Fares et al. identified metixene as an NDRG1-mediated incomplete autophagy inducer that reduces tumor size and increases survival in models of metastatic breast cancer and brain metastases. The cover art depicts a metastatic cancer cell (red) being targeted by metixene (blue). Image credit: Jawad Y. Fares.
Amanda Macamo, Jan Beckervordersandforth, Axel zur Hausen
Vaidya Govindarajan, Jay Chandar, Avindra Nath, Ashish H. Shah
Foxp3-expressing Tregs employ multiple suppressive mechanisms to curtail conventional T cell (Tconv) responses and establish tissue homeostasis. How Foxp3 coordinates Treg contact–dependent suppressive function is not fully resolved. In this issue of the JCI, Wang and colleagues revealed that Foxp3-mediated inhibition of ryanodine receptor 2 (RyR2) led to strong Treg-DC interactions and enhanced immunosuppression. RyR2 depletion in Tconvs phenocopied this effect and equipped Tconvs with Treg-like suppressive function in multiple inflammatory or autoimmune contexts. This study provides molecular and therapeutic insights underlying how cell-cell contact limits immune reactivity.
Erienne G. Norton, Nicole M. Chapman, Hongbo Chi
Profilin1 belongs to a family of small monomeric actin-binding proteins with diverse roles in fundamental actin-dependent cellular processes required for cell survival. Podocytes are postmitotic visceral epithelial cells critical for the structure and function of the kidney filtration barrier. There is emerging evidence that the actin-related mode of cell death known as mitotic catastrophe is an important pathway involved in podocyte loss. In this issue of the JCI, Tian, Pedigo, and colleagues demonstrate that profilin1 deficiency in podocytes triggered cell cycle reentry, resulting in abortive cytokinesis with a loss in ribosomal RNA processing that leads to podocyte loss and glomerulosclerosis. This study demonstrates the essential role of actin dynamics in mediating this fundamental mode of podocyte cell death.
Sandeep K. Mallipattu
Conflicting studies in recent years report that genetic or pharmacological increases or decreases in ghrelin either increase or have no effect on islet size. In this issue of the JCI, Gupta, Burstein, and colleagues applied a rigorous approach to determine the effects of reducing ghrelin on islet size in germline and conditional ghrelin-knockout mice as well as across varying ages and weight. Both germline and conditional ghrelin-knockout mice associated with increased islet size, which was further exacerbated by older age and diet-induced obesity. These findings suggest that modulation of ghrelin may open a therapeutic window to prevent or treat diabetes.
Sean M. Tatum, William L. Holland
Radiation therapy (RT) remains one of the most effective and utilized oncologic treatments available. While it can directly yield tumor cell death, its impact on the immune microenvironment is more complex, promoting either an antitumor response or, conversely, a tumor-promoting state. TGF-β, induced by RT, yields a more immunosuppressive environment, including potentially blunting response to immune-checkpoint blockade. In this issue of the JCI, Wang and colleagues demonstrate that RT reduced expression of bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), a TGF-β pseudoreceptor. Limiting this effect, or increasing BAMBI, improved RT-induced tumor cell killing, tumor response, and antitumor immune effects. This realization points to a pathway of potential clinical translation.
Sean Sachdev
Alisa A. Mueller, Takanori Sasaki, Joshua W. Keegan, Jennifer P. Nguyen, Alec Griffith, Alice M. Horisberger, Thomas Licata, Elizabeth Fieg, Ye Cao, Mehreen Elahee, Kathryne E. Marks, Daimon P. Simmons, Lauren C. Briere, Laurel A. Cobban, J. Carl Pallais, Frances A. High, Melissa A. Walker, Jenny J. Linnoila, Jeffrey A. Sparks, V. Michael Holers, Karen H. Costenbader, Undiagnosed Diseases Network, David A. Sweetser, Joel B. Krier, Joseph Loscalzo, James A. Lederer, Deepak A. Rao
A paucity of chemotherapeutic options for metastatic brain cancer limits patient survival and portends poor clinical outcomes. Using a CNS small-molecule inhibitor library of 320 agents known to be blood-brain barrier permeable and approved by the FDA, we interrogated breast cancer brain metastasis vulnerabilities to identify an effective agent. Metixene, an antiparkinsonian drug, was identified as a top therapeutic agent that was capable of decreasing cellular viability and inducing cell death across different metastatic breast cancer subtypes. This agent significantly reduced mammary tumor size in orthotopic xenograft assays and improved survival in an intracardiac model of multiorgan site metastases. Metixene further extended survival in mice bearing intracranial xenografts and in an intracarotid mouse model of multiple brain metastases. Functional analysis revealed that metixene induced incomplete autophagy through N-Myc downstream regulated 1 (NDRG1) phosphorylation, thereby leading to caspase-mediated apoptosis in both primary and brain-metastatic cells, regardless of cancer subtype or origin. CRISPR/Cas9 KO of NDRG1 led to autophagy completion and reversal of the metixene apoptotic effect. Metixene is a promising therapeutic agent against metastatic brain cancer, with minimal reported side effects in humans, which merits consideration for clinical translation.
Jawad Fares, Edgar Petrosyan, Deepak Kanojia, Crismita Dmello, Alex Cordero, Joseph T. Duffy, Ragini Yeeravalli, Mayurbhai H. Sahani, Peng Zhang, Aida Rashidi, Victor A. Arrieta, Ilya Ulasov, Atique U. Ahmed, Jason Miska, Irina V. Balyasnikova, C. David James, Adam M. Sonabend, Amy B. Heimberger, Maciej S. Lesniak
Cell therapies such as tumor-infiltrating lymphocyte (TIL) therapy have shown promise in the treatment of patients with refractory solid tumors, with improvement in response rates and durability of responses nevertheless sought. To identify targets capable of enhancing the antitumor activity of T cell therapies, large-scale in vitro and in vivo clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 screens were performed, with the SOCS1 gene identified as a top T cell–enhancing target. In murine CD8+ T cell–therapy models, SOCS1 served as a critical checkpoint in restraining the accumulation of central memory T cells in lymphoid organs as well as intermediate (Texint) and effector (Texeff) exhausted T cell subsets derived from progenitor exhausted T cells (Texprog) in tumors. A comprehensive CRISPR tiling screen of the SOCS1-coding region identified sgRNAs targeting the SH2 domain of SOCS1 as the most potent, with an sgRNA with minimal off-target cut sites used to manufacture KSQ-001, an engineered TIL therapy with SOCS1 inactivated by CRISPR/Cas9. KSQ-001 possessed increased responsiveness to cytokine signals and enhanced in vivo antitumor function in mouse models. These data demonstrate the use of CRISPR/Cas9 screens in the rational design of T cell therapies.
Michael R. Schlabach, Sharon Lin, Zachary R. Collester, Christopher Wrocklage, Sol Shenker, Conor Calnan, Tianlei Xu, Hugh S. Gannon, Leila J. Williams, Frank Thompson, Paul R. Dunbar, Robert A. LaMothe, Tracy E. Garrett, Nicholas Colletti, Anja F. Hohmann, Noah J. Tubo, Caroline P. Bullock, Isabelle Le Mercier, Katri Sofjan, Jason J. Merkin, Sean Keegan, Gregory V. Kryukov, Caroline Dugopolski, Frank Stegmeier, Karrie Wong, Fiona A. Sharp, Louise Cadzow, Micah J. Benson
The suppression mechanism of Tregs remains an intensely investigated topic. As our focus has shifted toward a model centered on indirect inhibition of DCs, a universally applicable effector mechanism controlled by the transcription factor forkhead box P3 (Foxp3) expression has not been found. Here, we report that Foxp3 blocked the transcription of ER Ca2+-release channel ryanodine receptor 2 (RyR2). Reduced RyR2 shut down basal Ca2+ oscillation in Tregs, which reduced m-calpain activities that are needed for T cells to disengage from DCs, suggesting a persistent blockage of DC antigen presentation. RyR2 deficiency rendered the CD4+ T cell pool immune suppressive and caused it to behave in the same manner as Foxp3+ Tregs in viral infection, asthma, hypersensitivity, colitis, and tumor development. In the absence of Foxp3, Ryr2-deficient CD4+ T cells rescued the systemic autoimmunity associated with scurfy mice. Therefore, Foxp3-mediated Ca2+ signaling inhibition may be a central effector mechanism of Treg immune suppression.
Xiaobo Wang, Shuang Geng, Junchen Meng, Ning Kang, Xinyi Liu, Yanni Xu, Huiyun Lyu, Ying Xu, Xun Xu, Xinrong Song, Bin Zhang, Xin Wang, Nuerdida Nuerbulati, Ze Zhang, Di Zhai, Xin Mao, Ruya Sun, Xiaoting Wang, Ruiwu Wang, Jie Guo, S.R. Wayne Chen, Xuyu Zhou, Tie Xia, Hai Qi, Xiaoyu Hu, Yan Shi
Tumor burden, considered a common chronic stressor, can cause widespread anxiety. Evidence suggests that cancer-induced anxiety can promote tumor progression, but the underlying neural mechanism remains unclear. Here, we used neuroscience and cancer tools to investigate how the brain contributes to tumor progression via nerve-tumor crosstalk in a mouse model of breast cancer. We show that tumor-bearing mice exhibited significant anxiety-like behaviors and that corticotropin-releasing hormone (CRH) neurons in the central medial amygdala (CeM) were activated. Moreover, we detected newly formed sympathetic nerves in tumors, which established a polysynaptic connection to the brain. Pharmacogenetic or optogenetic inhibition of CeMCRH neurons and the CeMCRH→lateral paragigantocellular nucleus (LPGi) circuit significantly alleviated anxiety-like behaviors and slowed tumor growth. Conversely, artificial activation of CeMCRH neurons and the CeMCRH→LPGi circuit increased anxiety and tumor growth. Importantly, we found alprazolam, an antianxiety drug, to be a promising agent for slowing tumor progression. Furthermore, we show that manipulation of the CeMCRH→LPGi circuit directly regulated the activity of the intratumoral sympathetic nerves and peripheral nerve–derived norepinephrine, which affected tumor progression by modulating antitumor immunity. Together, these findings reveal a brain-tumor neural circuit that contributes to breast cancer progression and provide therapeutic insights for breast cancer.
Si-Yi Xiong, Hui-Zhong Wen, Li-Meng Dai, Yun-Xiao Lou, Zhao-Qun Wang, Yi-Lun Yi, Xiao-Jing Yan, Ya-Ran Wu, Wei Sun, Peng-Hui Chen, Si-Zhe Yang, Xiao-Wei Qi, Yi Zhang, Guang-Yan Wu
A20 is a ubiquitin-modifying protein that negatively regulates NF-κB signaling. Mutations in A20/TNFAIP3 are associated with a variety of autoimmune diseases, including multiple sclerosis (MS). We found that deletion of A20 in central nervous system (CNS) endothelial cells (ECs) enhances experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. A20ΔCNS-EC mice showed increased numbers of CNS-infiltrating immune cells during neuroinflammation and in the steady state. While the integrity of the blood-brain barrier (BBB) was not impaired, we observed a strong activation of CNS-ECs in these mice, with dramatically increased levels of the adhesion molecules ICAM-1 and VCAM-1. We discovered ICOSL to be expressed by A20-deficient CNS-ECs, which we found to function as adhesion molecules. Silencing of ICOSL in CNS microvascular ECs partly reversed the phenotype of A20ΔCNS-EC mice without reaching statistical significance and delayed the onset of EAE symptoms in WT mice. In addition, blocking of ICOSL on primary mouse brain microvascular ECs impaired the adhesion of T cells in vitro. Taken together, we propose that CNS EC-ICOSL contributes to the firm adhesion of T cells to the BBB, promoting their entry into the CNS and eventually driving neuroinflammation.
Lisa Johann, Sasha Soldati, Kristin Müller, Josephine Lampe, Federico Marini, Matthias Klein, Eva Schramm, Nathalie Ries, Carsten Schelmbauer, Ilaria Palagi, Khalad Karram, Julian C. Assmann, Mahtab A. Khan, Jan Wenzel, Mirko H.H. Schmidt, Jakob Körbelin, Dirk Schlüter, Geert van Loo, Tobias Bopp, Britta Engelhardt, Markus Schwaninger, Ari Waisman
Cell lineage plasticity is one of the major causes for the failure of targeted therapies in various cancers. However, the driver and actionable drug targets in promoting cancer cell lineage plasticity are scarcely identified. Here, we found that a G protein-coupled receptor, ADORA2A, is specifically upregulated during neuroendocrine differentiation, a common form of lineage plasticity in prostate cancer and lung cancer following targeted therapies. Activation of the ADORA2A signaling rewires the proline metabolism via an ERK/MYC/PYCR cascade. Increased proline synthesis promotes deacetylases SIRT6/7-mediated deacetylation of histone H3 at lysine 27 (H3K27), and thereby biases a global transcriptional output toward a neuroendocrine lineage profile. Ablation of Adora2a in genetically engineered mouse models inhibits the development and progression of neuroendocrine prostate and lung cancers, and, intriguingly, prevents the adenocarcinoma-to-neuroendocrine phenotypic transition. Importantly, pharmacological blockade of ADORA2A profoundly represses neuroendocrine prostate and lung cancer growth in vivo. Therefore, we believe that ADORA2A can be used as a promising therapeutic target to govern the epigenetic reprogramming in neuroendocrine malignancies.
Na Jing, Kai Zhang, Xinyu Chen, Kaiyuan Liu, Jinming Wang, Lingling Xiao, Wentian Zhang, Pengfei Ma, Penghui Xu, Chaping Cheng, Deng Wang, Huifang Zhao, Yuman He, Zhongzhong Ji, Zhixiang Xin, Yujiao Sun, Yingchao Zhang, Wei Bao, Yiming Gong, Liancheng Fan, Yiyi Ji, Guanglei Zhuang, Qi Wang, Baijun Dong, Pengcheng Zhang, Wei Xue, Wei-Qiang Gao, Helen He Zhu
The G protein–coupled receptor 84 (GPR84), a medium-chain fatty acid receptor, has garnered attention because of its potential involvement in a range of metabolic conditions. However, the precise mechanisms underlying this effect remain elusive. Our study has shed light on the pivotal role of GPR84, revealing its robust expression and functional significance within brown adipose tissue (BAT). Mice lacking GPR84 exhibited increased lipid accumulation in BAT, rendering them more susceptible to cold exposure and displaying reduced BAT activity compared with their WT counterparts. Our in vitro experiments with primary brown adipocytes from GPR84-KO mice revealed diminished expression of thermogenic genes and reduced O2 consumption. Furthermore, the application of the GPR84 agonist 6-n-octylaminouracil (6-OAU) counteracted these effects, effectively reinstating the brown adipocyte activity. These compelling in vivo and in vitro findings converge to highlight mitochondrial dysfunction as the primary cause of BAT anomalies in GPR84-KO mice. The activation of GPR84 induced an increase in intracellular Ca2+ levels, which intricately influenced mitochondrial respiration. By modulating mitochondrial Ca2+ levels and respiration, GPR84 acts as a potent molecule involved in BAT activity. These findings suggest that GPR84 is a potential therapeutic target for invigorating BAT and ameliorating metabolic disorders.
Xue-Nan Sun, Yu A. An, Vivian A. Paschoal, Camila O. de Souza, May-yun Wang, Lavanya Vishvanath, Lorena M.A. Bueno, Ayanna S. Cobb, Joseph A. Nieto Carrion, Madison E. Ibe, Chao Li, Harrison A. Kidd, Shiuhwei Chen, Wenhong Li, Rana K. Gupta, Da Young Oh
Ghrelin exerts key effects on islet hormone secretion to regulate blood glucose levels. Here, we sought to determine whether ghrelin’s effects on islets extend to the alteration of islet size and β cell mass. We demonstrate that reducing ghrelin — by ghrelin gene knockout (GKO), conditional ghrelin cell ablation, or high-fat diet (HFD) feeding — was associated with increased mean islet size (up to 62%), percentage of large islets (up to 854%), and β cell cross-sectional area (up to 51%). In GKO mice, these effects were more apparent in 10- to 12-week-old mice than in 4-week-old mice. Higher β cell numbers from decreased β cell apoptosis drove the increase in β cell cross-sectional area. Conditional ghrelin cell ablation in adult mice increased the β cell number per islet by 40% within 4 weeks. A negative correlation between islet size and plasma ghrelin in HFD-fed plus chow-fed WT mice, together with even larger islet sizes in HFD-fed GKO mice than in HFD-fed WT mice, suggests that reduced ghrelin was not solely responsible for diet-induced obesity–associated islet enlargement. Single-cell transcriptomics revealed changes in gene expression in several GKO islet cell types, including upregulation of Manf, Dnajc3, and Gnas expression in β cells, which supports decreased β cell apoptosis and/or increased β cell proliferation. These effects of ghrelin reduction on islet morphology might prove useful when designing new therapies for diabetes.
Deepali Gupta, Avi W. Burstein, Dana C. Schwalbe, Kripa Shankar, Salil Varshney, Omprakash Singh, Subhojit Paul, Sean B. Ogden, Sherri Osborne-Lawrence, Nathan P. Metzger, Corine P. Richard, John N. Campbell, Jeffrey M. Zigman
Elevation of reactive oxygen species (ROS) levels is a general consequence of tumor cells’ response to treatment and may cause tumor cell death. Mechanisms by which tumor cells clear fatal ROS, thereby rescuing redox balance and entering a chemoresistant state, remain unclear. Here, we show that cysteine sulfenylation by ROS confers on aryl hydrocarbon receptor (AHR) the ability to dissociate from the heat shock protein 90 complex but to bind to the PPP1R3 family member PPP1R3C of the glycogen complex in drug-treated tumor cells, thus activating glycogen phosphorylase to initiate glycogenolysis and the subsequent pentose phosphate pathway, leading to NADPH production for ROS clearance and chemoresistance formation. We found that basic ROS levels were higher in chemoresistant cells than in chemosensitive cells, guaranteeing the rapid induction of AHR sulfenylation for the clearance of excess ROS. These findings reveal that AHR can act as an ROS sensor to mediate chemoresistance, thus providing a potential strategy to reverse chemoresistance in patients with cancer.
Nannan Zhou, Jie Chen, Zheng Ling, Chaoqi Zhang, Yabo Zhou, Dianheng Wang, Li Zhou, Zhenfeng Wang, Nan Sun, Xin Wang, Huafeng Zhang, Ke Tang, Jingwei Ma, Jiadi Lv, Bo Huang
Strategies for patient stratification and early intervention are required to improve clinical benefits for patients with prostate cancer. Here, we found that active DHEA utilization in the prostate gland correlated with tumor aggressiveness at early disease stages, and 3βHSD1 inhibitors were promising for early intervention. [3H]-labeled DHEA consumption was traced in fresh prostatic biopsies ex vivo. Active DHEA utilization was more frequently found in patients with metastatic disease or therapy-resistant disease. Genetic and transcriptomic features associated with the potency of prostatic DHEA utilization were analyzed to generate clinically accessible approaches for patient stratification. UBE3D, by regulating 3βHSD1 homeostasis, was discovered to be a regulator of patient metabolic heterogeneity. Equilin suppressed DHEA utilization and inhibited tumor growth as a potent 3βHSD1 antagonist, providing a promising strategy for the early treatment of aggressive prostate cancer. Overall, our findings indicate that patients with active prostatic DHEA utilization might benefit from 3βHSD1 inhibitors as early intervention.
Xuebin Zhang, Zengming Wang, Shengsong Huang, Dongyin He, Weiwei Yan, Qian Zhuang, Zixian Wang, Chenyang Wang, Qilong Tan, Ziqun Liu, Tao Yang, Ying Liu, Ruobing Ren, Jing Li, William Butler, Huiru Tang, Gong-Hong Wei, Xin Li, Denglong Wu, Zhenfei Li
The progression of proteinuric kidney diseases is associated with podocyte loss, but the mechanisms underlying this process remain unclear. Podocytes reenter the cell cycle to repair double-stranded DNA breaks. However, unsuccessful repair can result in podocytes crossing the G1/S checkpoint and undergoing abortive cytokinesis. In this study, we identified Pfn1 as indispensable in maintaining glomerular integrity — its tissue-specific loss in mouse podocytes resulted in severe proteinuria and kidney failure. Our results suggest that this phenotype is due to podocyte mitotic catastrophe (MC), characterized histologically and ultrastructurally by abundant multinucleated cells, irregular nuclei, and mitotic spindles. Podocyte cell cycle reentry was identified using FUCCI2aR mice, and we observed altered expression of cell-cycle associated proteins, such as p21, p53, cyclin B1, and cyclin D1. Podocyte-specific translating ribosome affinity purification and RNA-Seq revealed the downregulation of ribosomal RNA-processing 8 (Rrp8). Overexpression of Rrp8 in Pfn1-KO podocytes partially rescued the phenotype in vitro. Clinical and ultrastructural tomographic analysis of patients with diverse proteinuric kidney diseases further validated the presence of MC podocytes and reduction in podocyte PFN1 expression within kidney tissues. These results suggest that profilin1 is essential in regulating the podocyte cell cycle and its disruption leads to MC and subsequent podocyte loss.
Xuefei Tian, Christopher E. Pedigo, Ke Li, Xiaotao Ma, Patricia Bunda, John Pell, Angela Lek, Jianlei Gu, Yan Zhang, Paulina X. Medina Rangel, Wei Li, Eike Schwartze, Soichiro Nagata, Gabriel Lerner, Sudhir Perincheri, Anupama Priyadarshini, Hongyu Zhao, Monkol Lek, Madhav C. Menon, Rongguo Fu, Shuta Ishibe
Reactivation and dysregulation of the mTOR signaling pathway are a hallmark of aging and chronic lung disease; however, the impact on microvascular progenitor cells (MVPCs), capillary angiostasis, and tissue homeostasis is unknown. While the existence of an adult lung vascular progenitor has long been hypothesized, these studies show that Abcg2 enriches for a population of angiogenic tissue-resident MVPCs present in both adult mouse and human lungs using functional, lineage, and transcriptomic analyses. These studies link human and mouse MVPC-specific mTORC1 activation to decreased stemness, angiogenic potential, and disruption of p53 and Wnt pathways, with consequent loss of alveolar-capillary structure and function. Following mTOR activation, these MVPCs adapt a unique transcriptome signature and emerge as a venous subpopulation in the angiodiverse microvascular endothelial subclusters. Thus, our findings support a significant role for mTOR in the maintenance of MVPC function and microvascular niche homeostasis as well as a cell-based mechanism driving loss of tissue structure underlying lung aging and the development of emphysema.
Emma C. Mason, Swapna Menon, Benjamin R. Schneider, Christa F. Gaskill, Maggie M. Dawson, Camille M. Moore, Laura Craig Armstrong, Okyong Cho, Bradley W. Richmond, Jonathan A. Kropski, James D. West, Patrick Geraghty, Brigitte N. Gomperts, Kevin C. Ess, Fabienne Gally, Susan M. Majka
Tissue-resident lymphocytes provide organ-adapted protection against invading pathogens. Whereas their biology has been examined in great detail in various infection models, their generation and functionality in response to vaccination have not been comprehensively analyzed in humans. We therefore studied SARS-CoV-2 mRNA vaccine–specific T cells in surgery specimens of kidney, liver, lung, bone marrow, and spleen compared with paired blood samples from largely virus-naive individuals. As opposed to lymphoid tissues, nonlymphoid organs harbored significantly elevated frequencies of spike-specific CD4+ T cells compared with blood showing hallmarks of tissue residency and an expanded memory pool. Organ-derived CD4+ T cells further exhibited increased polyfunctionality over those detected in blood. Single-cell RNA-Seq together with T cell receptor repertoire analysis indicated that the clonotype rather than organ origin is a major determinant of transcriptomic state in vaccine-specific CD4+ T cells. In summary, our data demonstrate that SARS-CoV-2 vaccination entails acquisition of tissue memory and residency features in organs distant from the inoculation site, thereby contributing to our understanding of how local tissue protection might be accomplished.
Vanessa Proß, Arne Sattler, Sören Lukassen, Laura Tóth, Linda Marie Laura Thole, Janine Siegle, Carolin Stahl, An He, Georg Damm, Daniel Seehofer, Christina Götz, Christian Bayerl, Pia Jäger, Alexander Macke, Stephan Eggeling, Bernadette Kirzinger, Thomas Mayr, Hermann Herbst, Katharina Beyer, Dominik Laue, Jan Krönke, Jan Braune, Friederike Rosseck, Beatrice Kittner, Frank Friedersdorff, Mandy Hubatsch, Sarah Weinberger, Nils Lachmann, Veit Maria Hofmann, Eva Schrezenmeier, Carolin Ludwig, Hubert Schrezenmeier, Katharina Jechow, Christian Conrad, Katja Kotsch
Heart failure with preserved ejection fraction (HFpEF) is a widespread syndrome with limited therapeutic options and poorly understood immune pathophysiology. Using a 2-hit preclinical model of cardiometabolic HFpEF that induces obesity and hypertension, we found that cardiac T cell infiltration and lymphoid expansion occurred concomitantly with cardiac pathology and that diastolic dysfunction, cardiomyocyte hypertrophy, and cardiac phospholamban phosphorylation were T cell dependent. Heart-infiltrating T cells were not restricted to cardiac antigens and were uniquely characterized by impaired activation of the inositol-requiring enzyme 1α/X-box–binding protein 1 (IRE1α/XBP1) arm of the unfolded protein response. Notably, selective ablation of XBP1 in T cells enhanced their persistence in the heart and lymphoid organs of mice with preclinical HFpEF. Furthermore, T cell IRE1α/XBP1 activation was restored after withdrawal of the 2 comorbidities inducing HFpEF, resulting in partial improvement of cardiac pathology. Our results demonstrated that diastolic dysfunction and cardiomyocyte hypertrophy in preclinical HFpEF were T cell dependent and that reversible dysregulation of the T cell IRE1α/XBP1 axis was a T cell signature of HFpEF.
Sasha Smolgovsky, Abraham L. Bayer, Kuljeet Kaur, Erin Sanders, Mark Aronovitz, Mallory E. Filipp, Edward B. Thorp, Gabriele G. Schiattarella, Joseph A. Hill, Robert M. Blanton, Juan R. Cubillos-Ruiz, Pilar Alcaide
Protein synthesis is frequently dysregulated in cancer and selective inhibition of mRNA translation represents an attractive cancer therapy. Here, we show that therapeutically targeting the RNA helicase eIF4A with zotatifin, the first-in-class eIF4A inhibitor, exerts pleiotropic effects on both tumor cells and the tumor immune microenvironment in a diverse cohort of syngeneic triple-negative breast cancer (TNBC) mouse models. Zotatifin not only suppresses tumor cell proliferation but also directly repolarizes macrophages toward an M1-like phenotype and inhibits neutrophil infiltration, which sensitizes tumors to immune checkpoint blockade. Mechanistic studies revealed that zotatifin reprograms the tumor translational landscape, inhibits the translation of Sox4 and Fgfr1, and induces an interferon (IFN) response uniformly across models. The induction of an IFN response is partially due to the inhibition of Sox4 translation by zotatifin. A similar induction of IFN-stimulated genes was observed in breast cancer patient biopsies following zotatifin treatment. Surprisingly, zotatifin significantly synergizes with carboplatin to trigger DNA damage and an even heightened IFN response, resulting in T cell–dependent tumor suppression. These studies identified a vulnerability of eIF4A in TNBC, potential pharmacodynamic biomarkers for zotatifin, and provide a rationale for new combination regimens consisting of zotatifin and chemotherapy or immunotherapy as treatments for TNBC.
Na Zhao, Elena B. Kabotyanski, Alexander B. Saltzman, Anna Malovannaya, Xueying Yuan, Lucas C. Reineke, Nadia Lieu, Yang Gao, Diego A. Pedroza, Sebastian J. Calderon, Alex J. Smith, Clark Hamor, Kazem Safari, Sara Savage, Bing Zhang, Jianling Zhou, Luisa M. Solis, Susan G. Hilsenbeck, Cheng Fan, Charles M. Perou, Jeffrey M. Rosen
Activation of TGF-β signaling serves as an extrinsic resistance mechanism that limits the potential for radiotherapy. Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) antagonizes TGF-β signaling and is implicated in cancer progression. However, the molecular mechanisms of BAMBI regulation in immune cells and its impact on antitumor immunity after radiation have not been established. Here, we show that ionizing radiation (IR) specifically reduces BAMBI expression in immunosuppressive myeloid-derived suppressor cells (MDSCs) in both murine models and humans. Mechanistically, YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2) directly binds and degrades Bambi transcripts in an N6-methyladenosine–dependent (m6A-dependent) manner, and this relies on NF-κB signaling. BAMBI suppresses the tumor-infiltrating capacity and suppression function of MDSCs via inhibiting TGF-β signaling. Adeno-associated viral delivery of Bambi (AAV-Bambi) to the tumor microenvironment boosts the antitumor effects of radiotherapy and radioimmunotherapy combinations. Intriguingly, combination of AAV-Bambi and IR not only improves local tumor control, but also suppresses distant metastasis, further supporting its clinical translation potential. Our findings uncover a surprising role of BAMBI in myeloid cells, unveiling a potential therapeutic strategy for overcoming extrinsic radioresistance.
Liangliang Wang, Wei Si, Xianbin Yu, Andras Piffko, Xiaoyang Dou, Xingchen Ding, Jason Bugno, Kaiting Yang, Chuangyu Wen, Linda Zhang, Dapeng Chen, Xiaona Huang, Jiaai Wang, Ainhoa Arina, Sean Pitroda, Steven J. Chmura, Chuan He, Hua Laura Liang, Ralph Weichselbaum
We previously demonstrated that a subset of acute myeloid leukemia (AML) patients with concurrent RAS pathway and TP53 mutations have an extremely poor prognosis and that most of these TP53 mutations are missense mutations. Here, we report that, in contrast to the mixed AML and T cell malignancy that developed in NrasG12D/+ p53–/– (NP–/–) mice, NrasG12D/+ p53R172H/+ (NPmut) mice rapidly developed inflammation-associated AML. Under the inflammatory conditions, NPmut hematopoietic stem and progenitor cells (HSPCs) displayed imbalanced myelopoiesis and lymphopoiesis and mostly normal cell proliferation despite MEK/ERK hyperactivation. RNA-Seq analysis revealed that oncogenic NRAS signaling and mutant p53 synergized to establish an NPmut-AML transcriptome distinct from that of NP–/– cells. The NPmut-AML transcriptome showed GATA2 downregulation and elevated the expression of inflammatory genes, including those linked to NF-κB signaling. NF-κB was also upregulated in human NRAS TP53 AML. Exogenous expression of GATA2 in human NPmut KY821 AML cells downregulated inflammatory gene expression. Mouse and human NPmut AML cells were sensitive to MEK and NF-κB inhibition in vitro. The proteasome inhibitor bortezomib stabilized the NF-κB–inhibitory protein IκBα, reduced inflammatory gene expression, and potentiated the survival benefit of a MEK inhibitor in NPmut mice. Our study demonstrates that a p53 structural mutant synergized with oncogenic NRAS to promote AML through mechanisms distinct from p53 loss.
Adhithi Rajagopalan, Yubin Feng, Meher B. Gayatri, Erik A. Ranheim, Taylor Klungness, Daniel R. Matson, Moon Hee Lee, Mabel Minji Jung, Yun Zhou, Xin Gao, Kalyan V.G. Nadiminti, David T. Yang, Vu L. Tran, Eric Padron, Shigeki Miyamoto, Emery H. Bresnick, Jing Zhang
Metabolic syndrome, today affecting more than 20% of the US population, is a group of 5 conditions that often coexist and that strongly predispose to cardiovascular disease. How these conditions are linked mechanistically remains unclear, especially two of these: obesity and elevated blood pressure. Here, we show that high fat consumption in mice leads to the accumulation of lipid droplets in endothelial cells throughout the organism and that lipid droplet accumulation in endothelium suppresses endothelial nitric oxide synthase (eNOS), reduces NO production, elevates blood pressure, and accelerates atherosclerosis. Mechanistically, the accumulation of lipid droplets destabilizes eNOS mRNA and activates an endothelial inflammatory signaling cascade that suppresses eNOS and NO production. Pharmacological prevention of lipid droplet formation reverses the suppression of NO production in cell culture and in vivo and blunts blood pressure elevation in response to a high-fat diet. These results highlight lipid droplets as a critical and unappreciated component of endothelial cell biology, explain how lipids increase blood pressure acutely, and provide a mechanistic account for the epidemiological link between obesity and elevated blood pressure.
Boa Kim, Wencao Zhao, Soon Y. Tang, Michael G. Levin, Ayon Ibrahim, Yifan Yang, Emilia Roberts, Ling Lai, Jian Li, Richard K. Assoian, Garret A. FitzGerald, Zoltan Arany
Deborah A. Knight, Shin Foong Ngiow, Ming Li, Tiffany Parmenter, Stephen Mok, Ashley Cass, Nicole M. Haynes, Kathryn Kinross, Hideo Yagita, Richard C. Koya, Thomas G. Graeber, Antoni Ribas, Grant A. McArthur, Mark J. Smyth