effects on PGHS-2 and medium PGE2 than other MSups. IL-1 receptor antagonist and anti-IL-1 alpha neutralizing antibody decreased MSup-stimulated PGHS-2 mRNA and PGE2 levels and diminished differences among OVX, sham-operated, and OVX+E groups. In contrast, antibodies to IL-1 beta, IL-6, IL-11, and TNF alpha had little effect. There were no significant differences in IL-1 alpha concentrations or IL-1 alpha mRNA levels in MSups or marrow cells. PGHS-2 mRNA in freshly isolated tibiae from OVX mice was slightly greater than from sham-operated. We conclude that bone marrow factors can increase PG production through stimulation of PGHS-2; that OVX increases and estrogen decreases activity of these factors; and that IL-1 alpha activity, together with additional unknown factors, mediates the differential MSup effects.
H Kawaguchi, C C Pilbeam, S J Vargas, E E Morse, J A Lorenzo, L G Raisz
Rhinovirus infections cause over one third of all colds and are a contributing factor to exacerbations of asthma. To gain insights into the early biochemical events that occur in infected epithelial cells, we develop, for the first time, a model in which a pure respiratory epithelial cell population can be routinely infected by rhinovirus. Viral infection was confirmed by demonstrating that viral titers of supernatants and lysates from infected cell increased with time and by PCR. Infection by rhinovirus 14 was inhibited by homotypic antiserum and by antibodies to intercellular adhesion molecule-1 (ICAM-1), the receptor for this virus. Susceptibility of epithelial cells to infection by rhinovirus 14 (but not rhinovirus 2, an ICAM-1 independent strain) can be increased by preexposure of cells to TNF alpha, whereas IFN gamma reduces susceptibility to infection by both rhinovirus strains. Rhinovirus infection per se does not markedly alter ICAM-1 expression on epithelial cells. Finally, we demonstrate that rhinovirus infection induced increased production of IL-8, IL-6, and GM-CSF from epithelial cells. Production of IL-8 correlated with viral replication during the first 24 h after infection. This model should provide useful insights into the pathogenesis of rhinovirus infections.
M C Subauste, D B Jacoby, S M Richards, D Proud
PDGF has been shown to contribute to hypertrophy in vascular smooth muscle cells (VSMC). PDGF-AA differentially promotes protein synthesis in VSMC from spontaneously hypertensive rats (SHR) but not in those from Wistar-Kyoto rats (WKY). This observation has led us to postulate a role for PDGF alpha receptor (PDGFR-alpha) in the hypertensive hypertrophy of blood vessels. Western and Northern blot analyses demonstrated a high and specific expression of the PDGFR-alpha protein and mRNA in SHR cells but not in WKY cells. To clarify the mechanism of the differential expression of the PDGFR-alpha gene, we isolated the promoter region of the gene. Studies on the promoter functions indicated that this promoter is active in SHR cells but not in WKY cells. The regulatory domain responsible for this difference was narrowed to the sequence between -246 and -139, which enhanced the promoter activity of SHR fivefold over the basal activity. DNase I footprinting and gel-shift assay indicated that this sequence specifically interact with nuclear proteins from VSMC through the binding site for CCAAT/enhancer-binding proteins, and members of the C/enhancer-binding protein family play a significant role in the strain-specific transcription of the PDGFR-alpha gene.
Y Kitami, H Inui, S Uno, T Inagami
Chromogranin A, a soluble acidic protein, is a ubiquitous component of secretory vesicles throughout the neuroendocrine system. We reported previously the cloning and initial characterization of the mouse chromogranin A gene promoter, which showed that the promoter contains both positive and negative domains and that a proximal promoter spanning nucleotides -147 to +42 bp relative to the transcriptional start site is sufficient for neuroendocrine cell type-specific expression. The current study was undertaken to identify the particular elements within this proximal promoter that control tissue-specific expression. We found that deletion or point mutations in the potential cAMP response element (CRE) site at -68 bp virtually abolished promoter activity specifically in neuroendocrine (PC12 chromaffin or AtT20 corticotrope) cells, with little effect on activity in control (NIH3T3 fibroblast) cells; thus, the CRE box is necessary for neuroendocrine cell type-specific activity of the chromogranin A promoter. Furthermore, the effect of the CRE site is enhanced in the context of intact (wild-type) promoter sequences between -147 and -100 bp. DNase I footprint analysis showed that these regions (including the CRE box) bind nuclear proteins present in both neuroendocrine (AtT20) and control (NIH3T3) cells. In AtT20 cells, electrophoretic mobility shift assays and factor-specific antibody supershifts showed that an oligonucleotide containing the chromogranin A CRE site formed a single, homogeneous protein-DNA complex containing the CRE-binding protein CREB. However, in control NIH3T3 cells we found evidence for an additional immunologically unrelated protein in this complex. A single copy of this oligonucleotide was able to confer neuroendocrine-specific expression to a heterologous (thymidine kinase) promoter, albeit with less fold selectivity than the full proximal chromogranin A promoter. Hence, the CRE site was partially sufficient to explain the neuroendocrine cell type specificity of the promoter. The functional activity of the CRE site was confirmed through studies of the endogenous chromogranin A gene. Northern mRNA analysis showed that expression of the endogenous chromogranin A gene was stimulated seven- to eightfold by cAMP in PC12 cells, whereas no induction occurred in the NIH3T3 cells. Similar cAMP induction was obtained with the transfected chromogranin A promoter in PC12 cells, and abolition of the CRE site (by deletion or point mutation) eliminated the induction. Thus, the CRE site in the chromogranin A proximal promoter is functional and plays a crucial, indeed indispensable, role in neuroendocrine-specific expression of the gene. These results also provide insight into transcriptional mechanisms governing acquisition of the neuroendocrine secretory phenotype.
H Wu, S K Mahata, M Mahata, N J Webster, R J Parmer, D T O'Connor
Impaired beta adrenoceptor-mediated vasodilation associated with enhanced sympathetic activity has been reported in established hypertension. We examined whether altered beta adrenoceptor-mediated vasodilation occurs early in the disease process, when structural vascular changes are likely to be less marked, by measurement of forearm blood flow by strain gauge plethysmography after the intraarterial administration of increasing doses of a beta receptor agonist, isoproterenol, in eight subjects with borderline hypertension (BHT) and 13 normotensive (NT) controls. To determine the role of sympathetic activation in the regulation of responsiveness, we measured local sympathetic activity in the forearm by a radioisotope dilution technique. Vasodilation in response to isoproterenol, measured either as changes in forearm blood flow or forearm vascular resistance, was impaired in the BHT group so that flow at the highest dose of isoproterenol (400 ng/min) increased less (15.2 +/- 1.5 ml/100 ml per min) than in the NT group (24.4 +/- 2.4 ml/100 ml per minute) (P < 0.001). Although, systemic norepinephrine spillover was significantly greater in BHT, the difference in blood flow response to isoproterenol was not accounted for by increased local sympathetic activity since forearm norepinephrine spillover at baseline (BHT 1.0 +/- 0.4 ng/min vs. NT 0.64 +/- 0.13 ng/min) and after the administration of isoproterenol 60 ng/min (BHT 5.2 +/- 1.4 ng/min vs. NT 6.0 +/- 1.5 ng/min) and 400 ng/min (BHT 13.5 +/- 2.9 ng/min vs. NT 16.5 +/- 2.7 ng/min) did not differ between the two groups. We therefore conclude that vasodilation in response to isoproterenol is impaired in subjects with BHT and that this impairment is not explained by locally increased basal, or stimulated, sympathetic activity.
C M Stein, R Nelson, R Deegan, H He, M Wood, A J Wood
The in vitro T cell proliferative response to DNA topoisomerase I (topo I) was examined in 26 systemic sclerosis (SSc) patients with anti-topo I antibody, 10 SSc patients without anti-topo I antibody, and 21 healthy donors. Using recombinant fusion proteins encompassing the entire human topo I amino acid sequence, a topo I-specific proliferative response was detected in PBMC cultures from 25 (96%) anti-topo I-positive SSc patients, 4 (40%) anti-topo I-negative SSc patients, and 13 (62%) healthy donors. Molecular typing at MHC class II loci revealed that all SSc patients and healthy donors having either DRB1*1501,2 (DR15), DRB1*1101,3,4 (DR11), or DRB1*07 (DR7) were responders. Characterization of the topo I-induced T cell proliferative response showed that (a) the responding cells were CD4+ T cells; (b) antigen-presenting cells were necessary for the response; (c) the response was restricted by HLA-DR, and to a lesser extent by HLA-DQ; and (d) the estimated frequency of the responding T cells determined by limiting dilution analysis was 1/9,277-1/24,853. PBMC cultures from anti-topo I-positive SSc patients showed a high T cell proliferative response after only 3 d of culture with topo I. Anti-topo I-negative SSc patients and healthy donors had no proliferative response after 3 d, but did respond after 7 d of culture. T cell proliferative responses to six truncated topo I fragments tested individually showed different patterns of T cell proliferation that were dependent upon the responder's HLA-DR alleles. These results indicate that T cells reactive with topo I are components of the normal T cell repertoire, and that the topo I-specific T cell proliferative response is not associated with the presence or absence of SSc or anti-topo I antibody, but is restricted by MHC class II alleles.
M Kuwana, T A Medsger Jr, T M Wright
Cross-talk between signaling pathways is increasingly recognized as integral to cellular function. We investigated whether the mitogen-activated protein kinase (MAPK) pathway alters vasopressin (AVP) stimulation of protein kinase A (PKA) by specifically studying the role of Ras. Mouse cortical collecting duct cells (M-1) were transfected with a cDNA encoding oncogenic Ras. Transfection was confirmed by Western blot analysis and functionally by enhanced basal MAPK activity. When compared with basal MAPK activity of 26.4 +/- 6.6 pmol/mg/min in controls, basal MAPK activity varied widely in Ras-transfected clones from 29.0 +/- 6.6 to 96.6 +/- 13.4 pmol/mg/min. Clones that functionally expressed activated Ras displayed complete abolition of AVP-stimulated PKA activity, whereas those that failed to express elevated basal MAPK activity showed intact AVP-stimulated PKA. The correlation between expression of high basal MAPK activity and inhibition of AVP-induced PKA yielded a correlation coefficient of -0.92 (P = 0.009). Exposure to 10 microM forskolin or 1 microgram/ml cholera toxin resulted in comparable activation of PKA in all clones. We found no correlation between PKC activity of the clones and PKA inhibition. To assess whether the observed effect was due to one known Ras target, cells were transfected with constitutively activated Raf. M-1 cells expressing activated Raf exhibited elevated MAPK activity. The Raf clones showed no impairment of AVP-stimulated PKA activity. We conclude that expression of activated Ras is inhibitory of AVP-induced PKA activation in the M-1 cortical collecting duct cell line at a site proximal to G alpha s protein. The failure of Raf to influence AVP signaling indicates that the action of Ras is through a pathway independent of this Ras target.
R Wong, L Heasley, L Ao, T Berl
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) induces the differentiation of normal human keratinocytes, in part by increasing their basal intracellular calcium levels (Cai) over a period of hours. Agonists such as ATP acting through membrane receptors cause an immediate but transient increase in Cai accompanied by an increase in inositol trisphosphate (IP3). Treatment of keratinocytes for 24 h with 1 nM 1,25(OH)2D3 resulted in a two- to four-fold potentiation of the Cai response of these cells to ATP. This potentiation was inhibitable with cycloheximide, unaccompanied by a change in total intracellular calcium pools, but associated with an increase in basal IP3 levels and ATP-stimulated IP3 production. Treatment with 1,25(OH)2D3 raised the protein and mRNA levels of phospholipase C isoenzymes, particularly phospholipase C-beta 1 in a dose-dependent manner. These studies indicate that 1,25(OH)2D3 modulates the keratinocyte signal transduction pathway by induction of phospholipase isoenzymes, a previously undescribed action for this hormone.
S Pillai, D D Bikle, M J Su, A Ratnam, J Abe
Studies were conducted to determine if gamma delta T cells participate in the immune response to Toxoplasma gondii. Preferential expansion of human gamma delta T cells occurred when peripheral blood T cells from either T. gondii-seronegative or seropositive individuals were incubated with autologous PBMC infected with the parasite. That gamma delta T cells proliferated after incubation with infected cells was confirmed using purified of gamma delta T cells. These T. gondii-induced gamma delta T cell responses did not require prior exposure to the parasite since T cells obtained from umbilical cord blood from seronegative newborns also exhibited preferential expansion of gamma delta T cells. Cytofluorometric analysis of T cells obtained from either umbilical cord blood or peripheral blood from adults revealed that V gamma 9+ and V delta 2+ gamma delta T cells responded to stimulation with infected cells. Preferential expansion of gamma delta T cells was not restricted by polymorphic determinants of MHC molecules. PBMC that had internalized killed parasites but not PBMC incubated with T. gondii lysate antigens also stimulated preferential expansion and activation of gamma delta T cells as assessed by expression of CD25 and HLA-DR molecules. V gamma 9+V delta 2+ gamma delta T cells were cytotoxic for T. gondii-infected cells in an MHC-unrestricted manner, and produced IFN-gamma, IL-2, TNF-alpha, but not IL-4 when incubated with cells infected with the parasite. These results suggest that rapid induction of a remarkable primary gamma delta T cell response may be important in the early protective immune response to T. gondii.
C S Subauste, J Y Chung, D Do, A H Koniaris, C A Hunter, J G Montoya, S Porcelli, J S Remington
To determine if alcoholic liver fibrogenesis is exacerbated by dietary iron supplementation, carbonyl iron (0.25% wt/vol) was intragastrically infused with or without ethanol to rats for 16 wk. Carbonyl iron had no effect on blood alcohol concentration, hepatic biochemical measurements, or liver histology in control animals. In both ethanol-fed and control rats, the supplementation produced a two- to threefold increase in the mean hepatic non-heme iron concentration but it remained within or near the range found in normal human subjects. As previously shown, the concentrations of liver malondialdehyde (MDA), liver 4-hydroxynonenal (4HNE), and serum aminotransferases (ALT, AST) were significantly elevated by ethanol infusion alone. The addition of iron supplementation to ethanol resulted in a further twofold increment in mean MDA, 4HNE, ALT, and AST. On histological examination, focal fibrosis was found < 30% of the rats fed ethanol alone. In animals given both ethanol and iron, fibrosis was present in all, with a diffuse central-central bridging pattern in 60%, and two animals (17%) developed micronodular cirrhosis. The iron-potentiated alcoholic liver fibrogenesis was closely associated with intense and diffuse immunostaining for MDA and 4HNE adduct epitopes in the livers. Furthermore, in these animals, accentuated increases in procollagen alpha 1(I) and TGF beta 1 mRNA levels were found in both liver tissues and freshly isolated hepatic stellate cells, perisinusoidal cells believed to be a major source of extracellular matrices in liver fibrosis. The dietary iron supplementation to intragastric ethanol infusion exacerbates hepatocyte damage, promotes liver fibrogenesis, and produces evident cirrhosis in some animals. These results provide evidence for a critical role of iron and iron-catalyzed oxidant stress in progression of alcoholic liver disease.
H Tsukamoto, W Horne, S Kamimura, O Niemelä, S Parkkila, S Ylä-Herttuala, G M Brittenham
Lack of response to endothelium-dependent vasodilators generally has been considered to be evidence for decreased nitric oxide synthase (NOS) activity and NO generation after ischemic or hypoxic injury to vital organs including the kidney. In this study, renal blood flow (RBF) responses to endothelium-dependent vasodilators acetylcholine and bradykinin and the endothelium-independent vasodilator prostacyclin, the nonselective NOS inhibitor L-NAME (without and with L-arginine), the inducible NOS inhibitor aminoguanidine, and the NO-donor sodium nitroprusside were examined in 1-wk norepinephrine-induced (NE) and sham-induced acute renal failure (ARF) rats. Compared with sham-ARF, there was no increase in RBF to intrarenal acetylcholine and bradykinin, but a comparable RBF increase to prostacyclin in NE-ARF kidneys. However, there was a significantly greater decline in RBF to intravenous L-NAME in NE- than sham-ARF rats (-65 +/- 8 vs. -37 +/- 5%, P < 0.001) which was completely blocked by prior L-arginine infusion. There was no change in RBF to the inducible NOS specific inhibitor aminoguanidine. Unlike sham-ARF, there was no increase in RBF to intrarenal sodium nitroprusside in NE-ARF. Immunohistochemistry and immunofluorescence detection of constitutive (c) NOS using mouse monoclonal antibody were carried out to positively determine the presence of cNOS in NE-ARF. 90% of renal resistance vessels showed evidence of endothelial cNOS in both sham- and NE-ARF. Taken together, results of these experiments are consistent with the conclusion that NOS/NO activity is, in fact, maximal at baseline in 1-wk NE-ARF and cannot be increased further by exogenous stimuli of NOS activity. The increased NOS is likely of the constitutive form and of endothelial origin. It is suggested that the increased NOS activity is in response to ischemia-induced renal vasoconstrictor activity. Attenuated response to endothelium-dependent vasodilators cannot be interpreted only as evidence for decreased NOS activity.
J Conger, J Robinette, A Villar, L Raij, P Shultz
Expansion of atherosclerotic abdominal aortic aneurysm (AAA) has been attributed to remodeling of the extracellular matrix by active proteolysis. We used in situ hybridization to analyze the expression of fibrinolytic genes in aneurysm wall from eight AAA patients. All specimens exhibited specific areas of inflammatory infiltrates with macrophage-like cells expressing urokinase-type plasminogen activator (u-PA) and tissue-type PA (t-PA) mRNA. Type 1 PA inhibitor (PAI-1) mRNA was expressed at the base of the necrotic atheroma of all specimens and also within some of the inflammatory infiltrates where it frequently colocalized in regions containing u-PA and t-PA mRNA expressing cells. However, in these areas, the cellular distribution of the transcripts for t-PA and u-PA extended far beyond the areas of PAI-1 expression. These observations suggest a local ongoing proteolytic process, one which is only partially counteracted by the more restricted expression of PAI-1 mRNA. An abundance of capillaries was also obvious in all inflammatory infiltrates and may reflect local angiogenesis in response to active pericellular fibrinolysis. The increased fibrinolytic capacity in AAA wall may promote angiogenesis and contribute to local proteolytic degradation of the aortic wall leading to physical weakening and active expansion of the aneurysm.
J Schneiderman, G M Bordin, I Engelberg, R Adar, D Seiffert, T Thinnes, E F Bernstein, R B Dilley, D J Loskutoff
In previous studies we have characterized the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in clathrin-coated vesicles derived from bovine brain and in neurons of rat brain. In this study we have further characterized the expression of the CFTR protein mRNA and protein in rat brain with reverse transcriptase polymerase chain reaction amplification (RT-PCR), in situ hybridization, and immunocytochemistry. The expression of CFTR mRNA and protein in discrete areas of brain, including the hypothalamus, thalamus, and amygdaloid nuclei, which are involved in regulation of appetite and resting energy expenditure, is identical. The presence of CFTR in neurons localized to these regions of brain controlling homeostasis and energy expenditure may elucidate the pathogenesis of other nonpulmonary and gastrointestinal manifestations which commonly are observed in children with cystic fibrosis. Dysregulation of normal neuropeptide vesicle trafficking by mutant CFTR in brain may serve as a pathogenic mechanism for disruption of homeostasis.
A E Mulberg, L P Resta, E B Wiedner, S M Altschuler, D M Jefferson, D L Broussard