Chaturantabut et al. identify biparatopic FGFR2 antibodies that are effective against FGFR2 fusion–driven cholangiocarcinoma. The cover art depicts biparatopic antibodies binding to and crosslinking FGFR2, creating large complexes that promote FGFR2 internalization and degradation, which ultimately suppress tumor growth. Image credit: Behnoush Hajian and Mrinal Shekhar.
The progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to metabolic dysfunction-associated steatohepatitis (MASH) involves alterations in both liver-autonomous and systemic metabolism that influence the liver’s balance of fat accretion and disposal. Here, we quantify the contributions of hepatic oxidative pathways to liver injury in MASLD-MASH. Using NMR spectroscopy, UHPLC-MS, and GC-MS, we performed stable-isotope tracing and formal flux modeling to quantify hepatic oxidative fluxes in humans across the spectrum of MASLD-MASH, and in mouse models of impaired ketogenesis. In humans with MASH, liver injury correlated positively with ketogenesis and total fat oxidation, but not with turnover of the tricarboxylic acid cycle. Loss-of-function mouse models demonstrated that disruption of mitochondrial HMG-CoA synthase (HMGCS2), the rate-limiting step of ketogenesis, impairs overall hepatic fat oxidation and induces a MASLD-MASH-like phenotype. Disruption of mitochondrial β-hydroxybutyrate dehydrogenase (BDH1), the terminal step of ketogenesis, also impaired fat oxidation, but surprisingly did not exacerbate steatotic liver injury. Taken together, these findings suggest that quantifiable variations in overall hepatic fat oxidation may not be a primary determinant of MASLD-to-MASH progression, but rather, that maintenance of ketogenesis could serve a protective role through additional mechanisms that extend beyond overall rates of fat oxidation.
Eric D. Queathem, David B. Stagg, Alisa B. Nelson, Alec B. Chaves, Scott B. Crown, Kyle Fulghum, D. Andre d'Avignon, Justin R. Ryder, Patrick J. Bolan, Abdirahman Hayir, Jacob R. Gillingham, Shannon Jannatpour, Ferrol I. Rome, Ashley S. Williams, Deborah M. Muoio, Sayeed Ikramuddin, Curtis C. Hughey, Patrycja Puchalska, Peter A. Crawford
Patients with systemic lupus erythematosus (SLE) are photosensitive, developing skin inflammation with even ambient ultraviolet radiation (UVR), and this cutaneous photosensitivity can be associated with UVR-induced flares of systemic disease, which can involve increased autoantibodies and further end organ injury. Mechanistic insight into the link between the skin responses and autoimmunity is limited. Signals from skin are transmitted directly to the immune system via lymphatic vessels, and here we show evidence for potentiation of UVR-induced lymphatic flow dysfunction in SLE patients and murine models. Improving lymphatic flow by manual lymphatic drainage (MLD) or with a transgenic model with increased lymphatic vessels reduces both cutaneous inflammation and lymph node B and T cell responses, and long term MLD reduces splenomegaly and titers of a number of autoantibodies. Mechanistically, improved flow restrains B cell responses in part by stimulating a lymph node fibroblastic reticular cell-monocyte axis. Our results point to lymphatic modulation of lymph node stromal function as a link between photosensitive skin responses and autoimmunity and as a therapeutic target in lupus, provide insight into mechanisms by which the skin state regulates draining lymph node function, and suggest the possibility of MLD as an accessible and cost-effective adjunct to add to ongoing medical therapies for lupus and related diseases.
Mir J. Howlader, William G. Ambler, Madhavi Latha S. Chalasani, Aahna Rathod, Ethan S. Seltzer, Ji Hyun Sim, Jinyeon Shin, Noa Schwartz, William D. Shipman III, Dragos C. Dasoveanu, Camila B. Carballo, Ecem Sevim, Salma Siddique, Yurii Chinenov, Scott A. Rodeo, Doruk Erkan, Raghu P. Kataru, Babak J. Mehrara, Theresa T. Lu
As antimicrobial resistance rises, new antibacterial candidates are urgently needed. Using sequence space information from over 14,743 functional antimicrobial peptides (AMPs), we improved the antimicrobial properties of citropin 1.1, an AMP with weak anti-methicillin resistant Staphylococcus aureus (MRSA) activity, producing a short and potent anti-staphylococcal peptide, CIT-8 (13 residues). At 40 μg/ml, CIT-8 eradicated 1 × 108 drug-resistant MRSA and VRSA (vancomycin resistant S. aureus) persister cells within 30 mins of exposure and reduced the number of viable biofilm cells of MRSA and VRSA by 3 log10 and 4 log10 in established biofilms, respectively. CIT-8 (at 32 μg/ml) depolarized and permeated the S. aureus MW2 membrane. In a mouse model of MRSA skin infection, CIT-8 (2% w/w in petroleum jelly) significantly reduced the bacterial burden by 2.3 log10 (p < 0.0001). Our methodology accelerates AMP design by combining traditional peptide design strategies, such as truncation, substitution, and structure-guided alteration, with machine learning (ML)-backed sequence optimization.
Biswajit Mishra, Anindya Basu, Fadi Shehadeh, LewisOscar Felix, Sai Sundeep Kollala, Yashpal Singh Chhonker, Mandar T. Naik, Charilaos Dellis, Liyang Zhang, Narchonai Ganesan, Daryl J. Murry, Jianhua Gu, Michael B. Sherman, Frederick M. Ausubel, Paul P. Sotiriadis, Eleftherios Mylonakis
BACKGROUND. Adipose tissue-derived endotrophin, a peptide cleaved from the α3 chain of collagen VI during fibrogenesis, causes systemic insulin resistance in rodent models. Here, we evaluated the potential importance of endotrophin in regulating whole-body insulin sensitivity in people. METHODS. We evaluated: i) plasma endotrophin concentration, insulin sensitivity (assessed by using the hyperinsulinemic-euglycemic clamp procedure in conjunction with stable isotopically labeled glucose tracer infusion) and adipose tissue expression of genes involved in endotrophin production in three groups of participants that were rigorously stratified by adiposity and insulin sensitivity [lean insulin-sensitive (Lean-IS; n=10), obese insulin-sensitive (Obese-IS; n=10), and obesity insulin-resistant (Obese-IR; n=10)]; ii) plasma endotrophin concentration and insulin sensitivity in 15 people with obesity and type 2 diabetes before and after marked (~18%) weight loss; and iii) the effect of endotrophin on insulin signaling (AKTser473 phosporylation) and insulin action (insulin-stimulated glucose uptake) in primary human skeletal muscle myotubes. RESULTS. Plasma endotrophin progressively increased from the Lean-IS to the Obese-IS to the Obese-IR group, was negatively associated with insulin sensitivity and positively associated with factors involved in adipose tissue endotrophin production, namely adipose tissue gene expression of matrix metalloproteinases and markers of hypoxia, inflammation, and fibrosis. Marked weight loss increased insulin sensitivity in conjunction with a decrease in plasma endotrophin concentration. Endotrophin inhibited insulin insulin-stimulated AKTser473 phosphorylation and insulin-stimulated glucose uptake in myotubes, which was restored by incubation with a neutralizing endotrophin antibody. CONCLUSIONS. These results suggest plasma endotrophin is both a biomarker and cause of whole-body insulin resistance in people with obesity.
Gordon I. Smith, Samuel Klein
Colistin (COL) is a cationic cyclic peptide that disrupts negatively-charged Gram-negative bacterial cell membranes and frequently serves as an antibiotic of last resort to combat multidrug-resistant Gram-negative bacterial infections. Emergence of the horizontally transferable plasmid-borne mobilized colistin resistance (mcr) determinant and its spread to Gram-negative strains harboring extended-spectrum β-lactamase and carbapenemase resistance genes threatens futility of our chemotherapeutic arsenal. COL is widely regarded to have zero activity against mcr+ strains based on standard antimicrobial susceptibility testing (AST) performed in enriched bacteriological growth media; consequently, the drug is withheld from patients with mcr+ infections. However, these standard testing media poorly mimic in vivo physiology and omit host immune factors. Here we observed that COL exhibits bactericidal activities against mcr+ isolates of Escherichia coli, Klebsiella pneumoniae, and Salmonella enterica in tissue culture media containing the physiological buffer bicarbonate. Moreover, COL promoted serum complement deposition on the mcr-1+ Gram-negative bacterial surface and synergized potently with active human serum in pathogen killing. At COL concentrations readily achievable with standard dosing, the peptide antibiotic killed mcr-1+ E. coli, K. pneumoniae, and S. enterica in freshly isolated human blood and proved effective as monotherapy in a murine model of E. coli bacteremia. Our results suggest that COL, currently ignored as a treatment option based on traditional AST, may in fact benefit patients with mcr-1+ Gram negative infections based on evaluations performed in a more physiologic context. These concepts warrant careful consideration in the clinical microbiology laboratory and for future clinical investigation of their merits in high-risk patients with limited therapeutic options.
Monika Kumaraswamy, Angelica Riestra, Anabel Flores, Samira Dahesh, Fatemeh Askarian, Satoshi Uchiyama, Jonathan Monk, Sean Jung, Gunnar Bondsäter, Victoria Nilsson, Melanie Chang, Jürgen B Bulitta, Yinzhi Lang, Armin Kousha, Elisabet Bjånes, Natalie Chavarria, Ty'Tianna Clark, Hideya Seo, George Sakoulas, Victor Nizet
Metabolic dysfunction associated steatotic liver disease (MASLD, formerly called NAFLD) and its more advanced form, metabolic dysfunction associated steatohepatitis (MASH, formerly called NASH) are increasing in prevalence worldwide as the number of individuals with metabolic risk factors rises. These diseases and their adverse sequelae have a formidable economic impact, and there remain large gaps in understanding and treating MASLD/MASH. Series editor Scott Friedman curated this series of expert-led review articles to cover advances and challenges across the spectrum of basic investigation to clinical trials. The reviews will address diagnostic approaches, management strategies specific to adolescent and pregnant individuals, pathobiology, and therapeutic horizons, with the goal of reflecting the heterogeneity seen in disease drivers as well as the affected population.
×