Nakamizo et al. report that the pentose phosphate pathway is activated in sarcoidosis granuloma macrophages and is a potential therapeutic target for sarcoidosis. The cover image shows a cutaneous sarcoidosis, highlighting subcutaneous distribution of FBP1+ (yellow) granulomas. HLA-DR+ (red-purple) antigen-presenting cells are present in the surrounding area.
Aaron M. Cypess
André C. Carpentier, Denis P. Blondin
Despite the worldwide application of vaccination and other antiviral interventions, pulmonary viral infections remain a persistent threat to human health. The 1918 influenza pandemic killed more than 40 million people in just one year, and the SARS-CoV-2 pandemic has killed more than 6.9 million people since 2019. While the current approved COVID-19 vaccines are administered parenterally and induce systemic immunity, they only prevent the progression to severe disease. Thus, other vaccine platforms are still needed for completely preventing the disease and subsequent transmission. In this issue of the JCI, Kawai et al. present an adjuvant-free subunit (RBD-HA) fusion vaccine, which produces robust IgG and IgA antibody responses against SARS-CoV-2, enriched within the nasal cavity, by using the host’s preexisting immunity to influenza infection. This preclinical study has tremendous implications for future mucosal vaccine design and provides a roadmap for generating a safer and effective intranasal vaccine against pulmonary infections.
Kim A. Tran, Maziar Divangahi
The occurrence of herpes zoster (HZ) correlates with declining memory T cells that had responded to earlier infection with varicella-zoster virus (VZV). There are especially lower T cell responses to the single immunodominant VZV protein glycoprotein E (gE) in people over 50 years of age, although antibody responses to VZV persist. Therefore, a live attenuated zoster vaccine (ZVL) aimed at restoring T cell responses was developed. Surprisingly, a recombinant zoster vaccine (RZV) consisting of gE combined with the AS01B adjuvant system proved superior in efficacy and durability. In this issue of the JCI, Laing, Ford, and colleagues showed that both vaccines stimulated preimmunization naive CD4+ T cells, not just memory CD4+ T cells, to gE, and recruited these naive responses into the overall memory response. However, compared with ZVL, RZV stimulated this response to a much greater degree. These results will help guide development of more effective and durable vaccines for older individuals.
Anthony L. Cunningham, Kerrie J. Sandgren, Naomi R. Truong
Fang Yun Lim, Soo-Young Kim, Karisma N. Kulkarni, Rachel L. Blazevic, Louise E. Kimball, Hannah G. Lea, Amanda J. Haack, Maia S. Gower, Terry Stevens-Ayers, Lea M. Starita, Michael Boeckh, Ollivier Hyrien, Joshua T. Schiffer, Ashleigh B. Theberge, Alpana Waghmare
Three sisters, born from consanguineous parents, manifested a unique Müllerian anomaly characterized by uterine hypoplasia with thin estrogen-unresponsive endometrium and primary amenorrhea, but with spontaneous tubal pregnancies. Through whole-exome sequencing followed by comprehensive genetic analysis, a missense variant was identified in the OSR1 gene. We therefore investigated OSR1/OSR1 expression in postpubertal human uteri, and the prenatal and postnatal expression pattern of Osr1/Osr1 in murine developing Müllerian ducts (MDs) and endometrium, respectively. We then investigated whether Osr1 deletion would affect MD development, using WT and genetically engineered mice. Human uterine OSR1/OSR1 expression was found primarily in the endometrium. Mouse Osr1 was expressed prenatally in MDs and Wolffian ducts (WDs), from rostral to caudal segments, in E13.5 embryos. MDs and WDs were absent on the left side and MDs were rostrally truncated on the right side of E13.5 Osr1–/– embryos. Postnatally, Osr1 was expressed in mouse uteri throughout their lifespan, peaking at postnatal days 14 and 28. Osr1 protein was present primarily in uterine luminal and glandular epithelial cells and in the epithelial cells of mouse oviducts. Through this translational approach, we demonstrated that OSR1 in humans and mice is important for MD development and endometrial receptivity and may be implicated in uterine factor infertility.
Adriana Lofrano-Porto, Sidney Alcântara Pereira, Andrew Dauber, Jordana C.B. Bloom, Audrey N. Fontes, Naomi Asimow, Olívia Laquis de Moraes, Petra Ariadne T. Araujo, Ana Paula Abreu, Michael H. Guo, Silviene F. De Oliveira, Han Liu, Charles Lee, Wendy Kuohung, Michella S. Coelho, Rona S. Carroll, Rulang Jiang, Ursula B. Kaiser
Glycogen storage disease type 1a (GSD1a) is caused by a congenital deficiency of glucose-6-phosphatase-α (G6Pase-α, encoded by G6PC), which is primarily associated with life-threatening hypoglycemia. Although strict dietary management substantially improves life expectancy, patients still experience intermittent hypoglycemia and develop hepatic complications. Emerging therapies utilizing new modalities such as adeno-associated virus and mRNA with lipid nanoparticles are under development for GSD1a but potentially require complicated glycemic management throughout life. Here, we present an oligonucleotide-based therapy to produce intact G6Pase-α from a pathogenic human variant, G6PC c.648G>T, the most prevalent variant in East Asia causing aberrant splicing of G6PC. DS-4108b, a splice-switching oligonucleotide, was designed to correct this aberrant splicing, especially in liver. We generated a mouse strain with homozygous knockin of this variant that well reflected the pathophysiology of patients with GSD1a. DS-4108b recovered hepatic G6Pase activity through splicing correction and prevented hypoglycemia and various hepatic abnormalities in the mice. Moreover, DS-4108b had long-lasting efficacy of more than 12 weeks in mice that received a single dose and had favorable pharmacokinetics and tolerability in mice and monkeys. These findings together indicate that this oligonucleotide-based therapy could provide a sustainable and curative therapeutic option under easy disease management for GSD1a patients with G6PC c.648G>T.
Kentaro Ito, Go Tajima, Chikako Kamisato, Miyuki Tsumura, Mitsuhiro Iwamoto, Yukiko Sekiguchi, Yukinobu Numata, Kyoko Watanabe, Yoshiyuki Yabe, Satomi Kanki, Yusuke Fujieda, Koichi Goto, Yoshitaka Sogawa, Masataka Oitate, Hiroyuki Nagase, Shinnosuke Tsuji, Tomohiro Nishizawa, Masayo Kakuta, Takeshi Masuda, Yoshiyuki Onishi, Makoto Koizumi, Hidefumi Nakamura, Satoshi Okada, Masafumi Matsuo, Kiyosumi Takaishi
BACKGROUND Pemphigus, a rare autoimmune bullous disease mediated by antidesmoglein autoantibodies, can be controlled with systemic medication like rituximab and high-dose systemic corticosteroids combined with immunosuppressants. However, some patients continue to experience chronically recurrent blisters in a specific area and require long-term maintenance systemic therapy.METHODS Skin with chronic blisters was obtained from patients with pemphigus. Immunologic properties of the skin were analyzed by immunofluorescence staining, bulk and single-cell RNA and TCR sequencing, and a highly multiplex imaging technique known as CO-Detection by indEXing (CODEX). Functional analyses were performed by flow cytometry and bulk RNA-Seq using peripheral blood from healthy donors. Intralesional corticosteroid was injected into patient skin, and changes in chronically recurrent blisters were observed.RESULTS We demonstrated the presence of skin tertiary lymphoid structures (TLSs) with desmoglein-specific B cells in chronic blisters from patients with pemphigus. In the skin TLSs, CD4+ T cells predominantly produced CXCL13. These clonally expanded CXCL13+CD4+ T cells exhibited features of activated Th1-like cells and downregulated genes associated with T cell receptor–mediated signaling. Tregs are in direct contact with CXCL13+CD4+ memory T cells and increased CXCL13 production of CD4+ T cells through IL-2 consumption and TGF-β stimulation. Finally, intralesional corticosteroid injection improved chronic blisters and reduced skin TLSs in patients with pemphigus.CONCLUSION Through this study we conclude that skin TLSs are associated with the persistence of chronically recurrent blisters in patients with pemphigus, and the microenvironmental network involving CXCL13+CD4+ T cells and Tregs within these structures plays an important role in CXCL13 production.TRIAL REGISTRATION ClinicalTrials.gov NCT04509570.FUNDING This work was supported by National Research Foundation of South Korea (NRF-2021R1C1C1007179) and Korea Drug Development Fund, which is funded by Ministry of Science and ICT; Ministry of Trade, Industry, and Energy; and Ministry of Health and Welfare (grant RS-2022-00165917).
Dawoon Han, A Yeong Lee, Taehee Kim, Ji Young Choi, Mi Yeon Cho, Ahreum Song, Changhyeon Kim, Joon Ho Shim, Hyun Je Kim, Honesty Kim, Hillary Blaize D’Angio, Ryan Preska, Aaron T. Mayer, Miri Kim, Eun-Ji Choi, Tae-Gyun Kim, Eui-Cheol Shin, Kyemyung Park, Do-Young Kim, Soo-Chan Kim, Jong Hoon Kim
Intranasal vaccines are anticipated to be powerful tools for combating many infectious diseases, including SARS-CoV-2, because they induce not only systemic immunity but also mucosal immunity at the site of initial infection. However, they are generally inefficient in inducing an antigen-specific immune response without adjuvants. Here, we developed an adjuvant-free intranasal vaccine platform that utilizes the preexisting immunity induced by previous infection or vaccination to enhance vaccine effectiveness. We made RBD-HA, a fusion of the receptor-binding domain (RBD) of spike derived from SARS-CoV-2 as a vaccine target with HA derived from influenza A virus (IAV) as a carrier protein. Intranasal immunization of previously IAV-infected mice with RBD-HA without an adjuvant elicited robust production of RBD-specific systemic IgG and mucosal IgA by utilizing both HA-specific preexisting IgG and CD4+ T cells. Consequently, the mice were efficiently protected from SARS-CoV-2 infection. Additionally, we demonstrated the high versatility of this intranasal vaccine platform by assessing various vaccine antigens and preexisting immunity associated with a variety of infectious diseases. The results of this study suggest the promising potential of this intranasal vaccine platform to address problems associated with intranasal vaccines.
Atsushi Kawai, Nagisa Tokunoh, Eigo Kawahara, Shigeyuki Tamiya, Shinya Okamura, Chikako Ono, Jessica Anindita, Hiroki Tanaka, Hidetaka Akita, Sho Yamasaki, Jun Kunisawa, Toru Okamoto, Yoshiharu Matsuura, Toshiro Hirai, Yasuo Yoshioka
Regulation of tumoral PD-L1 expression is critical to advancing our understanding of tumor immune evasion and the improvement of existing antitumor immunotherapies. Herein, we describe a CRISPR-based screening platform and identified ATXN3 as a positive regulator for PD-L1 transcription. TCGA database analysis revealed a positive correlation between ATXN3 and CD274 in more than 80% of human cancers. ATXN3-induced Pd-l1 transcription was promoted by tumor microenvironmental factors, including the inflammatory cytokine IFN-γ and hypoxia, through protection of their downstream transcription factors IRF1, STAT3, and HIF-2α. Moreover, ATXN3 functioned as a deubiquitinase of the AP-1 transcription factor JunB, indicating that ATNX3 promotes PD-L1 expression through multiple pathways. Targeted deletion of ATXN3 in cancer cells largely abolished IFN-γ– and hypoxia-induced PD-L1 expression and consequently enhanced antitumor immunity in mice, and these effects were partially reversed by PD-L1 reconstitution. Furthermore, tumoral ATXN3 suppression improved the preclinical efficacy of checkpoint blockade antitumor immunotherapy. Importantly, ATXN3 expression was increased in human lung adenocarcinoma and melanoma, and its levels were positively correlated with PD-L1 as well as its transcription factors IRF1 and HIF-2α. Collectively, our study identifies what we believe to be a previously unknown deubiquitinase, ATXN3, as a positive regulator for PD-L1 transcription and provides a rationale for targeting ATXN3 to sensitize checkpoint blockade antitumor immunotherapy.
Shengnan Wang, Radhika Iyer, Xiaohua Han, Juncheng Wei, Na Li, Yang Cheng, Yuanzhang Zhou, Qiong Gao, Lingqiang Zhang, Ming Yan, Zhaolin Sun, Deyu Fang
Increased extracellular matrix (ECM) stiffness has been implicated in esophageal adenocarcinoma (EAC) progression, metastasis, and resistance to therapy. However, the underlying protumorigenic pathways are yet to be defined. Additional work is needed to develop physiologically relevant in vitro 3D culture models that better recapitulate the human tumor microenvironment and can be used to dissect the contributions of matrix stiffness to EAC pathogenesis. Here, we describe a modular, tumor ECM–mimetic hydrogel platform with tunable mechanical properties, defined presentation of cell-adhesive ligands, and protease-dependent degradation that supports robust in vitro growth and expansion of patient-derived EAC 3D organoids (EAC PDOs). Hydrogel mechanical properties control EAC PDO formation, growth, proliferation, and activation of tumor-associated pathways that elicit stem-like properties in the cancer cells, as highlighted through in vitro and in vivo environments. We also demonstrate that the engineered hydrogel serves as a platform for identifying potential therapeutic targets to disrupt the contribution of protumorigenic matrix mechanics in EAC. Together, these studies show that an engineered PDO culture platform can be used to elucidate underlying matrix-mediated mechanisms of EAC and inform the development of therapeutics that target ECM stiffness in EAC.
Ricardo Cruz-Acuña, Secunda W. Kariuki, Kensuke Sugiura, Spyros Karaiskos, Eleanor M. Plaster, Claudia Loebel, Gizem Efe, Tatiana Karakasheva, Joel T. Gabre, Jianhua Hu, Jason A. Burdick, Anil K. Rustgi
An immunosuppressive microenvironment causes poor tumor T cell infiltration and is associated with reduced patient overall survival in colorectal cancer. How to improve treatment responses in these tumors is still a challenge. Using an integrated screening approach to identify cancer-specific vulnerabilities, we identified complement receptor C5aR1 as a druggable target, which when inhibited improved radiotherapy, even in tumors displaying immunosuppressive features and poor CD8+ T cell infiltration. While C5aR1 is well-known for its role in the immune compartment, we found that C5aR1 is also robustly expressed on malignant epithelial cells, highlighting potential tumor cell–specific functions. C5aR1 targeting resulted in increased NF-κB–dependent apoptosis specifically in tumors and not normal tissues, indicating that, in malignant cells, C5aR1 primarily regulated cell fate. Collectively, these data revealed that increased complement gene expression is part of the stress response mounted by irradiated tumors and that targeting C5aR1 could improve radiotherapy, even in tumors displaying immunosuppressive features.
Callum Beach, David MacLean, Dominika Majorova, Stavros Melemenidis, Dhanya K. Nambiar, Ryan K. Kim, Gabriel N. Valbuena, Silvia Guglietta, Carsten Krieg, Mahnaz Darvish-Damavandi, Tatsuya Suwa, Alistair Easton, Lily V.S. Hillson, Ashley K. McCulloch, Ross K. McMahon, Kathryn Pennel, Joanne Edwards, Sean M. O’Cathail, Campbell S. Roxburgh, Enric Domingo, Eui Jung Moon, Dadi Jiang, Yanyan Jiang, Qingyang Zhang, Albert C. Koong, Trent M. Woodruff, Edward E. Graves, Tim Maughan, Simon J.A. Buczacki, Manuel Stucki, Quynh-Thu Le, Simon J. Leedham, Amato J. Giaccia, Monica M. Olcina
Brain vascular calcification is a prevalent age-related condition often accompanying neurodegenerative and neuroinflammatory diseases. The pathogenesis of large-vessel calcifications in peripheral tissue is well studied, but microvascular calcification in the brain remains poorly understood. Here, we report that elevated platelet-derived growth factor BB (PDGF-BB) from bone preosteoclasts contributed to cerebrovascular calcification in male mice. Aged male mice had higher serum PDGF-BB levels and a higher incidence of brain calcification compared with young mice, mainly in the thalamus. Transgenic mice with preosteoclast-specific Pdgfb overexpression exhibited elevated serum PDGF-BB levels and recapitulated age-associated thalamic calcification. Conversely, mice with preosteoclast-specific Pdgfb deletion displayed diminished age-associated thalamic calcification. In an ex vivo cerebral microvascular culture system, PDGF-BB dose-dependently promoted vascular calcification. Analysis of osteogenic gene array and single-cell RNA-Seq (scRNA-Seq) revealed that PDGF-BB upregulated multiple osteogenic differentiation genes and the phosphate transporter Slc20a1 in cerebral microvessels. Mechanistically, PDGF-BB stimulated the phosphorylation of its receptor PDGFRβ (p-PDGFRβ) and ERK (p-ERK), leading to the activation of RUNX2. This activation, in turn, induced the transcription of osteoblast differentiation genes in PCs and upregulated Slc20a1 in astrocytes. Thus, bone-derived PDGF-BB induced brain vascular calcification by activating the p-PDGFRβ/p-ERK/RUNX2 signaling cascade in cerebrovascular cells.
Jiekang Wang, Ching-Lien Fang, Kathleen Noller, Zhiliang Wei, Guanqiao Liu, Ke Shen, Kangping Song, Xu Cao, Mei Wan
The endothelium plays a critical role in the host response to infection and has been a focus of investigation in sepsis. While it is appreciated that intravascular thrombus formation, severe inflammation, and loss of endothelial integrity impair tissue oxygenation during sepsis, the precise molecular mechanisms that lead to endothelial injury remain poorly understood. We demonstrate here that endothelial ADAM10 was essential for the pathogenesis of Staphylococcus aureus sepsis, contributing to α-toxin–mediated (Hla-mediated) microvascular thrombus formation and lethality. As ADAM10 is essential for endothelial development and homeostasis, we examined whether other major human sepsis pathogens also rely on ADAM10-dependent pathways in pathogenesis. Mice harboring an endothelium-specific knockout of ADAM10 were protected against lethal Pseudomonas aeruginosa and Streptococcus pneumoniae sepsis, yet remained fully susceptible to group B streptococci and Candida albicans sepsis. These studies illustrate a previously unknown role for ADAM10 in sepsis-associated endothelial injury and suggest that understanding pathogen-specific divergent host pathways in sepsis may enable more precise targeting of disease.
Danielle N. Alfano, Mark J. Miller, Juliane Bubeck Wardenburg
The functional integrity of Tregs is interwoven with cellular metabolism; however, the mechanisms governing Treg metabolic programs remain elusive. Here, we identified that the deubiquitinase USP47 inhibited c-Myc translation mediated by the RNA N6-methyladenosine (m6A) reader YTHDF1 to maintain Treg metabolic and functional homeostasis. USP47 positively correlated with the tumor-infiltrating Treg signature in samples from patients with colorectal cancer and gastric cancer. USP47 ablation compromised Treg homeostasis and function in vivo, resulting in the development of inflammatory disorders, and boosted antitumor immune responses. USP47 deficiency in Tregs triggered the accumulation of the c-Myc protein and in turn exacerbated hyperglycolysis. Mechanistically, USP47 prevented YTHDF1 ubiquitination to attenuate the association of YTHDF1 with translation initiation machinery, thereby decreasing m6A-based c-Myc translation efficiency. Our findings reveal that USP47 directs m6A-dependent metabolic programs to orchestrate Treg homeostasis and suggest novel approaches for selective immune modulation in cancer and autoimmune diseases by targeting of USP47.
Aiting Wang, Haiyan Huang, Jian-Hong Shi, Xiaoyan Yu, Rui Ding, Yuerong Zhang, Qiaoqiao Han, Zhi-Yu Ni, Xia Li, Ren Zhao, Qiang Zou
Patients with inflammatory bowel disease (IBD) are susceptible to colitis-associated cancer (CAC). Chronic inflammation promotes the risk for CAC. In contrast, mucosal healing predicts improved prognosis in IBD and reduced risk of CAC. However, the molecular integration among colitis, mucosal healing, and CAC remains poorly understood. Claudin-2 (CLDN2) expression is upregulated in IBD; however, its role in CAC is not known. The current study was undertaken to examine the role for CLDN2 in CAC. The AOM/DSS-induced CAC model was used with WT and CLDN2-modified mice. High-throughput expression analyses, murine models of colitis/recovery, chronic colitis, ex vivo crypt culture, and pharmacological manipulations were employed in order to increase our mechanistic understanding. The Cldn2KO mice showed significant inhibition of CAC despite severe colitis compared with WT littermates. Cldn2 loss also resulted in impaired recovery from colitis and increased injury when mice were subjected to intestinal injury by other methods. Mechanistic studies demonstrated a possibly novel role of CLDN2 in promotion of mucosal healing downstream of EGFR signaling and by regulation of Survivin expression. An upregulated CLDN2 expression protected from CAC and associated positively with crypt regeneration and Survivin expression in patients with IBD. We demonstrate a potentially novel role of CLDN2 in promotion of mucosal healing in patients with IBD and thus regulation of vulnerability to colitis severity and CAC, which can be exploited for improved clinical management.
Rizwan Ahmad, Balawant Kumar, Ishwor Thapa, Raju Lama Tamang, Santosh K. Yadav, Mary K. Washington, Geoffrey A. Talmon, Alan S. Yu, Dhundy K. Bastola, Punita Dhawan, Amar B. Singh
Sarcoidosis is a disease of unknown etiology in which granulomas form throughout the body and is typically treated with glucocorticoids, but there are no approved steroid-sparing alternatives. Here, we investigated the mechanism of granuloma formation using single-cell RNA-Seq in sarcoidosis patients. We observed that the percentages of triggering receptor expressed on myeloid cells 2–positive (TREM2-positive) macrophages expressing angiotensin-converting enzyme (ACE) and lysozyme, diagnostic makers of sarcoidosis, were increased in cutaneous sarcoidosis granulomas. Macrophages in the sarcoidosis lesion were hypermetabolic, especially in the pentose phosphate pathway (PPP). Expression of the PPP enzymes, such as fructose-1,6-bisphosphatase 1 (FBP1), was elevated in both systemic granuloma lesions and serum of sarcoidosis patients. Granuloma formation was attenuated by the PPP inhibitors in in vitro giant cell and in vivo murine granuloma models. These results suggest that the PPP may be a promising target for developing therapeutics for sarcoidosis.
Satoshi Nakamizo, Yuki Sugiura, Yoshihiro Ishida, Yoko Ueki, Satoru Yonekura, Hideaki Tanizaki, Hiroshi Date, Akihiko Yoshizawa, Teruasa Murata, Kenji Minatoya, Mikako Katagiri, Seitaro Nomura, Issei Komuro, Seishi Ogawa, Saeko Nakajima, Naotomo Kambe, Gyohei Egawa, Kenji Kabashima
Many cancers harbor homologous recombination defects (HRDs). A HRD is a therapeutic target that is being successfully utilized in treatment of breast/ovarian cancer via synthetic lethality. However, canonical HRD caused by BRCAness mutations do not prevail in liver cancer. Here we report a subtype of HRD caused by the perturbation of a proteasome variant (CDW19S) in hepatitis B virus–bearing (HBV-bearing) cells. This amalgamate protein complex contained the 19S proteasome decorated with CRL4WDR70 ubiquitin ligase, and assembled at broken chromatin in a PSMD4Rpn10- and ATM-MDC1-RNF8–dependent manner. CDW19S promoted DNA end processing via segregated modules that promote nuclease activities of MRE11 and EXO1. Contrarily, a proteasomal component, ADRM1Rpn13, inhibited resection and was removed by CRL4WDR70-catalyzed ubiquitination upon commitment of extensive resection. HBx interfered with ADRM1Rpn13 degradation, leading to the imposition of ADRM1Rpn13-dependent resection barrier and consequent viral HRD subtype distinguishable from that caused by BRCA1 defect. Finally, we demonstrated that viral HRD in HBV-associated hepatocellular carcinoma can be exploited to restrict tumor progression. Our work clarifies the underlying mechanism of a virus-induced HRD subtype.
Ming Zeng, Zizhi Tang, Laifeng Ren, Haibin Wang, Xiaojun Wang, Wenyuan Zhu, Xiaobing Mao, Zeyang Li, Xianming Mo, Jun Chen, Junhong Han, Daochun Kong, Jianguo Ji, Antony M. Carr, Cong Liu
Why apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia has remained unclear, but we have suspected that the underlying cause is reduced amounts of lipoprotein lipase (LPL) in capillaries. By routine immunohistochemistry, we observed reduced LPL staining of heart and brown adipose tissue (BAT) capillaries in Apoa5–/– mice. Also, after an intravenous injection of LPL-, CD31-, and GPIHBP1-specific mAbs, the binding of LPL Abs to heart and BAT capillaries (relative to CD31 or GPIHBP1 Abs) was reduced in Apoa5–/– mice. LPL levels in the postheparin plasma were also lower in Apoa5–/– mice. We suspected that a recent biochemical observation — that APOA5 binds to the ANGPTL3/8 complex and suppresses its capacity to inhibit LPL catalytic activity — could be related to the low intracapillary LPL levels in Apoa5–/– mice. We showed that an ANGPTL3/8-specific mAb (IBA490) and APOA5 normalized plasma triglyceride (TG) levels and intracapillary LPL levels in Apoa5–/– mice. We also showed that ANGPTL3/8 detached LPL from heparan sulfate proteoglycans and GPIHBP1 on the surface of cells and that the LPL detachment was blocked by IBA490 and APOA5. Our studies explain the hypertriglyceridemia in Apoa5–/– mice and further illuminate the molecular mechanisms that regulate plasma TG metabolism.
Ye Yang, Anne P. Beigneux, Wenxin Song, Le Phuong Nguyen, Hyesoo Jung, Yiping Tu, Thomas A. Weston, Caitlyn M. Tran, Katherine Xie, Rachel G. Yu, Anh P. Tran, Kazuya Miyashita, Katsuyuki Nakajima, Masami Murakami, Yan Q. Chen, Eugene Y. Zhen, Joonyoung R. Kim, Paul H. Kim, Gabriel Birrane, Peter Tontonoz, Michael Ploug, Robert J. Konrad, Loren G. Fong, Stephen G. Young
Herpes zoster (HZ) is a substantial problem for people with decreased cell-mediated immunity, including older adults. The first vaccine approved for HZ prevention, the zoster vaccine live (ZVL), which provided limited and short-lived protection, has been supplanted by the superior recombinant zoster vaccine (RZV), which provides robust and durable protection. To understand the mechanisms underlying the differential immunologic characteristics of the 2 vaccines, we used T cell receptor β chain sequencing and peptide–MHC class II tetramer staining to analyze recombinant glycoprotein E–specific (gE-specific) CD4+ T cell clonotypes in RZV and ZVL recipients. Compared with ZVL, RZV expanded more gE-specific CD4+ clonotypes, with greater breadth and higher frequency of public clonotypes. RZV recruited a higher proportion of clonotypes from naive than from memory cells, while ZVL recruited equally from memory and naive compartments. Compared with memory-derived, naive-derived clonotypes were more likely to last 5 or more years after immunization. Moreover, the frequency of tetramer+ persistent clones correlated with the frequency of tetramer+ naive CD4+ prevaccination T cells. We conclude that the ability of RZV to recruit naive CD4+ T cells into the response may contribute to the durability of its effect. The abundance, breadth, and frequency of public clonotypes may further add to its protective effect.
Kerry J. Laing, Emily S. Ford, Michael J. Johnson, Myron J. Levin, David M. Koelle, Adriana Weinberg