Issue published January 2, 2026 Previous issue

On the cover: Understanding adipocyte loss in familial partial lipodystrophy 2

Maung et al. report that mutations in the laminin A (LMNA) gene in patients with familial partial lipodystrophy 2 associate with suppressed lipid metabolism and mitochondrial pathways, as well as increased inflammation. The cover art is a pseudocolored transmission electron micrograph of swollen and disorganized adipocyte mitochondria in Lmna-knockout adipocytes. Image credit: Jessica N. Maung.

ASCI Presidential Address
Obituary
Viewpoint
Reviews
Abstract

Connections between the digestive system and the brain have been postulated for over 2000 years. Despite this, only recently have specific mechanisms of gut-brain interaction been identified. Due in large part to increased interest in the microbiome, the wide use of incretin-based therapies (i.e., glucagon-like peptide 1 [GLP-1] receptor agonists), technological advancements, increased understanding of neuroimmunology, and the identification of a direct enteroendocrine cell–neural circuit, research in the past 10 years has made it abundantly clear that the gut-brain connection plays a role both in clinical disease as well as the actions of therapeutics. In this Review, we describe mechanisms by which the gut and brain communicate and highlight human and animal studies that implicate changes in gut-brain communication in disease states in gastroenterology, neurology, psychiatry, and endocrinology. Furthermore, we define how GLP-1 receptor agonists for obesity and guanylyl cyclase C agonists for irritable bowel syndrome leverage gut-brain mechanisms to improve patient outcomes. This Review illustrates the critical nature of gut-brain communication in human disease and the potential to target gut-brain pathways for therapeutic benefit.

Authors

Zachary S. Lorsch, Rodger A. Liddle

×

Abstract

The urokinase plasminogen activator receptor (uPAR) is a membrane-bound protein found on the surface of immune cells. Through the action of proteases, uPAR is cleaved to produce several circulating proteins in the bloodstream, including the soluble form suPAR and the fragments D1 and D2D3. Initially studied in the context of infectious diseases and cancer, recent research has revealed roles for suPAR and its related proteins as mediators linking innate immunity to the pathogenesis of kidney and cardiovascular diseases, as well as insulin-dependent diabetes. While these proteins have long been recognized as prognostic biomarkers, growing clinical, experimental, and genetic evidence highlights their active involvement in the onset and progression of these diverse conditions. This Review examines suPAR’s evolution from its discovery as a modulator of innate immunity to its current status as a key driver in chronic kidney and cardiovascular diseases. Furthermore, we explore the molecular mechanisms through which suPAR and D2D3 contribute to multiorgan damage, emphasizing emerging opportunities for therapeutic interventions across interconnected organ systems.

Authors

Jochen Reiser, Salim S. Hayek, Sanja Sever

×

Abstract

The maternal cardiovascular system undergoes dramatic remodeling in response to the stresses of pregnancy. Although in most cases these changes are temporary and well tolerated, in others they can give rise to complications, including cardiomyopathy, coronary artery disease, and hypertensive cardiovascular disease. Despite an increasing number of preclinical models to study these diseases, specific treatments for any of these pregnancy complications are lacking. As the maternal mortality rate is rising in the United States, it is critical to understand the molecular mechanisms driving cardiovascular changes during pregnancy, and the pathology that can result.

Authors

Yijun Yang, Jennifer Lewey, Zoltan Arany

×
Commentaries
Abstract

Pancreatic cancer cells “live on the edge,” starved of nutrients, compressed by abundant stiff stroma, and deprived of oxygen. In this issue, Xu et al. leveraged human pancreas organoid–based CRISPR screens to identify new driver genes in pancreatic ductal adenocarcinoma (PDAC) development. Neurofibromatosis type 2 (NF2) emerged as the top tumor suppressor, whose loss enhances PDAC malignancy. Inactivation of NF2, which encodes the protein Merlin, promoted growth factor independence and enhanced macropinocytosis upon nutrient deprivation. Thus, NF2 status dictates the adaptability of pancreatic tumors under nutrient limitation, with NF2 inactivation endowing PDACs with the ability to survive the constraints of the harsh tumor microenvironment.

Authors

Sofia Ferreira, Laura D. Attardi

×

Abstract

Transplantation of allogeneic islets of Langerhans, which include the insulin-producing β cells of the endocrine pancreas, holds curative potential for type 1 diabetes (T1D). However, protecting the allograft from the host immune system has long been a challenge impeding wider use of this therapy. Inducing mixed hematopoietic chimerism via allogeneic hematopoietic stem cell transplantation (HSCT) can achieve long-lasting donor-specific immune tolerance, but the toxicities of conventional HSCT conditioning agents limit the use of this approach. In this issue of the JCI, Bhagchandani et al. have used the JAK1/2 inhibitor baricitinib to optimize a nonmyeloablative antibody-based HSCT conditioning regimen, achieving multilineage hematopoietic engraftment, which enabled curative islet allotransplantation in a mouse model of T1D.

Authors

Stephen P. Persaud, John F. DiPersio

×

Abstract

Chimeric antigen receptor T cell (CAR-T) therapy has transformed the treatment of hematologic malignancies, yet, severe inflammatory toxicities continue to limit its broader use. In this issue of the JCI, Goala et al. uncovered a mechanistic link between IFN-γ–driven inflammation and disrupted neutrophil homeostasis, revealing that cytokine release syndrome (CRS) and immune cell–associated hematologic toxicity (ICAHT) stem from a shared biological pathway. Using IL-2Ra–deficient mice and patient samples, they showed that IFN-γ suppressed IL-17A and granulocyte colony-stimulating factor (G-CSF), disrupting granulopoiesis and neutrophil survival. Strikingly, IFN-γ blockade eased both CRS and neutropenia without diminishing CAR-T efficacy, suggesting a path toward safer, better-tolerated cell therapies.

Authors

Stefanie R. Bailey, Marcela V. Maus

×
Research Letters




Research Articles
Abstract

Clonal hematopoiesis (CH) due to Tet methylcytosine dioxygenase 2 (TET2) driver mutations is associated with coronary heart disease and a worse prognosis for patients with aortic valve stenosis (AVS). However, it is unknown what role CH plays in the pathogenesis of AVS. In a meta-analysis of All of Us, BioVU, and the UK Biobank, patients with clonal hematopoiesis of indeterminate potential (CHIP) had an increased risk of AVS, with a higher risk among patients with TET2 or ASXL1 mutations. Single-cell RNA-Seq of immune cells from patients with AVS harboring TET2 CH driver mutations revealed monocytes with heightened proinflammatory signatures and increased expression of procalcific paracrine signaling factors, most notably oncostatin M (OSM). Secreted factors from TET2-silenced macrophages increased in vitro calcium deposition by mesenchymal cells, which was ablated by OSM silencing. Atherosclerosis-prone low-density lipoprotein receptor–deficient (Ldlr–/–) mice receiving CH-mimicking Tet2−/− bone marrow transplants displayed greater calcium deposition in aortic valves. Together, these results demonstrate that monocytes with CH promote aortic valve calcification and that patients with CH are at increased risk of AVS.

Authors

Wesley T. Abplanalp, Michael A. Raddatz, Bianca Schuhmacher, Silvia Mas-Peiro, María A. Zuriaga, Nuria Matesanz, José J. Fuster, Yash Pershad, Caitlyn Vlasschaert, Alexander J. Silver, Eric Farber-Eger, Yaomin Xu, Quinn S. Wells, Delara Shahidi, Sameen Fatima, Xiao Yang, Adwitiya A.P. Boruah, Akshay Ware, Maximilian Merten, Moritz von Scheidt, David John, Mariana Shumliakivska, Marion Muhly-Reinholz, Mariuca Vasa-Nicotera, Stefan Guenter, Michael R. Savona, Brian R. Lindman, Stefanie Dimmeler, Alexander G. Bick, Andreas M. Zeiher

×

Abstract

Demyelination associated microglia (DMAM) orchestrate the regenerative response to demyelination by clearing myelin debris and promoting oligodendrocyte maturation. Peroxisomal metabolism has emerged as a candidate regulator of DMAMs, though the cell-intrinsic contribution in microglia remains undefined. Here we elucidate the role of peroxisome integrity in DMAMs, using cuprizone-mediated demyelination coupled with conditional KO of peroxisome biogenesis factor 5 (PEX5) in microglia. Absent demyelination, PEX5 conditional KO (PEX5cKO) had minimal impact on homeostatic microglia. However, during cuprizone-induced demyelination, the emergence of DMAMs unmasked a critical requirement for peroxisome integrity. At peak demyelination, PEX5cKO DMAMs exhibited increased lipid droplet burden and reduced lipophagy suggestive of impaired lipid catabolism. Although lipid droplet burden declined during the remyelination phase, PEX5cKO DMAMs accumulated intralysosomal crystals and curvilinear profiles, features that were largely absent in controls. Aberrant lipid processing was accompanied by elevated numbers of lysosomal damage markers and downregulation of the lipid exporter gene Apoe, consistent with defective lipid clearance. Furthermore, the disruptions in PEX5cKO DMAMs were associated with defective myelin debris clearance and impaired remyelination. Together, these findings delineate a stage-specific role for peroxisomes in coordinating lipid processing pathways essential to DMAM function and for enabling a pro-remyelinating environment.

Authors

Joseph A. Barnes-Vélez, Xiaohong Zhang, Yaren L. Peña Señeriz, Kiersten A. Scott, Yinglu Guan, Jian Hu

×

Abstract

Chronic inflammation leads to tissue fibrosis, which can disrupt the function of the parenchyma of the organ and ultimately lead to organ failure. The most prevalent form of this occurs in chronic hepatitis, which leads to liver fibrosis and, ultimately, cirrhosis and hepatic failure. Although there is no specific treatment for fibrosis, the phosphodiesterase 4 (PDE4) competitive inhibitors have been shown to ameliorate fibrosis in rodent models. However, competitive inhibitors of PDE4 have shown significantly reduced effectiveness due to severe gastrointestinal side effects. The PDE4 family is composed of 4 genes (PDE4A–D), with each having up to 9 differentially spliced isoforms. Here, we report that PDE4D expression is specifically elevated during the hepatic fibrosis stage of liver disease progression. Furthermore, the expression of the long isoforms of PDE4D is selectively elevated in activated hepatic stellate cells, leading to the enhanced accumulation of extracellular matrix components. In a mouse model of liver fibrosis, genetic ablation of PDE4D or pharmacological inhibition using D159687, a selective allosteric inhibitor targeting the long isoforms of PDE4D, suppresses the expression of inflammatory and profibrogenic genes. These findings establish the long isoforms of PDE4D as key drivers of liver fibrosis and highlight their potential as therapeutic targets to ameliorate liver fibrosis.

Authors

Jeonghan Kim, Heeeun Yoon, Seoung Chan Joe, Antoine Smith, Jinsung Park, Geunhye Hong, Ji Myeong Ha, Eun Bae Kim, Ekihiro Seki, Myung K. Kim, Hae-Ock Lee, Ho-Shik Kim, Jay H. Chung

×

Abstract

The c-Jun N-terminal kinases (JNKs) regulate diverse physiological processes. Whereas JNK1 and JNK2 are broadly expressed and associated with insulin resistance, inflammation, and stress responses, JNK3 is largely restricted to central nervous system neurons and pancreatic β cells, and its physiological role in β cells remains poorly defined. To investigate its function, we generated mice lacking JNK3 specifically in β cells (βJNK3-KO). These mice displayed glucose intolerance and defective insulin secretion, particularly after oral glucose challenge, indicating impaired incretin responses. Consistently, Exendin-4–stimulated (Ex4-stimulated) insulin secretion was blunted in βJNK3-KO islets, accompanied by reduced GLP-1R expression. Similar findings were observed in human islets treated with a selective JNK3 inhibitor (iJNK3). Downstream of GLP-1R, Ex4-induced CREB phosphorylation was diminished in βJNK3-KO islets, indicating impaired canonical signaling. Moreover, activation of the GLP-1R/CREB/IRS2 pathway, a key regulator of β cell survival, was reduced in βJNK3-KO islets and iJNK3-treated human islets. As a consequence, the protective effects of Ex4 were lost in cytokine-treated βJNK3-KO and human islets, and Ex4-mediated protection was partially attenuated in βJNK3-KO mice exposed to multiple low-dose streptozotocin. These findings identify JNK3 as a regulator of β cell function and survival and suggest that targeting this pathway may enhance incretin-based therapies.

Authors

Ruy A. Louzada, Marel Gonzalez Medina, Valentina Pita-Grisanti, Jessica Bouviere, Amanda F. Neves, Joana Almaça, Myoung Sook Han, Roger J. Davis, Gil Leibowitz, Manuel Blandino-Rosano, Ernesto Bernal-Mizrachi

×

Abstract

RORγt is a key transcription factor regulating both Th17 differentiation and thymocyte development. Although Th17 cells drive autoimmune diseases, inhibiting RORγt to treat autoimmunity also disrupts thymocyte development and can cause lethal thymic lymphoma. We identified a previously unreported RORγt cofactor, CBFβ, and a highly selective RORγt inhibitor, IMU-935, that preferentially disrupt the RORγt-CBFβ interaction in Th17 cells but not thymocytes. This interaction is essential for RORγt function; mice with a RORγt mutant unable to bind CBFβ had impaired Th17 differentiation, were resistant to experimental autoimmune encephalomyelitis (EAE), and had defective thymocyte development. IMU-935 inhibited Th17 differentiation and reduced EAE severity without affecting thymocyte development by selectively targeting the RORγt-CBFβ interaction in Th17 cells but not in thymocytes. This differential effect arose because different concentrations of IMU-935 were required to disrupt the interaction in Th17 cells versus thymocytes, due to varying levels of RUNX1 that compete with RORγt for CBFβ binding. This study reveals an unreported mechanism for RORγt regulation and a selective RORγt inhibitor that prevents Th17-driven autoimmunity without the risk of lethal lymphoma from thymocyte disruption.

Authors

Hongmin Wu, Xiancai Zhong, Ning Ma, Zhiheng He, Guanpeng Wang, Geming Lu, Yate-Ching Yuan, Wencan Zhang, Yun Shi, Nagarajan Vaidehi, Evelyn Peelen, Tanja Wulff, Christian Gege, Hella Kohlhof, Daniel Vitt, Yousang Gwack, Ichiro Taniuchi, Hai-Hui Xue, Zuoming Sun

×

Abstract

There is an urgent need to find targeted agents for T cell acute lymphoblastic leukemia (T-ALL). NOTCH1 is the most frequently mutated oncogene in T-ALL, but clinical trials showed that pan-Notch inhibitors caused dose-limiting toxicities. Thus, we shifted our focus to ETS1, which is one of the transcription factors that most frequently co-bind Notch-occupied regulatory elements in the T-ALL context. To identify the most essential enhancers, we performed a genome-wide CRISPRi screen of the strongest ETS1-dependent regulatory elements. The top-ranked element is located in an intron of AHI1 that interacts with the MYB promoter and is amplified with MYB in approximately 8.5% of patients with T-ALL. Using mouse models, we showed that this enhancer promoted self-renewal of hematopoietic stem cells and T cell leukemogenesis, maintained early T cell precursors, and restrained myeloid expansion with aging. We named this enhancer the hematopoietic stem cell MYB enhancer (H-Me). The H-Me showed limited activity and function in committed T cell progenitors but was accessed during leukemogenesis. In one T-ALL context, ETS1 bound the ETS motif in the H-Me to recruit cBAF to promote chromatin accessibility and activation. ETS1 or cBAF degraders impaired H-Me function. Thus, we identified a targetable stem cell element that was co-opted for T cell transformation.

Authors

Carea Mullin, Karena Lin, Elizabeth Choe, Cher Sha, Zeel Shukla, Koral Campbell, Anna C. McCarter, Annie Wang, Jannaldo Nieves-Salva, Sarah Khan, Theresa M. Keeley, Shannon Liang, Qing Wang, Ashley F. Melnick, Pearl Evans, Alexander C. Monovich, Ashwin Iyer, Rohan Kodgule, Yamei Deng, Felipe da Veiga Leprevost, Kelly R. Barnett, Petri Pölönen, Rami Khoriaty, Daniel Savic, David T. Teachey, Charles G. Mullighan, Marcin Cieslik, Alexey I. Nesvizhskii, Linda C. Samuelson, Morgan Jones, Qing Li, Russell J.H. Ryan, Mark Y. Chiang

×

Abstract

A greater understanding of chronic lung allograft dysfunction (CLAD) pathobiology, the primary cause of death after lung transplantation (LTx), is needed to improve outcomes. The complement system links innate to adaptive immune responses and is activated early after lung transplantation to form C3 convertase, a critical enzyme that cleaves the central complement component C3. We hypothesized that LTx recipients with a genetic predisposition to enhanced complement activation have worse CLAD-free survival mediated through increased adaptive alloimmunity. We interrogated a known functional C3 polymorphism (C3 R102G) that increases complement activation through impaired C3 convertase inactivation in 2 independent LTx recipient cohorts. C3 R102G, identified in at least 1 of 3 LTx recipients, was associated with worse CLAD-free survival, particularly in the subset of recipients who developed donor-specific antibodies (DSAs). In a mouse orthotopic LTx model, impaired recipient complement regulation led to B cell–dependent CLAD pathology despite moderate differences in graft-infiltrating effector T cells. Dysfunctional complement regulation promoted intragraft accumulation of memory B cells and Ab-secreting cells, leading to increased local and circulating DSA levels in mice. In summary, genetic predisposition to complement activation is associated with an increased humoral response and worse CLAD-free survival.

Authors

Hrishikesh S. Kulkarni, Laneshia K. Tague, Daniel R. Calabrese, Fuyi Liao, Zhiyi Liu, Lorena Garnica, Nishanth R. Shankar, Xiaobo Wu, Devesha H. Kulkarni, Aayusha Thapa, Dequan Zhou, Yan Tao, Victoria E. Davis, Cory T. Bernardt, Derek E. Byers, Catherine Chen, Howard J. Huang, Chad A. Witt, Ramsey R. Hachem, Daniel Kreisel, John P. Atkinson, John R. Greenland, Andrew E. Gelman

×

Abstract

Calorie restriction (CR) extends maximal lifespan and maintains cellular homeostasis in various animal models. We have previously shown that CR induces a global reduction of protein fractional synthesis rates (FSRs) across the hepatic proteome in mice, but the timing and regulatory mechanisms remain unclear. Nitric oxide (NO), a bioactive molecule upregulated during CR, is a potential regulator of protein synthesis. To explore the role of NO in hepatic proteome fluxes during CR, we used in vivo deuterium labeling from heavy water and liquid chromatography/mass spectrometry–based (LC/MS-based) flux proteomics in WT and NO-deficient (NO–) mice. We observed a transition to reduced global protein FSRs that occurred rapidly between days 25 and 30 of CR. NO deficiency, whether genetic or pharmacological, disrupted the slowing of proteome-wide fluxes and the beneficial effects on body composition and physiology. Administering the NO donor molsidomine restored the reduction in hepatic FSRs in NO– mice. Furthermore, inhibiting NO pharmacologically, whether starting on day 1, day 14, or day 24 of CR, mitigated the reduction in hepatic protein FSRs at day 32, highlighting NO’s critical role during the transition period. These results underscore the importance of NO in CR-induced changes in proteostasis and suggest NO as a potential CR-mimetic target, while offering a specific time window for identifying other signals and testing therapeutic interventions.

Authors

Hector H. Palacios, Edward Cao, Adelaide Cahill, Hussein Mohamad, Marc K. Hellerstein

×

Abstract

Mixed hematopoietic chimerism after allogeneic hematopoietic cell transplantation (HCT) promotes tolerance of transplanted donor-matched solid organs, corrects autoimmunity, and could transform therapeutic strategies for autoimmune type 1 diabetes (T1D). However, development of nontoxic bone marrow conditioning protocols is needed to expand clinical use. We developed a chemotherapy-free, nonmyeloablative (NMA) conditioning regimen that achieves mixed chimerism and allograft tolerance across MHC barriers in NOD mice. We obtained durable mixed hematopoietic chimerism in prediabetic NOD mice using anti–CD117 monoclonal antibody, T cell depleting antibodies, JAK1/2 inhibition, and low-dose total body irradiation prior to transplantation of MHC-mismatched B6 hematopoietic cells, preventing diabetes in 100% of chimeric NOD:B6 mice. In overtly diabetic NOD mice, NMA conditioning followed by combined B6 HCT and islet transplantation durably corrected diabetes in 100% of chimeric mice without chronic immunosuppression or graft-versus-host disease (GVHD). Chimeric mice remained immunocompetent, as assessed by blood count recovery and rejection of third-party allogeneic islets. Adoptive transfer studies and analysis of autoreactive T cells confirmed correction of autoimmunity. Analysis of chimeric NOD mice revealed central thymic deletion and peripheral tolerance mechanisms. Thus, with NMA conditioning and cell transplantation, we achieved durable hematopoietic chimerism without GVHD, promoted islet allograft tolerance, and reversed established T1D.

Authors

Preksha Bhagchandani, Stephan A. Ramos, Bianca Rodriguez, Xueying Gu, Shiva Pathak, Yuqi Zhou, Yujin Moon, Nadia Nourin, Charles A. Chang, Jessica Poyser, Brenda J. Velasco, Weichen Zhao, Hye-Sook Kwon, Richard Rodriguez, Diego M. Burgos, Mario A. Miranda, Everett Meyer, Judith A. Shizuru, Seung K. Kim

×

Abstract

Neutrophil extracellular traps (NETs) are associated with cancer progression; however, the functional role and clinical importance of NET-DNA in therapeutic resistance remain unclear. Here, we show that chemotherapy and radiotherapy provoke NET-DNA formation in primary tumor and metastatic organs in breast cancer patients and mouse models, and the level of NET-DNA correlates with treatment resistance. Mechanistically, the cathepsin C in tumor debris generated by anticancer therapy is phagocytosed by macrophages and drives CXCL1/2 and complement factor B production via activating the TLR4/NF-κB signaling pathway, subsequently promoting NETosis and impairing therapeutic efficacy. Importantly, we demonstrate that NET-DNA sensor CCDC25 is indispensable in NET-mediated treatment resistance by inducing cancer cell epithelial-mesenchymal transition via pyruvate kinase isoform M2–mediated STAT3 phosphorylation. Clinically, tumoral CCDC25 abundance is closely associated with poor prognosis in patients who underwent chemotherapy. Overall, our data reveal the mechanism of NET formation and elucidate the interaction of NET-CCDC25 in therapy resistance, highlighting CCDC25 as an appealing target for anticancer interventions.

Authors

Heliang Li, Yetong Zhang, Jianghua Lin, Jiayi Zeng, Xinyan Liang, Linxi Xu, Jiang Li, Xiaoming Zhong, Xu Liu, Zhou Liu, Xinyu Yang, Yunyi Zhang, Shun Wang, Erwei Song, Man Nie, Linbin Yang

×

Abstract

Obesity is a major driver of type 2 diabetes (T2D) and related metabolic disorders, characterized by chronic inflammation and adipocyte dysfunction. However, the molecular triggers initiating these processes remain poorly understood. We identified FAM20C, a serine/threonine kinase, as an early obesity-induced mediator of adipocyte dysfunction. Fam20c expression was substantially upregulated in adipocytes in response to obesity, correlating with a proinflammatory transcriptional signature. Forced expression of Fam20c in adipocytes promoted robust upregulation of proinflammatory cytokines and induced insulin resistance that is dependent on its kinase activity. Conversely, deletion of adipocyte Fam20c after established obesity and hyperglycemia improved glucose tolerance, augmented insulin sensitivity, and reduced visceral adiposity, without altering body weight. Phosphoproteomic studies revealed that FAM20C regulates phosphorylation of intracellular and secreted proteins, modulating pathways critical to inflammation, metabolism, and ECM remodeling. We identified FAM20C-dependent substrates, such as CNPY4, whose phosphorylation contributes to proinflammatory adipocyte signaling. Of translational relevance, we showed that in humans, visceral adipose FAM20C expression positively correlates with insulin resistance. Our findings establish FAM20C as an early regulator of obesity-induced adipocyte dysfunction and systemic metabolic impairment. Our studies provide proof of concept that inhibition of FAM20C may serve as a potential therapy for T2D by restoring adipocyte health.

Authors

Ankit Gilani, Benjamin D. Stein, Anne Hoffmann, Renan Pereira de Lima, Elizabeth E. Ha, Edwin A. Homan, Lunkun Ma, Alfonso Rubio-Navarro, Tint Tha Ra Wun, Gabriel Jose Ayala Carrascal, Bhavneet Bhinder, Adhideb Ghosh, Falko Noé, Olivier Elemento, Christian Wolfrum, Matthias Blüher, James C. Lo

×

Abstract

The adaptor protein LNK/SH2B3 negatively regulates hematopoietic stem cell (HSC) homeostasis. Lnk-deficient mice show marked expansion of HSCs without premature exhaustion. Lnk deficiency largely restores HSC function in Fanconi anemia (FA) mouse models and primary FA patient cells, albeit protective mechanisms remain enigmatic. Here, we uncover a role for LNK in regulating translesion synthesis (TLS) during HSC replication. Lnk deficiency reduced replication stress–associated DNA damage, particularly in the FA background. Lnk deficiency suppressed single-strand DNA breaks, while enhancing replication fork restart in FA-deficient HSCs. Diminished replication-associated damage in Lnk-deficient HSCs occurred commensurate with reduced ATR/p53 checkpoint activation that is linked to HSC attrition. Notably, Lnk deficiency ameliorated HSC attrition in FA mice without exacerbating carcinogenesis during aging. Moreover, we demonstrated that enhanced HSC fitness from Lnk deficiency was associated with increased TLS activity via REV1 and, to a lesser extent, TLS polymerase eta (η). TLS polymerases are specialized to execute DNA replication in the presence of lesions or natural replication fork barriers that stall replicative polymerases. Our findings implicate elevated use of these specialized DNA polymerases as critical to the enhanced HSC function imparted by Lnk deficiency, which has important ramifications for stem cell therapy and regenerative medicine in general.

Authors

Brijendra Singh, Md Akram Hossain, Xiao Hua Liang, Jeremie Fages, Carlo Salas Salinas, Roger A. Greenberg, Wei Tong

×

Abstract

Cuproptosis involves accumulation of intracellular copper that triggers mitochondrial lipoylated protein aggregation and destabilization of iron–sulfur cluster proteins, leading to cell death. Pharmacologic induction of cuproptosis has been proposed as a cancer therapy. Here, we find that glioblastoma (GBM) stem cells (GSCs) displayed relative resistance to cuproptosis with circadian variation of intracellular copper levels. CRISPR screening of copper regulators under concurrent treatment with copper ionophore or clock disruption revealed dependency on ATPase copper transporting alpha (ATP7A). Circadian control of copper homeostasis was mediated by the core clock transcription factor, brain and muscle ARNT-like 1 (BMAL1). In turn, ATP7A promoted tumor cell growth through regulation of fatty acid desaturation. Copper levels negatively fed back into the circadian circuitry through sequestosome 1/p62–mediated lysosomal degradation of BMAL1. Targeting the circadian clock or fatty acid desaturation augmented cuproptosis antitumor effects. Crosstalk between the core circadian clock and copper sustains GSCs, reshaping fatty acid metabolism and promoting drug resistance, which may inform development of combination therapies for GBM.

Authors

Fanen Yuan, Xujia Wu, Huairui Yuan, Donghai Wang, Tengfei Huang, Po Zhang, Hailong Mi, Weichi Wu, Suchet Taori, Priscilla Chan, Kenji Miki, Maged T. Ghoche, Linjie Zhao, Kalil G. Abdullah, Steve A. Kay, Qiulian Wu, Jeremy N. Rich

×

Abstract

While immune checkpoint blockade (ICB) therapy has revolutionized the antitumor therapeutic landscape, it remains successful in only a small subset of patients with cancer. Poor or loss of MHC-I expression has been implicated as a common mechanism of ICB resistance. Yet, the molecular mechanisms underlying impaired MHC-I remain to be fully elucidated. Herein, we identified USP22 as a critical factor responsible for ICB resistance through suppressing MHC-I–mediated neoantigen presentation to CD8+ T cells. Both genetic and pharmacologic USP22 inhibition increased immunogenicity and overcame anti–PD-1 immunotherapeutic resistance. At the molecular level, USP22 functions as a deubiquitinase for the methyltransferase EZH2, leading to transcriptional silencing of MHC-I gene expression. Targeted Usp22 inhibition resulted in increased tumoral MHC-I expression and consequently enhanced CD8+ T cell killing, which was largely abrogated by Ezh2 reconstitution. Multiplexed immunofluorescence staining detected a strong reverse correlation between USP22 expression and both β2M expression and CD8+ T lymphocyte infiltration in solid tumors. Importantly, USP22 upregulation was associated with ICB immunotherapeutic resistance in patients with lung cancer. Collectively, this study highlights the role of USP22 as a diagnostic biomarker for ICB resistance and provides a potential therapeutic avenue to overcome the current ICB resistance through inhibition of USP22.

Authors

Kun Liu, Radhika Iyer, Yi Li, Jun Zhu, Zhaomeng Cai, Juncheng Wei, Yang Cheng, Amy Y. Tang, Hai Wang, Qiong Gao, Nikita Lavanya Mani, Noah Marx, Beixue Gao, D. Martin Watterson, Seema A. Khan, William J. Gradishar, Huiping Liu, Deyu Fang

×

Abstract

The increased prevalence of GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) at spinal cord sensory synapses amplifies nociceptive transmission and maintains chronic neuropathic pain. Nerve injury–induced upregulation of α2δ-1 disrupts the assembly of GluA1/GluA2 heteromers, favoring the synaptic incorporation of GluA1 homotetramers in the spinal dorsal horn. Although GluA1-GluA3 subunits are broadly expressed, whether α2δ-1 regulates GluA3-containing AMPARs remains unknown. Here, we unexpectedly found that coexpression with α2δ-1 — but not α2δ-2 or α2δ-3 — diminished GluA3 AMPAR currents and protein levels, an effect blocked by pregabalin, an α2δ-1 C-terminus peptide, or proteasome inhibition. Both nerve injury and α2δ-1 overexpression reduced protein levels of GluA3 and GluA2/GluA3 heteromers in the spinal cord. Furthermore, α2δ-1 coexpression or nerve injury increased GluA3 ubiquitination, with K861 at the C-terminus of GluA3 identified as a key ubiquitination site mediating α2δ-1–induced GluA3 degradation. Additionally, intrathecal delivery of the Gria3 gene reversed nerve injury–induced nociceptive hypersensitivity and synaptic CP-AMPARs by restoring protein levels of GluA3 and GluA2/GluA3 heteromers in the spinal cord. These findings reveal that α2δ-1 promotes GluA1 homotetramer assembly and synaptic CP-AMPAR expression by driving ubiquitin-proteasome–mediated degradation of GluA3, providing insights into the molecular mechanisms of neuropathic pain and the therapeutic actions of gabapentinoids.

Authors

Meng-Hua Zhou, Shao-Rui Chen, Daozhong Jin, Yuying Huang, Hong Chen, Guanxing Chen, Jiusheng Yan, Hui-Lin Pan

×

Abstract

Pancreatic ductal adenocarcinoma (PDAC) occurs as a complex, multifaceted event driven by the interplay of tumor-permissive genetic mutations, the nature of the cellular origin, and microenvironmental stress. In this study, using primary human pancreatic acinar 3D organoids, we performed a CRISPR-KO screen targeting 199 potential tumor suppressors curated from clinical PDAC samples. Our data revealed significant enrichment of a list of candidate genes, with neurofibromatosis type 2 associated gene (NF2) emerging as the top target. Functional validation confirmed that loss of NF2 promoted the transition of PDAC to an invasive state, potentially through extracellular matrix modulation. NF2 inactivation was found to enhance PDAC cell fitness under nutrient starvation. This adaptation not only reinforced the oncogenic state but also conferred therapeutic resistance. Additionally, we found that NF2 loss was associated with fibroblast heterogeneity and cancer-stroma communication in tumor evolution. These findings establish NF2 as a critical tumor suppressor in PDAC and uncover its role in mediating nutrient adaptation and drug resistance. Importantly, this study provides additional insights into drug resistance mechanisms and potential therapeutic targets in PDAC.

Authors

Yi Xu, Michael H. Nipper, Angel A. Dominguez, Chenhui He, Francis E. Sharkey, Sajid Khan, Han Xu, Daohong Zhou, Lei Zheng, Yu Luan, Jun Liu, Pei Wang

×

Abstract

BACKGROUND Amyotrophic lateral sclerosis (ALS), the major adult-onset motor neuron disease, is preceded by an early period unrelated to motor symptoms, including altered sleep, with increased wakefulness and decreased deep nonrapid eye movement (NREM). Whether these alterations in sleep macroarchitecture are associated with — or even precede — abnormalities in sleep-related EEG features remains unknown.METHODS Here, we characterize sleep microarchitecture using polysomnography for patients with ALS (n = 33) and controls (n = 32) as well as for asymptomatic carriers of superoxide dismutase 1 (SOD1) or C9ORF72 mutations (n = 57) and noncarrier controls (n = 30). Patients and controls with factors that could confound sleep structure, including respiratory insufficiency, were prospectively excluded. The results were complemented in 3 ALS mouse models (Sod1G86R, FusΔNLS/+, and TDP-43Q331K).RESULTS We observed a brain-wide reduction in the density of sleep spindles, slow oscillations, and K-complexes in patients with early-stage ALS and in presymptomatic gene carriers. These defects in sleep spindles and slow oscillations correlated with cognitive performance in both cohorts, particularly with scores on memory, verbal fluency, and language function. Alterations in sleep microarchitecture were replicated in 3 mouse models, and decreases in sleep spindles were rescued following intracerebroventricular supplementation of melanin-concentrating hormone (MCH) or by oral administration of a dual orexin receptor antagonist.CONCLUSION Sleep microarchitecture was associated with cognitive deficits and causally linked to aberrant MCH and orexin signaling in ALS.FUNDING Agence Nationale de la Recherche (ANR); Fondation Thierry Latran; Association Francaise de Recherche sur la sclérose latérale amyotrophique; Association Française contre les myopathies; TargetALS; and Joint Program on Neurodegenerative Diseases Research (JPND).

Authors

Christina Lang, Simon J. Guillot, Dorothee Lule, Luisa T. Balz, Antje Knehr, Patrick Weydt, Johannes Dorst, Katharina Kandler, Hans-Peter Muller, Jan Kassubek, Laura Wassermann, Sandrine Da Cruz, Francesco Roselli, Albert C. Ludolph, Matei Bolborea, Luc Dupuis

×

Abstract

Chimeric antigen receptor T cell (CAR-T) therapy has led to significant improvements in patient survival. However, a subset of patients experience high-grade toxicities, including cytokine release syndrome (CRS) and immune cell–associated hematological toxicity (ICAHT). We utilized IL-2Ra knockout mice to model toxicities with elevated levels of IL-6, IFN-γ, and TNF-α and increased M1-like macrophages. Onset of CRS was accompanied by a reduction in peripheral blood neutrophils due to disruption of bone marrow neutrophil homeostasis characterized by an increase in apoptotic neutrophils and a decrease in proliferative and mature neutrophils. Both nontumor-bearing and Em-ALL tumor-bearing mice recapitulated the cooccurrence of CRS and neutropenia. IFN-γ–blockade alleviated CRS and neutropenia without affecting CAR-T efficacy. Mechanistically, a Th1-Th17 imbalance was observed to drive cooccurrence of CRS and neutropenia in an IFN-γ–dependent manner leading to decreased IL-17A and G-CSF, neutrophil production, and neutrophil survival. In patients, we observed an increase in the IFN-γ–to–IL-17A ratio in the peripheral blood during high-grade CRS and neutropenia. We have uncovered a biological basis for ICAHT and provide support for the use of IFN-γ blockade to reduce both CRS and neutropenia.

Authors

Payal Goala, Yongliang Zhang, Nolan Beatty, Allan Pavy, Shannon McSain, Cooper Sailer, Muhammad Junaid Tariq, Showkat Hamid, Eduardo Cortes Gomez, Jianmin Wang, Duna Massillon, Maxwell Ilecki, Justin C. Boucher, Constanza Savid-Frontera, Sae Bom Lee, Hiroshi Kotani, Meredith L. Stone, Michael D. Jain, Marco L. Davila

×

Abstract

Neuromyelitis optica (NMO) is an autoimmune disorder characterized by autoantibodies against the astrocyte water channel aquaporin-4 (AQP4) that cause demyelination in the optic nerves and spinal cord. How astrocytopathy leads to myelination deficits remains unclear. Chitinase-3–like protein 1 (CHI3L1, also known as YKL-40) is predominantly secreted by activated astrocytes, serves as a robust NMO biomarker, and plays a role in immune responses, but how it is induced and shapes astrocyte activation in NMO is not well defined. Using ex vivo and in vivo NMO mouse models together with mice with astrocyte-specific CHI3L1 knockout, we demonstrated that CHI3L1 directly contributed to demyelinating lesions elicited by AQP4 autoantibody–activated astrocytes. With complementary in vitro assays and inducible transgenic lines, we uncovered an astrocyte-intrinsic cascade in which AQP4 autoantibody exposure activated STAT3, which in turn drove CHI3L1 expression and secretion. Secreted CHI3L1 then engaged the astrocytic receptor RAGE in an autocrine manner, activating downstream NF-κB signaling that drove proinflammatory gliosis and damaged myelination. Pharmacological blockade of this pathway in NMO models rescued demyelinating pathology and improved motor function. These findings reveal an astrocyte-intrinsic CHI3L1 pathway that contributed to demyelination in NMO and identify actionable therapeutic targets.

Authors

Huiming Xu, Wei Jiang, Li Xu, Haoyang Li, Xin Yang, Fan Zhu, Pengyan He, Yanna Song, Yuhan Li, Yu-Wen Alvin Huang, Wei Qiu, Changyong Tang

×

Abstract

Colitis-associated cancer (CAC) arises from a complex interplay between host and environmental factors. In this report, we investigated the role of the gut microbiome using Winnie mice, an ulcerative colitis–like (UC-like) model with a missense mutation in the Muc2 gene. Upon rederivation from a conventional (CONV) to a specific pathogen–free (SPF) facility, Winnie mice developed severe colitis and, notably, spontaneous CAC that progressively worsened over time. In contrast, CONV Winnie mice showed only mild colitis but no tumorigenesis. By comparison, when re-derived into germ-free (GF) conditions, SPF Winnie mice were protected from colitis and colon tumors, indicating an essential role for the gut microbiome in the development of CAC in these mice. Using shotgun metagenomics, metabolomics, and lipidomics, we identified a distinct proinflammatory microbial and metabolic signature that potentially drives the transition from colitis to CAC. Using either SPF Winnie or WT (Bl/6) donors, fecal microbiota transplantation (FMT) into GF Winnie recipients demonstrated that, while colitis developed regardless of the donor, only FM from SPF Winnie donors resulted in CAC in recipient mice. Our studies present a relevant model of CAC, providing strong evidence that the microbiome plays a key role in its pathogenesis, thus challenging the concept of colon cancer as a strictly nontransmissible disease.

Authors

Giulio Verna, Stefania De Santis, Bianca N. Islam, Eduardo M. Sommella, Danilo Licastro, Liangliang Zhang, Fabiano De Almeida Celio, Emily N. Miller, Fabrizio Merciai, Vicky Caponigro, Wei Xin, Pietro Campiglia, Theresa T. Pizarro, Marcello Chieppa, Fabio Cominelli

×

Abstract

Familial partial lipodystrophy 2 (FPLD2) is a rare disease characterized by adipose tissue loss and redistribution and metabolic dysfunction. FPLD2 is caused by pathogenic variants in the LMNA gene, encoding nuclear lamins A/C, structural proteins that control nuclear function and gene expression. However, the mechanisms driving adipocyte loss in FPLD2 remain poorly defined. In this study, we recruited 8 families with developing or established FPLD2 and performed clinical, histological, and transcriptomic analyses of subcutaneous adipose tissue biopsies. Bulk and single-nucleus RNA sequencing revealed suppression of lipid metabolism and mitochondrial pathways, alongside increased inflammation. These signatures were mirrored in tamoxifen-inducible adipocyte-specific Lmna-knockout mice, in which lamin A/C-deficient adipocytes shrank and disappeared. Lmna-deficient fibroblasts shared similar gene expression changes, linked to altered chromatin accessibility, underscoring lamin A/C’s potential regulatory role in lipid metabolism and inflammatory programs. By directly comparing atrophic and hypertrophic adipose depots in FPLD2, and integrating human, mouse, and in vitro models, this study provides insights into disease progression and potential therapeutic targets.

Authors

Jessica N. Maung, Rebecca L. Schill, Akira Nishii, Maria Foss de Freitas, Bonje N. Obua, Marcus Nygård, Maria D. Mendez-Casillas, Isabel D.K. Hermsmeyer, Donatella Gilio, Ozge Besci, Yang Chen, Brian Desrosiers, Rose E. Adler, Anabela D. Gomes, Merve Celik Guler, Hiroyuki Mori, Romina M. Uranga, Ziru Li, Hadla Hariri, Liping Zhang, Anderson de Paula Souza, Keegan S. Hoose, Kenneth T. Lewis, Taryn A. Hetrick, Paul Cederna, Carey N. Lumeng, Susanne Mandrup, Elif A. Oral, Ormond A. MacDougald

×

In-Press Preview - More

Abstract

Vessels encapsulating tumor clusters (VETC), a distinct vascular pattern in hepatocellular carcinoma (HCC), facilitates non-invasive metastasis in whole cluster. The interaction between VETC and tumor microenvironment requires exploration. Here, we found that compared to human Non-VETC-HCCs, VETC-tumors exhibited more PD1+CD8+ T cells and Tregs, especially TNFRSF4+Tregs and Ki67+Tregs which showed increased immunosuppressive and proliferative activity. Such immunosuppressive status was also detected in tumor emboli of VETC-HCCs, and Treg density in emboli was positively associated with metastatic cell proliferation. VETC-HCCs revealed abundance correlation, closer spatial proximity, and stronger immunosuppressive ligand-receptor interactions between TNFRSF4+Tregs/Ki67+Tregs and PD1+CD8+ T cells. Depleting Tregs in mice reduced PD1+CD8+ T cells in primary lesions, tumor emboli and metastatic foci of VETC-allografts, and attenuated allograft metastasis. TGF-β1 levels were upregulated in endothelial cells of VETC-HCCs and associated with TNFRSF4+Tregs/Ki67+Tregs enrichment. Disrupting VETC formation decreased endothelial TGF-β1 expression, and reduced TNFRSF4+Tregs/Ki67+Tregs, PD1+CD8+ T cells, Treg/CD8+ T cells ratio. Collectively, VETC may enhance Tregs’ activity via TGF-β1, while Tregs promote and sustain CD8+ T cell exhaustion through immune inhibitory ligand-receptor interaction, thereby shaping immunosuppressive microenvironment and enabling tumor cluster to carry such niche to disseminate. These findings disclose mechanisms of tumor immune microenvironment formation and provide rationales for precision medicine.

Authors

Bi-Yu Huang, Zheng-Qi Mi, Xiao-Yu Zhang, Yu-Chen Ji, Meng-Zhi Wu, Zi-Feng Cheng, Chen Xie, Shuai He, Jing Zhu, Jian-Hong Fang, Chong Wu, Bin-Kui Li, Yun-Fei YUAN, Limin Zheng, Shi-Mei Zhuang

×

Abstract

Aged individuals with somatic TP53 mutations manifest clonal hematopoiesis (CH) and are at high risk of developing myeloid neoplasms. However, the underlying mechanisms are not fully understood. Here we show that inflammatory stress confers a competitive advantage to p53 mutant hematopoietic stem and progenitor cells (HSPCs) by activating the NLRP1 inflammasome and increasing the secretion of pro-inflammatory cytokines such as IL-1β, inhibiting wild type (WT) HSPC fitness in a paracrine fashion. During aging, mutant p53 dysregulates pre-mRNA splicing in HSPCs, leading to enhanced NF-κB activation and increased secretion of IL-1β and IL-6, thereby generating a chronic inflammatory bone marrow microenvironment. Furthermore, blocking IL-1β with IL-1β neutralizing antibody or inhibiting IL-1β secretion using gasdermin D (GSDMD) inhibitor decreases the fitness of p53 mutant HSPCs. Thus, our findings uncover an important role for mutant p53 in regulating inflammatory signaling in CH and suggest that curbing inflammation may prevent the progression of TP53-mutant clonal hematopoiesis to myeloid neoplasms.

Authors

Sisi Chen, Sergio Barajas, Sasidhar Vemula, Yuxia Yang, Ed Simpson, Hongyu Gao, Rudong Li, Farzaneh Behzadnia, Sarah C. Nabinger, David A. Schmitz, Hongxia Chen, Wenjie Cai, Shiyu Xiao, Ruyue Luo, Mohammed Abdullahel Amin, Maegan L. Capitano, James P. Ropa, Aidan Fahey, Shuyi Zhou, Tiffany M. Mays, Magdalena Sotelo, Hao Pan, Sophie K. Hu, Sophia Veranga, Moiez Ali, Maria Shumilina, Reuben Kapur, Kehan Ren, Yuzhi Jia, Huiping Liu, Irum Khan, Yasmin Abaza, Jessica K. Altman, Elizabeth A. Eklund, Lucy A. Godley, Christine R. Zhang, Peng Ji, Seth L. Masters, Ben A. Croker, H. Scott Boswell, George E. Sandusky, Zhonghua Gao, Lindsey D. Mayo, Sharon A. Savage, Stephanie Halene, Yali Dou, Leonidas C. Platanias, Madina Sukhanova, Yunlong Liu, Omar Abdel-Wahab, Yan Liu

×

Abstract

Lymphatics maintains fluid homeostasis, immune surveillance, and tissue integrity. Here, we identified the E26 transformation-specific (ETS) transcription factors Erg and Fli1 as essential, cooperative regulators of lymphatic integrity and function. Using inducible, lymphatic endothelial cell-specific deletion in mice, we demonstrated that combined loss of Erg and Fli1 in adults results in fatal lymphatic failure, including chylothorax, chylous ascites, and impaired lymphatic drainage. Single-cell transcriptomic analysis revealed that loss of Erg and Fli1 caused disrupted lymphatic heterogeneity and dysregulation of key lymphatic genes, including valve-specific gene profiles. Erg and Fli1 coordinated lymphatic-immune crosstalk by transcriptionally regulating C-C motif chemokine ligand 21 (Ccl21), which mediates dendritic cell trafficking. Their loss also induced pro-inflammatory and pro-thrombotic gene expression, further contributing to lymphatic dysfunction. During embryonic development, the co-deletion led to lymphatic mis-patterning and loss of valve-initiating lymphatic endothelial cell clusters. The impact of loss of Erg and Fli1 function on lymphatic development in mice is consistent with FOXC2 mutations in lymphedema-distichiasis syndrome or ERG gene variants underlying primary lymphoedema in humans. Moreover, Erg and Fli1 were required for regenerative lymphangiogenesis and lymphatic repair following injury in adults. Our findings establish Erg and Fli1 as core transcriptional regulators of lymphatic identity, integrity, and function.

Authors

Myung Jin Yang, Seok Kang, Seon Pyo Hong, Hokyung Jin, Jin-Hui Yoon, Cheolhwa Jin, Chae Min Yuk, Lidiya G Gebeyehu, Junho Jung, Sung-hwan Yoon, Hyuek jong Lee, Gou Young Koh

×

Abstract

BACKGROUND. Infection is an important complication of implanted devices and prosthetics. Identifying infections sufficiently early to salvage implants and avoid reconstructive failure is a persistent medical challenge. METHODS. Two female cohorts >21 years undergoing breast implant reconstruction were recruited. Seroma fluid (82 breasts, 70 patients) was collected upon implant removal for infectious or non-infectious causes. Post-implantation drain fluid (100 samples, 44 breasts, 32 patients) was collected at routine visits prior to implant removal. A liquid-chromatography/mass spectrometry-based metabolomic approach was used to identify infection correlates. RESULTS. In seroma fluid specimens, infection was associated with a diverse set of small molecules including acetylated polyamines, defensins, glucosyl-sphingosine, and several peptide-like features (all P<0.001, diagnostic areas under the receiver operating curve 0.82-0.93). Notably, a subset of these markers were significantly elevated (p<0.05) in post-implantation drain fluid before recorded infection symptoms and diagnosis. Pseudomonas aeruginosa and its specialized exometabolites in drain specimens were also associated with subsequent P. aeruginosa infections. CONCLUSION. Tissue fluid from infected patients has a distinctive metabolome reflecting human and bacterial physiologic processes that often precede clinical diagnoses. A diagnostic based on these findings has potential to improve patient outcomes through early recognition of infection. TRIAL REGISTRATION. Not applicable. FUNDING. Work was supported by U54CK000609 from the CDC and an unencumbered research gift to TMM from Sientra. Metabolomic approaches were supported by RO1DK125860 and RO1DK111930 to JPH. The contents are solely the responsibility of the authors and do not necessarily represent the official views of CDC.

Authors

John A. Wildenthal, Margaret A. Olsen, Hung D. Tran, John I. Robinson, Terence M. Myckatyn, David K. Warren, Keith E. Brandt, Marissa M. Tenenbaum, Joani M Christensen, Thomas H. Tung, Justin M. Sacks, Rachel A. Anolik, Katelin B. Nickel, Hideji Fujiwara, Peter J. Mucha, Jeffrey P. Henderson

×

Abstract

Human gastrointestinal (GI) tissues are a major site of HIV-1 viral persistence, but the nature of the GI reservoir remains poorly described. To characterize the GI HIV reservoir, we profiled cells from GI tissue and matched peripheral blood mononuclear cells from ten people with HIV on antiretroviral therapy using single cell RNA sequencing. We identified distinct compartment-specific patterns of gene expression, highlighting key differences between blood and colon CD4 T cell populations. vRNA+ cells from both blood and GI tissue were heterogeneous and found in multiple subtypes of CD4 T cells, although vRNA+ cells were particularly enriched in cells with Th17 or Treg17 phenotypes. Transcriptomic comparison of HIV vRNA+ and vRNA- T cells revealed 116 differentially expressed genes that were associated with HIV infection including ZBED2, MAF and IL17F. These data provide novel information regarding the GI-resident HIV reservoir and suggest that compartment-specific patterns of gene expression are associated with HIV infection.

Authors

Jackson J. Peterson, Shipra Chandel, Katherine James, Elizabeth S. Bennett, Vincent Wu, Cory H. White, Brigitte Allard, Matthew Clohosey, Taylor Whitaker, Caroline Baker, Susan Pedersen, Anne F. Peery, Cynthia L. Gay, Michael R. Betts, David M. Margolis, Nancie M. Archin, Edward P. Browne

×

Advertisement

Review Series - More

Clinical innovation and scientific progress in GLP-1 medicine

Series edited by Daniel J. Drucker

Therapies targeting the glucagon-like peptide 1 (GLP-1) receptor have revolutionized the treatment of obesity and diabetes. This series of reviews, curated by Dr. Dan Drucker, describes the latest research in this fast-moving in field, from our evolving understanding of the mechanism of GLP-1 receptor signaling to the medicines’ impact on inflammation and the consequences for heart, kidney, and brain health. The reviews also explore the impact of these medicines on conditions beyond their initial indications, including cancer and neurodegenerative disease risk.

×