Martens et al. report the development of BIOPREVENT (BIOmarkers PREVENTion), a tree-based machine learning algorithm using data from 1,310 recipients of hematopoietic cell transplants, incorporating 7 plasma proteins measured on day 90 after transplant and 9 clinical variables. In the cover image, the blue lines represent input clinical and proteomics data, the green leaves represent the markers selected from the tree-based machine learning approaches, and the red sky represents active chronic graft-versus-host disease. Image generated using OpenAI’s DALL-E 2 and edited in Adobe Illustrator.
Skeletal muscle frequently experiences oxygen depletion, especially during exercise, and the alpha subunit of the hypoxia-inducible factors (HIF1α and HIF2α) plays a crucial role in mediating cellular adaptation to low oxygen levels. However, although significant, the absence of an appropriate experimental mouse model leaves the precise roles of HIFα in myofibers unclear. Therefore, this study developed mice with myofiber-specific knockouts of prolyl hydroxylase proteins (PHDs), in which HIFα is stabilized, and inducible myofiber-specific overexpression of stable HIF1α or HIF2α to explore the role of HIFα in myofibers. Using three distinct mouse models, we found that HIF1α increased the number of oxidative fibers but paradoxically impaired exercise performance and mitochondrial function. Comparatively, HIF2α exerted protection mechanisms against glucose intolerance and diet-induced obesity. Notably, HIF2α stabilization in skeletal muscle markedly elevated erythropoietin (EPO) levels in muscle and serum but not in the kidney and liver, suggesting skeletal muscle is a previously unrecognized site of EPO production in the body. Thus, this study demonstrates the distinct roles of HIF1α and HIF2α in skeletal muscle, newly uncovering that the PHD-HIF2α axis produces EPO from myofibers.
Junhyeong Lee, Merc Emil Matienzo, Sangyi Lim, Edzel Evallo, Yeongsin Kim, Sujin Jang, Keon Kim, Chang Hyeon Choi, Youn Ho Han, Chang-Min Lee, Tae-Il Jeon, Sang-Ik Park, Jun Wu, Dong-il Kim, Min-Jung Park
Metabolic-inflammatory crosstalk orchestrates muscle repair. Although pyroptosis typically aggravates sterile injury, we demonstrated that GSDME-dependent pyroptotic signaling associated with recruited myeloid cells paradoxically supported regeneration. GSDME expression was induced in post-surgical human muscle injury and murine damage models. Gsdme deficiency delayed functional recovery and exacerbated injury-induced myosteatosis, a pathological form of intramuscular ectopic fat deposition. Time-series and single-cell RNA-sequencing analyses revealed that GSDME loss shifted the transcriptional program from oxidative metabolism toward lipid storage and adipogenesis. Lipidomics confirmed aberrant accumulation of triacylglycerols and sphingolipids in Gsdme-deficient muscle. Single-cell profiling further identified divergent fibro-adipogenic progenitors (FAPs) states skewed toward adipogenesis, accompanied by impaired expansion of restorative Lyve1⁺Cd163⁺Txnip⁺ tissue-resident macrophages (TRMs)—validated by multiplex flow cytometry. Blocking CCR2-dependent monocyte recruitment produced regenerative defects comparable to those caused by Gsdme deficiency. Myeloid-specific Gsdme reintroduction rescued TRM expansion and function, curbed FAP adipogenic reprogramming, whereas FAP-specific expression proved ineffective. Mechanistically, IL-18 downstream of GSDME-dependent signaling engaged KLF4/JUN signaling in TRMs, sustaining their reparative and lipid-clearing capacity. This GSDME–IL-18–TRMs axis was compromised in aged muscle, yet exogenous IL-18 reversed myosteatosis and accelerated regeneration. Together, these findings suggest that GSDME-dependent pyroptotic signaling can act as a metabolic checkpoint that sustains TRM-driven lipid homeostasis to support muscle regeneration.
Qi Cao, Jian Liu, Gang Huang, Su-Yuan Wang, Guo-Dong Lu, Yong Huang, Yi-Ting Chen, Zhen Zhang, Jiang-Tao Fu, Si-Jia Sun, Xiaofei Chen, Chunlin Zhuang, Chunquan Sheng, Fu-Ming Shen, Dong-Jie Li, Pei Wang
Interstitial lung disease (ILD) is a major cause of morbidity and mortality in systemic sclerosis (SSc); however, the immunopathologic mechanisms driving lung disease in SSc are unclear. T cells have been implicated as a likely driver of lung injury in SSc. Here, we have evaluated T cells in the blood of patients with SSc-ILD and identified a specific population of cytotoxic CD8 T cells that is expanded in SSc-ILD patients. Cytotoxic effector memory CD8 T cells marked by CD57 expression are preferentially expanded in SSc-ILD patients compared to SSc patients without ILD and controls and show prominent clonal expansion. These CD57+ T effector memory (TEM) cells differ from T effector memory cells re-expressing CD45RA (TEMRA) transcriptomically and functionally, with cytotoxic function that is enhanced by CD155 engagement of the costimulatory receptor CD226. We performed immunostaining of lung tissue samples obtained from independent SSc-ILD patients (biopsy or explant) and confirmed the presence of CD57+ TEM. In parallel, we analyzed publicly available lung scRNA-seq datasets from multiple ILD cohorts and identified endothelial cells as a likely source of CD155 to activate CD57+ cytotoxic T cells. Together, the results implicate a CD57+ cytotoxic CD8 T cell population as a potential mediator of lung injury in SSc-ILD.
Takanori Sasaki, Ye Cao, John M. Sowerby, Kazuhiko Higashioka, Kathryne E. Marks, Mehreen Elahee, Mari Kamiya, Paul F. Dellaripa, Richard I. Ainsworth, Kimberly E. Taylor, Nunzio Bottini, Paul Wolters, Edy Y. Kim, Francesco Boin, Deepak A. Rao
Stereotactic arrhythmia radiotherapy (STAR) is emerging as a highly effective treatment for ventricular tachycardia (VT). Growing evidence indicates that STAR favorably reprograms the electrical substrate by speeding conduction and/or prolonging repolarization via modulating ion channel expression, though the mechanisms whereby single-fraction radiation mediates durable changes in gene expression are incompletely understood. Here, we identify dynamic changes in the cardiomyocyte epigenome and transcriptome after irradiation (IR) in vivo and in vitro, including durably increased expression and chromatin accessibility of Scn5a (encoding the alpha subunit of the sodium channel, NaV1.5), demonstrating a role for epigenetic memory in conduction velocity (CV) increases observed after STAR. Transcriptomic and epigenetic sequencing further identify dynamic changes to gene expression and regulatory regions involved in cellular repolarization, calcium handling, and metabolism after IR. These changes are mirrored by dose-dependent and cell-autonomous changes in repolarization, calcium flux, and mitochondrial respiration, highlighting important cellular processes which may mediate therapeutic effects of STAR. Overall, we find that cardiomyocytes exposed to a single fraction of high-dose IR exhibit epigenetic reprogramming that mediates broad and dynamic physiologic responses.
Samuel D. Jordan, Shuhua Fu, Abigail Fulkerson, Donghua Hu, Sherwin Ng, David M. Zhang, Sneha Manikandan, Jeffrey Szymanski, Nan Hu, Yuqian Xie, Anish Bedi, James J. Tabor, Lauren Boggs-Bailey, Lori Strong, Stephanie Hicks, Lavanya Aryan, Nishanth Gabriel, Geoffrey D. Hugo, Kuo-Chan Weng, Nathaniel Huebsch, Julie K. Schwarz, Bo Zhang, Stacey L. Rentschler
Mutations in SLC26A4 are the second most common cause of hereditary hearing loss in many Asian countries, leading to DFNB4, a condition characterized by progressive hearing loss and inner ear malformations. While gene therapy holds great potential, its postnatal application has remained unexplored due to the lack of suitable animal models and the challenges of prenatal intervention. This study represents the first preclinical investigation of postnatal gene therapy for DFNB4 using a clinically relevant Slc26a4 mutant mouse model that closely replicates human auditory phenotypes. Utilizing the synthetic AAV.Anc80L65 vector, we achieved robust SLC26A4 delivery to critical cochlear regions, including the endolymphatic sac and cochlear lateral wall. Comprehensive phenotypic analyses revealed a critical therapeutic window spanning the neonatal and juvenile stages, within which AAV.Anc80L65-mediated SLC26A4 delivery significantly improved hearing, as evidenced by lower auditory brainstem response thresholds. Moreover, the therapy preserved hair cells, reduced endolymphatic sac enlargement, partially restored the endocochlear potential, and mitigated inner ear structural degeneration. These therapeutic effects persisted into adulthood, highlighting the long-term efficacy of postnatal gene therapy. Together, these findings establish a critical therapeutic window for DFNB4 and demonstrate the feasibility of targeting the endolymphatic sac and cochlear lateral wall for effective intervention.
Yi-Hsiu Tsai, Peng-Yu Wu, Yu-Chi Chuang, Chun-Ying Huang, Hiroki Takeda, Hiroshi Hibino, Chen-Chi Wu, Yen-Fu Cheng
Therapies targeting the glucagon-like peptide 1 (GLP-1) receptor have revolutionized the treatment of obesity and diabetes. This series of reviews, curated by Dr. Dan Drucker, describes the latest research in this fast-moving in field, from our evolving understanding of the mechanism of GLP-1 receptor signaling to the medicines’ impact on inflammation and the consequences for heart, kidney, and brain health. The reviews also explore the impact of these medicines on conditions beyond their initial indications, including cancer and neurodegenerative disease risk.
×
In this episode, Dr. Seth J. Zost presents an antibody lineage from a single donor that binds the active site of influenza neuraminidase, cross-reacts with antigenically diverse viruses, and protects mice from infection...