Sheldon Landsberger
Gianna Zuccotti
The incidence of chronic kidney diseases is increasing worldwide, and these conditions are emerging as a major public health problem. While genetic factors contribute to susceptibility and progression of renal disease, proteinuria has been claimed as an independent predictor of outcome. Reduction of urinary protein levels by various medications and a low-protein diet limits renal function decline in individuals with nondiabetic and diabetic nephropathies to the point that remission of the disease and regression of renal lesions have been observed in experimental animals and even in humans. In animal models, regression of glomerular structural changes is associated with remodeling of the glomerular architecture. Instrumental to this discovery were 3D reconstruction studies of the glomerular capillary tuft, which allowed the quantification of sclerosis volume reduction and capillary regeneration upon treatment. Regeneration of capillary segments might result from the contribution of resident cells, but progenitor cells of renal or extrarenal origin may also have a role. This review describes recent advances in our understanding of the mechanisms and mediators underlying renal tissue repair ultimately responsible for regression of renal injury.
Giuseppe Remuzzi, Ariela Benigni, Andrea Remuzzi
In this issue of the JCI, Bowers et al. show that the common polymorphism of the cardiac voltage-gated sodium channel, type Vα (SCN5A), designated S1103Y, found in African Americans is associated with an increased risk of sudden infant death syndrome (SIDS). Wild-type and mutant SCN5A channels both functioned typically under normal conditions in vitro, but exposure to acidic intracellular pH levels such as those found in respiratory acidosis — a known risk factor for SIDS — produced abnormal gain-of-function late reopenings of S1103Y channels, behavior that is often associated with cardiac arrhythmias. These pathologic late reopenings were suppressed by low levels of the channel-blocking drug mexiletine. These findings provide an excellent illustration of a causal relationship between the interaction of the environment and genetic background in SIDS and also raise interesting questions about the linkage of a genetic abnormality with a clinical phenotype.
Jonathan C. Makielski
Upper gastrointestinal dysfunction occurs frequently in diabetes and potentially contributes to both abdominal symptoms and impaired glycemic control; conversely, variations in blood glucose concentration reversibly affect gut motility in humans. In this issue of the JCI, Anitha et al. report apoptosis of rodent enteric neurons under hyperglycemic conditions, both in vitro and in vivo, associated with impaired PI3K activity and preventable by glial cell line–derived neurotrophic factor. These observations add to recent insights gained from animal models regarding the etiology of diabetic gastrointestinal dysfunction, but investigators must strive to translate animal data to human diabetes.
Christopher K. Rayner, Michael Horowitz
Previous studies suggest that insulin can inhibit hepatic glucose production (HGP) by both direct and indirect actions. The indirect effects include inhibition of glucagon secretion, reduction in plasma nonesterified fatty acid levels, reduction of the amount of gluconeogenic precursor supplied to the liver, and change in neural input to the liver. A study in this issue of the JCI demonstrates that, in overnight-fasted dogs, an acute, selective increase of portal insulin induces a rapid inhibition of HGP, and a 4-fold rise in head insulin level does not enhance the inhibition of HGP in response to portal insulin infusion. This study demonstrates that insulin’s direct effects on the liver dominate the control of HGP. These data balance previous studies in mice that suggested that indirect effects of insulin via the hypothalamus are the primary determinant of HGP.
Jean Girard
Phagocytosis is a key process in protection of the host against pathogens and in provision of antigens for the immune response. Synergism between C3b and IgG and their receptors in promoting adherence to and then ingestion of an antigen has been recognized for decades. Only more recently, however, has cross-talk between another complement activation fragment, the anaphylatoxin C5a, and Fcγ receptors (FcγRs) been defined. In this issue of the JCI, C5a is shown to signal, via its receptor, the upregulation of activating (proinflammatory-type) FcγRs. Moreover, engagement of FcγRs by the IgG-bearing immune complex instructs the cell to synthesize more C5, from which C5a is derived. Thus, this work establishes a feedback loop whereby FcγR expression and function are enhanced, a very desirable event in concert with an infection but potentially deleterious in autoimmunity.
John P. Atkinson
Mucous hypersecretion is a major cause of airway obstruction in asthma, chronic obstructive pulmonary disease, and cystic fibrosis. EGFR ligands and IL-13 are known to stimulate mucous induction, but the detailed mechanisms of epithelial mucous regulation have not been well defined. In this issue of the JCI, Tyner et al. show, in a mouse model of chronic mucous hypersecretion, that ciliated epithelial cell apoptosis is inhibited by EGFR activation, allowing IL-13 to stimulate the differentiation of these cells into goblet cells, which secrete mucus. In defining this coordinated, 2-step process, we can consider the therapeutic effects of blocking mucous production. This begs the question, Is it possible to reduce airway obstruction in chronic lung disease by inhibiting EGFR activation and/or by inhibiting IL-13?
Lauren Cohn
Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyperplasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This chronic switch in epithelial behavior exhibits genetic susceptibility and depends on persistent activation of EGFR signaling to PI3K that prevents apoptosis of ciliated cells and on IL-13 signaling that promotes transdifferentiation of ciliated to goblet cells. Thus, EGFR blockade (using an irreversible EGFR kinase inhibitor designated EKB-569) prevents virus-induced increases in ciliated and goblet cells whereas IL-13 blockade (using s-IL-13Rα2-Fc) exacerbates ciliated cell hyperplasia but still inhibits goblet cell metaplasia. The distinct effects of EGFR and IL-13 inhibitors after viral reprogramming suggest that these combined therapeutic strategies may also correct epithelial architecture in the setting of airway inflammatory disorders characterized by a similar pattern of chronic EGFR activation, IL-13 expression, and ciliated-to-goblet cell metaplasia.
Jeffrey W. Tyner, Edy Y. Kim, Kyotaro Ide, Mark R. Pelletier, William T. Roswit, Jeffrey D. Morton, John T. Battaile, Anand C. Patel, G. Alexander Patterson, Mario Castro, Melanie S. Spoor, Yingjian You, Steven L. Brody, Michael J. Holtzman
Individuals with X-linked lymphoproliferative disease (XLP) display defects in B cell differentiation in vivo. Specifically, XLP patients do not generate a normal number of CD27+ memory B cells, and those few that are present are IgM+. Recent studies have suggested that IgM+CD27+ B cells are not true memory cells, but rather B cells that guard against T cell–independent pathogens. Here we show that human XLP IgM+CD27+ B cells resemble normal memory B cells both morphologically and phenotypically. Additionally, IgM+CD27+ B cells exhibited functional characteristics of normal memory B cells, including the ability to secrete more Ig than naive B cells in response to both T cell–dependent and –independent stimuli. Analysis of spleens from XLP patients revealed a paucity of germinal centers (GCs), and the rare GCs detected were poorly formed. Despite this, Ig variable region genes expressed by XLP IgM+CD27+ B cells had undergone somatic hypermutation to an extent comparable to that of normal memory B cells. These findings reveal a differential requirement for the generation of IgM+ and Ig isotype–switched memory B cells, with the latter only being generated by fully formed GCs. Production of affinity-matured IgM by IgM+CD27+ B cells may protect against pathogens to which a normal immune response is elicited in XLP patients.
Cindy S. Ma, Stefania Pittaluga, Danielle T. Avery, Nathan J. Hare, Irina Maric, Amy D. Klion, Kim E. Nichols, Stuart G. Tangye
To determine whether endothelial Akt could affect vascular lesion formation, mutant mice with a constitutively active Akt transgene, which could be inducibly targeted to the vascular endothelium using the tet-off system (EC-Akt Tg mice), were generated. After withdrawal of doxycycline, EC-Akt Tg mice demonstrated increased endothelial-specific Akt activity and NO production. After blood flow cessation caused by carotid artery ligation, neointimal formation was attenuated in induced EC-Akt Tg mice compared with noninduced EC-Akt Tg mice and control littermates. To determine the role of eNOS in mediating these effects, mice were treated with Nω-nitro-L-arginine methyl ester (L-NAME). Neointimal formation was attenuated to a lesser extent in induced EC-Akt Tg mice treated with L-NAME, suggesting that some of the vascular protective effects were NO independent. Indeed, endothelial activation of Akt resulted in less EC apoptosis in ligated arteries. Immunostaining demonstrated decreased inflammatory and proliferative changes in induced EC-Akt Tg mice after vascular injury. These findings indicate that endothelial activation of Akt suppresses lesion formation via increased NO production, preservation of functional endothelial layer, and suppression of inflammatory and proliferative changes in the vascular wall. These results suggest that enhancing endothelial Akt activity alone could have therapeutic benefits after vascular injury.
Yasushi Mukai, Yoshiyuki Rikitake, Ichiro Shiojima, Sebastian Wolfrum, Minoru Satoh, Kyosuke Takeshita, Yukio Hiroi, Salvatore Salomone, Hyung-Hwan Kim, Laura E. Benjamin, Kenneth Walsh, James K. Liao
Diabetes can result in loss of enteric neurons and subsequent gastrointestinal complications. The mechanism of enteric neuronal loss in diabetes is not known. We examined the effects of hyperglycemia on enteric neuronal survival and the effects of glial cell line–derived neurotrophic factor (GDNF) on modulating this survival. Exposure of primary enteric neurons to 20 mM glucose (hyperglycemia) for 24 hours resulted in a significant increase in apoptosis compared with 5 mM glucose (normoglycemia). Exposure to 20 mM glucose resulted in decreased Akt phosphorylation and enhanced nuclear translocation of forkhead box O3a (FOXO3a). Treatment of enteric neurons with GDNF ameliorated these changes. In streptozotocin-induced diabetic mice, there was evidence of myenteric neuronal apoptosis and reduced Akt phosphorylation. Diabetic mice had loss of NADPH diaphorase–stained myenteric neurons, delayed gastric emptying, and increased intestinal transit time. The pathophysiological effects of hyperglycemia (apoptosis, reduced Akt phosphorylation, loss of inhibitory neurons, motility changes) were reversed in diabetic glial fibrillary acidic protein–GDNF (GFAP-GDNF) Tg mice. In conclusion, we demonstrate that hyperglycemia induces neuronal loss through a reduction in Akt-mediated survival signaling and that these effects are reversed by GDNF. GDNF may be a potential therapeutic target for the gastrointestinal motility disorders related to diabetes.
Mallappa Anitha, Chetan Gondha, Roy Sutliff, Alexander Parsadanian, Simon Mwangi, Shanthi V. Sitaraman, Shanthi Srinivasan
Ischemia/reperfusion (I/R) of several organs results in complement activation, but the kidney is unique in that activation after I/R occurs only via the alternative pathway. We hypothesized that selective activation of this pathway after renal I/R could occur either because of a loss of complement inhibition or from increased local synthesis of complement factors. We examined the relationship between renal complement activation after I/R and the levels and localization of intrinsic membrane complement inhibitors. We found that loss of polarity of complement receptor 1–related protein y (Crry) in the tubular epithelium preceded activation of the alternative pathway along the basolateral aspect of the tubular cells. Heterozygous gene-targeted mice that expressed lower amounts of Crry were more sensitive to ischemic injury. Furthermore, inhibition of Crry expressed by proximal tubular epithelial cells in vitro resulted in alternative pathway–mediated injury to the cells. Thus, altered expression of a complement inhibitor within the tubular epithelium appears to be a critical factor permitting activation of the alternative pathway of complement after I/R. Increased C3 mRNA and decreased factor H mRNA were also detected in the outer medulla after I/R, suggesting that altered synthesis of these factors might further contribute to complement activation in this location.
Joshua M. Thurman, Danica Ljubanović, Pamela A. Royer, Damian M. Kraus, Hector Molina, Nicholas P. Barry, Gregory Proctor, Moshe Levi, V. Michael Holers
In response to hypoxia, hypoxia-inducible factors act as the primary proangiogenic triggers by regulating transcription levels of target genes, including VEGF. However, little is known about the specific factors that control other components of the angiogenic process, particularly formation of matrix scaffolds that promote adhesion and migration of endothelial cells. We show that in the postnatal mouse retina, the orphan nuclear receptor tailless (Tlx) is strongly expressed in the proangiogenic astrocytes, which secrete VEGF and fibronectin. Tlx expression by retinal astrocytes is controlled by oxygen concentration and rapidly downregulated upon contact with blood vessels. In mice null for Tlx, retinal astrocytes maintain VEGF expression; however, the extracellular assembly of fibronectin matrices by astrocytes is severely impaired, leading to defective scaffold formation and a complete failure of normal retinal vascular development. This work identifies Tlx as an essential component of the molecular network involved in the hypoxia-inducible proangiogenic switch in retinal astrocytes.
Akiyoshi Uemura, Sentaro Kusuhara, Stanley J. Wiegand, Ruth T. Yu, Shin-Ichi Nishikawa
Protein misfolding and aggregation are thought to underlie the pathogenesis of many amyloid diseases, such as Alzheimer and Parkinson diseases, whereby a stepwise protein misfolding process begins with the conversion of soluble protein monomers to prefibrillar oligomers and progresses to the formation of insoluble amyloid fibrils. Drusen are extracellular deposits found in aging eyes and in eyes afflicted with age-related macular degeneration (AMD). Recent characterizations of drusen have revealed protein components that are shared with amyloid deposits. However, characteristic amyloid fibrils have thus far not been identified in drusen. In this study, we tested the hypothesis that nonfibrillar oligomers may be a common link in amyloid diseases. Oligomers consisting of distinct amyloidogenic proteins and peptides can be detected by a recently developed antibody that is thought to recognize a common structure. Notably, oligomers exhibit cellular toxicity, which suggests that they play a role in the pathogenesis of neurodegenerative diseases. Through use of the anti-oligomer antibody, we came to observe the presence of nonfibrillar, toxic oligomers in drusen. Conversely, no reactivity was observed in age-matched control eyes without drusen. These results suggest that amyloid oligomers may be involved in drusen biogenesis and that similar protein misfolding processes may occur in AMD and amyloid diseases.
Volker Luibl, Jose M. Isas, Rakez Kayed, Charles G. Glabe, Ralf Langen, Jeannie Chen
Choroideremia (CHM) is an X-linked degeneration of the retinal pigment epithelium (RPE), photoreceptors, and choroid, caused by loss of function of the CHM/REP1 gene. REP1 is involved in lipid modification (prenylation) of Rab GTPases, key regulators of intracellular vesicular transport and organelle dynamics. To study the pathogenesis of CHM and to develop a model for assessing gene therapy, we have created a conditional mouse knockout of the Chm gene. Heterozygous-null females exhibit characteristic hallmarks of CHM: progressive degeneration of the photoreceptors, patchy depigmentation of the RPE, and Rab prenylation defects. Using tamoxifen-inducible and tissue-specific Cre expression in combination with floxed Chm alleles, we show that CHM pathogenesis involves independently triggered degeneration of photoreceptors and the RPE, associated with different subsets of defective Rabs.
Tanya Tolmachova, Ross Anders, Magnus Abrink, Laurence Bugeon, Margaret J. Dallman, Clare E. Futter, José S. Ramalho, Felix Tonagel, Naoyuki Tanimoto, Mathias W. Seeliger, Clare Huxley, Miguel C. Seabra
The Shumiya cataract rat (SCR) is a hereditary cataractous strain. It is thought that the continuous occurrence of poorly differentiated epithelial cells at the bow area of the lens forms the pathophysiological basis for cataract formation in SCRs. In this study, we attempted to identify the genes associated with cataract formation in SCRs by positional cloning. Genetic linkage analysis revealed the presence of a major cataract locus on chromosome 20 as well as a locus on chromosome 15 that partially suppressed cataract onset. Hypomorphic mutations were identified in genes for lanosterol synthase (Lss) on chromosome 20 and farnesyl diphosphate farnesyl transferase 1 (Fdft1) on chromosome 15, both of which function in the cholesterol biosynthesis pathway. A null mutation for Lss was also identified. Cataract onset was associated with the specific combination of Lss and Fdft1 mutant alleles that decreased cholesterol levels in cataractous lenses to about 57% of normal. Thus, cholesterol insufficiency may underlie the deficient proliferation of lens epithelial cells in SCRs, which results in the loss of homeostatic epithelial cell control of the underlying fiber cells and eventually leads to cataractogenesis. These findings may have some relevance to other types of cataracts, inborn defects of cholesterol synthesis, and the effects of cholesterol-lowering medication.
Masayuki Mori, Guixin Li, Ikuro Abe, Jun Nakayama, Zhanjun Guo, Jinko Sawashita, Tohru Ugawa, Shoko Nishizono, Tadao Serikawa, Keiichi Higuchi, Seigo Shumiya
To investigate the function of Cx43 during hypertension, we studied the mouse line Cx43KI32 (KI32), in which the coding region of Cx32 replaces that of Cx43. Within the kidneys of homozygous KI32 mice, Cx32 was expressed in cortical and medullary tubules, as well as in some extra- and intraglomerular vessels, i.e., at sites where Cx32 and Cx43 are found in WT mice. Under such conditions, renin expression was much reduced compared with that observed in the kidneys of WT and heterozygous KI32 littermates. After exposure to a high-salt diet, all mice retained a normal blood pressure. However, whereas the levels of renin were significantly reduced in the kidneys of WT and heterozygous KI32 mice, reaching levels comparable to those observed in homozygous littermates, they were not further affected in the latter animals. Four weeks after the clipping of a renal artery (the 2-kidney, 1-clip [2K1C] model), 2K1C WT and heterozygous mice showed an increase in blood pressure and in the circulating levels of renin, whereas 2K1C homozygous littermates remained normotensive and showed unchanged plasma renin activity. Hypertensive, but not normotensive, mice also developed cardiac hypertrophy. The data indicate that replacement of Cx43 by Cx32 is associated with decreased expression and secretion of renin, thus preventing the renin-dependent hypertension that is normally induced in the 2K1C model.
Jacques-Antoine Haefliger, Nathalie Krattinger, David Martin, Thierry Pedrazzini, Alessandro Capponi, Britta Döring, Achim Plum, Anne Charollais, Klaus Willecke, Paolo Meda
The transcription factor T-bet (Tbx21) plays a major role in adaptive immunity and is required for optimal IFN-γ production by DCs. Here we demonstrate an essential function for T-bet in DCs in controlling inflammatory arthritis. We show that collagen antibody–induced arthritis (CAIA), a model of human RA, is a bipartite disease characterized by an early innate immune system component intact in RAG2–/– mice and a later adaptive immune system phase. Mice lacking T-bet had markedly reduced joint inflammation at both early and late time points and RAG2–/–T-bet–/– double-deficient mice were essentially resistant to disease. Remarkably, adoptive transfer of T-bet–expressing DCs reconstituted inflammation in a T-bet deficient and T-bet/RAG2–deficient milieu. T-bet regulates the production of proinflammatory cytokine IL-1α and chemokines macrophage inflammatory protein-1α (MIP-1α) and thymus- and activation-related chemokine (TARC) by DCs. Further, T-bet expression in DCs is required for T helper cell activation. We conclude that T-bet plays a vital function in DCs that links innate and adaptive immunity to regulate inflammatory responses. T-bet provides an attractive new target for the development of novel therapeutics for inflammatory arthritis.
Jingsong Wang, John W. Fathman, Geanncarlo Lugo-Villarino, Lucila Scimone, Ulrich von Andrian, David M. Dorfman, Laurie H. Glimcher
VEGF-A promotes angiogenesis in many tissues. Here we report that choroidal neovascularization (CNV) incited by injury was increased by excess VEGF-A before injury but was suppressed by VEGF-A after injury. This unorthodox antiangiogenic effect was mediated via VEGFR-1 activation and VEGFR-2 deactivation, the latter via Src homology domain 2–containing (SH2-containing) tyrosine phosphatase-1 (SHP-1). The VEGFR-1–specific ligand placental growth factor-1 (PlGF-1), but not VEGF-E, which selectively binds VEGFR-2, mimicked these responses. Excess VEGF-A increased CNV before injury because VEGFR-1 activation was silenced by secreted protein, acidic and rich in cysteine (SPARC). The transient decline of SPARC after injury revealed a temporal window in which VEGF-A signaling was routed principally through VEGFR-1. These observations indicate that therapeutic design of VEGF-A inhibition should include consideration of the level and activity of SPARC.
Miho Nozaki, Eiji Sakurai, Brian J. Raisler, Judit Z. Baffi, Jassir Witta, Yuichiro Ogura, Rolf A. Brekken, E. Helene Sage, Balamurali K. Ambati, Jayakrishna Ambati
Thousands die each year from sudden infant death syndrome (SIDS). Neither the cause nor basis for varied prevalence in different populations is understood. While 2 cases have been associated with mutations in type Vα, cardiac voltage-gated sodium channels (SCN5A), the “Back to Sleep” campaign has decreased SIDS prevalence, consistent with a role for environmental influences in disease pathogenesis. Here we studied SCN5A in African Americans. Three of 133 SIDS cases were homozygous for the variant S1103Y. Among controls, 120 of 1,056 were carriers of the heterozygous genotype, which was previously associated with increased risk for arrhythmia in adults. This suggests that infants with 2 copies of S1103Y have a 24-fold increased risk for SIDS. Variant Y1103 channels were found to operate normally under baseline conditions in vitro. As risk factors for SIDS include apnea and respiratory acidosis, Y1103 and wild-type channels were subjected to lowered intracellular pH. Only Y1103 channels gained abnormal function, demonstrating late reopenings suppressible by the drug mexiletine. The variant appeared to confer susceptibility to acidosis-induced arrhythmia, a gene-environment interaction. Overall, homozygous and rare heterozygous SCN5A missense variants were found in approximately 5% of cases. If our findings are replicated, prospective genetic testing of SIDS cases and screening with counseling for at-risk families warrant consideration.
Leigh D. Plant, Peter N. Bowers, Qianyong Liu, Thomas Morgan, Tingting Zhang, Matthew W. State, Weidong Chen, Rick A. Kittles, Steve A.N. Goldstein
Mucoid, mucA mutant Pseudomonas aeruginosa cause chronic lung infections in cystic fibrosis (CF) patients and are refractory to phagocytosis and antibiotics. Here we show that mucoid bacteria perish during anaerobic exposure to 15 mM nitrite (NO2–) at pH 6.5, which mimics CF airway mucus. Killing required a pH lower than 7, implicating formation of nitrous acid (HNO2) and NO, that adds NO equivalents to cellular molecules. Eighty-seven percent of CF isolates possessed mucA mutations and were killed by HNO2 (3-log reduction in 4 days). Furthermore, antibiotic-resistant strains determined were also equally sensitive to HNO2. More importantly, HNO2 killed mucoid bacteria (a) in anaerobic biofilms; (b) in vitro in ultrasupernatants of airway secretions derived from explanted CF patient lungs; and (c) in mouse lungs in vivo in a pH-dependent fashion, with no organisms remaining after daily exposure to HNO2 for 16 days. HNO2 at these levels of acidity and NO2– also had no adverse effects on cultured human airway epithelia in vitro. In summary, selective killing by HNO2 may provide novel insights into the important clinical goal of eradicating mucoid P. aeruginosa from the CF airways.
Sang Sun Yoon, Ray Coakley, Gee W. Lau, Sergei V. Lymar, Benjamin Gaston, Ahmet C. Karabulut, Robert F. Hennigan, Sung-Hei Hwang, Garry Buettner, Michael J. Schurr, Joel E. Mortensen, Jane L. Burns, David Speert, Richard C. Boucher, Daniel J. Hassett
Recent evidence has indicated that leptin, an adipocyte-secreted hormone belonging to the helical cytokine family, significantly influences immune and autoimmune responses. We investigate here the mechanisms by which in vivo abrogation of leptin effects protects SJL/J mice from proteolipid protein peptide PLP139–151-induced EAE, an animal model of MS. Blockade of leptin with anti-leptin Abs or with a soluble mouse leptin receptor chimera (ObR:Fc), either before or after onset of EAE, improved clinical score, slowed disease progression, reduced disease relapses, inhibited PLP139–151-specific T cell proliferation, and switched cytokine secretion toward a Th2/regulatory profile. This was also confirmed by induction of forkhead box p3 (Foxp3) expression in CD4+ T cells in leptin-neutralized mice. Importantly, anti-leptin treatment induced a failure to downmodulate the cyclin-dependent kinase inhibitor p27 (p27Kip-1) in autoreactive CD4+ T cells. These effects were associated with increased tyrosine phosphorylation of both ERK1/2 and STAT6. Taken together, our data provide what we believe is a new molecular basis for leptin antagonism in EAE and envision novel strategies of leptin-based molecular targeting in the disease.
Veronica De Rosa, Claudio Procaccini, Antonio La Cava, Paolo Chieffi, Giovanni Francesco Nicoletti, Silvia Fontana, Serafino Zappacosta, Giuseppe Matarese
Inflammatory diseases of the CNS, such as MS and its animal model EAE, are characterized by infiltration of activated lymphocytes and phagocytes into the CNS. Within the CNS, activation of resident cells initiates an inflammatory cascade, leading to tissue destruction, demyelination, and neurologic deficit. TLRs recognize microbes and are pivotal mediators of innate immunity. Within the CNS, augmented TLR expression during EAE is observed, even in the absence of any apparent microbial involvement. To determine the functional relevance of this phenomenon during sterile autoimmunity, we studied the role of different TLRs as well as their common signaling adaptor MyD88 in the development of EAE. We found that MyD88–/– mice were completely EAE resistant. Surprisingly, this protection is partly due to engagement of the CpG receptor TLR9. Restricting the MyD88 or TLR9 mutation to host radio-resistant cells, including the cells within the CNS, revealed that engagement of radio-resistant cells modulated the disease course and histopathological changes. Our data clearly demonstrate that both TLR9 and MyD88 are essential modulators of the autoimmune process during the effector phase of disease and suggest that endogenous “danger signals” modulate the disease pathogenesis.
Marco Prinz, Folker Garbe, Hauke Schmidt, Alexander Mildner, Ilona Gutcher, Karina Wolter, Matthias Piesche, Roland Schroers, Elisabeth Weiss, Carsten J. Kirschning, Christian D.P. Rochford, Wolfgang Brück, Burkhard Becher
CD8+ T cells play a key role in clearing primary virus infections and in protecting against subsequent challenge. The potent antiviral effects of these cells make them important components of vaccine-induced immunity and, because of this, peptide vaccines often contain epitopes designed to induce strong CD8+ T cell responses. However, the same effector functions that protect the host also can be harmful if they are not tightly regulated, and virus-specific CD8+ T cells are a frequent cause of immunopathology. Here, we report that the administration of peptide to virus-immune recipient mice can lead to the synchronous activation of preexisting virus-specific CD8+ T cells with serious, and even lethal, consequences. Mice infected with LCMV or vaccinia virus developed rapid and profound hypothermia following injection of cognate synthetic peptides, and LCMV-infected mice frequently died within hours. Detailed analyses of the LCMV infected mice revealed enterocyte apoptosis and implicated TNF produced by peptide-specific CD8+ T cells as the major mediator of disease. The caspase inhibitor zVADfmk had no demonstrable effect on the development of hypothermia, but diminished enterocyte apoptosis and greatly reduced the number of deaths. These findings, if similarly observed in patients, counsel caution when administering powerful immunogens such as peptide vaccines to individuals who may have a large preexisting pool of epitope-specific CD8+ T cells.
Fei Liu, Ralph Feuer, Daniel E. Hassett, J. Lindsay Whitton
Developmental exposure to appropriate levels of thyroid hormones (THs) in a timely manner is critical to normal development in vertebrates. Among the factors potentially affecting perinatal exposure of tissues to THs is type 3 deiodinase (D3). This enzyme degrades THs and is highly expressed in the pregnant uterus, placenta, and fetal and neonatal tissues. To determine the physiological role of D3, we have generated a mouse D3 knockout model (D3KO) by a targeted inactivating mutation of the Dio3 gene in mouse ES cells. Early in life, D3KO mice exhibit delayed 3,5,3′-triiodothyronine (T3) clearance, a markedly elevated serum T3 level, and overexpression of T3-inducible genes in the brain. From postnatal day 15 to adulthood, D3KO mice demonstrate central hypothyroidism, with low serum levels of 3,5,3′,5′-tetraiodothyronine (T4) and T3, and modest or no increase in thyroid-stimulating hormone (TSH) concentration. Peripheral tissues are also hypothyroid. Hypothalamic T3 content is decreased while thyrotropin-releasing hormone (TRH) expression is elevated. Our results demonstrate that the lack of D3 function results in neonatal thyrotoxicosis followed later by central hypothyroidism that persists throughout life. These mice provide a new model of central hypothyroidism and reveal a critical role for D3 in the maturation and function of the thyroid axis.
Arturo Hernandez, M. Elena Martinez, Steven Fiering, Valerie Anne Galton, Donald St. Germain
Tregs play a central role in the suppression of immune reactions and prevention of autoimmune responses harmful to the host. During acute infection, however, Tregs might hinder effector T cell activity directed toward the elimination of the pathogenic challenge. Pathogen recognition receptors from the TLR family expressed by innate immune cells are crucial for the generation of effective immunity. We have recently shown the CD4+CD25+ Treg subset in TLR2–/– mice to be significantly reduced in number compared with WT littermate control mice, indicating a link between Tregs and TLR2. Here, we report that the TLR2 ligand Pam3Cys, but not LPS (TLR4) or CpG (TLR9), directly acts on purified Tregs in a MyD88-dependent fashion. Moreover, when combined with TCR stimulation, TLR2 triggering augmented Treg proliferation in vitro and in vivo and resulted in a temporal loss of the suppressive Treg phenotype in vitro by directly affecting Tregs. Importantly, WT Tregs adoptively transferred into TLR2–/– mice were neutralized by systemic administration of TLR2 ligand during the acute phase of a Candida albicans infection, resulting in a 100-fold reduced C. albicans outgrowth. This demonstrates that in vivo TLR2 also controls the function of Tregs and establishes a direct link between TLRs and the control of immune responses through Tregs.
Roger P.M. Sutmuller, Martijn H.M.G.M. den Brok, Matthijs Kramer, Erik J. Bennink, Liza W.J. Toonen, Bart-Jan Kullberg, Leo A. Joosten, Shizuo Akira, Mihai G. Netea, Gosse J. Adema
Null mutations of the proopiomelanocortin gene (Pomc–/–) cause obesity in humans and rodents, but the contributions of central versus pituitary POMC deficiency are not fully established. To elucidate these roles, we introduced a POMC transgene (Tg) that selectively restored peripheral melanocortin and corticosterone secretion in Pomc–/– mice. Rather than improving energy balance, the genetic replacement of pituitary POMC in Pomc–/–Tg+ mice aggravated their metabolic syndrome with increased caloric intake and feed efficiency, reduced oxygen consumption, increased subcutaneous, visceral, and hepatic fat, and severe insulin resistance. Pair-feeding of Pomc–/–Tg+ mice to the daily intake of lean controls normalized their rate of weight gain but did not abolish obesity, indicating that hyperphagia is a major but not sole determinant of the phenotype. Replacement of corticosterone in the drinking water of Pomc–/– mice recapitulated the hyperphagia, excess weight gain and fat accumulation, and hyperleptinemia characteristic of genetically rescued Pomc–/–Tg+ mice. These data demonstrate that CNS POMC peptides play a critical role in energy homeostasis that is not substituted by peripheral POMC. Restoration of pituitary POMC expression to create a de facto neuronal POMC deficiency exacerbated the development of obesity, largely via glucocorticoid modulation of appetite, metabolism, and energy partitioning.
James L. Smart, Virginie Tolle, Malcolm J. Low
Glyceryl trinitrate (GTN), also known as nitroglycerin, has been used to treat angina and heart failure for more than 130 years. Recently, it was shown that mitochondrial aldehyde dehydrogenase-2 (ALDH2) is responsible for formation of NO, the metabolite needed for GTN efficacy. In the present study, we show that the common G-to-A polymorphism in exon 12 of ALDH2 — resulting in a Glu504Lys replacement that virtually eliminates ALDH2 activity in both heterozygotes and homozygotes — is associated with a lack of efficacy of sublingual GTN in Chinese subjects. We also show that the catalytic efficiency (Vmax/Km) of GTN metabolism of the Glu504 protein is approximately 10-fold higher than that of the Lys504 enzyme. We conclude that the presence of the Lys504 allele contributes in large part to the lack of an efficacious clinical response to nitroglycerin; we recommend that this genetic factor be considered when administering nitroglycerin to patients, especially Asians, 30–50% of whom possess the inactive ALDH2*2 mutant allele.
Yifeng Li, Dandan Zhang, Wei Jin, Chunhong Shao, Pengrong Yan, Congjian Xu, Haihui Sheng, Yan Liu, Jinde Yu, Yuying Xie, Yingnan Zhao, Daru Lu, Daniel W. Nebert, Donald C. Harrison, Wei Huang, Li Jin
Complement C5a, a potent anaphylatoxin, is a candidate target molecule for the treatment of inflammatory diseases, such as myocardial ischemia/reperfusion injury, RA, and the antiphospholipid syndrome. In contrast, up until now, no specific contribution of C5a and its receptor, C5aR, was recognized in diseases of antibody-dependent type II autoimmunity. Here we identify C5a as a novel key mediator of autoimmune hemolytic anemia (AIHA) and show that mice lacking C5aR are partially resistant to this IgG autoantibody–induced disease model. Upon administration of anti-erythrocyte antibodies, upregulation of activating Fcγ receptors (FcγRs) on Kupffer cells, as observed in WT mice, was absent in C5aR-deficient mice, and FcγR-mediated in vivo erythrophagocytosis was impaired. Surprisingly, in mice deficient in FcγRI and FcγRIII, anti-erythrocyte antibody–induced C5 and C5a production was abolished, demonstrating the existence of a previously unidentified FcγR-mediated C5a-generating pathway. These results show that the development of a full-blown antibody-dependent autoimmune disease requires C5a — produced by and acting on FcγR — and may suggest therapeutic benefits of C5 and/or C5a/C5aR blockade in AIHA and other diseases closely related to type II autoimmune injury.
Varsha Kumar, Syed R. Ali, Stephanie Konrad, Jörg Zwirner, J. Sjef Verbeek, Reinhold E. Schmidt, J. Engelbert Gessner
Insulin inhibits glucose production through both direct and indirect effects on the liver; however, considerable controversy exists regarding the relative importance of these effects. The first aim of this study was to determine which of these processes dominates the acute control of hepatic glucose production (HGP). Somatostatin and portal vein infusions of insulin and glucagon were used to clamp the pancreatic hormones at basal levels in the nondiabetic dog. After a basal sampling period, insulin infusion was switched from the portal vein to a peripheral vein. As a result, the arterial insulin level doubled and the hepatic sinusoidal insulin level was reduced by half. While the arterial plasma FFA level and net hepatic FFA uptake fell by 40–50%, net hepatic glucose output increased more than 2-fold and remained elevated compared with that in the control group. The second aim of this study was to determine the effect of a 4-fold rise in head insulin on HGP during peripheral hyperinsulinemia and hepatic insulin deficiency. Sensitivity of the liver was not enhanced by increased insulin delivery to the head. Thus, this study demonstrates that the direct effects of insulin dominate the acute regulation of HGP in the normal dog.
Dale S. Edgerton, Margaret Lautz, Melanie Scott, Carrie A. Everett, Kathryn M. Stettler, Doss W. Neal, Chang A. Chu, Alan D. Cherrington
Although active vitamin D drugs have been used for the treatment of osteoporosis, how the vitamin D receptor (VDR) regulates bone cell function remains largely unknown. Using osteoprotegerin-deficient mice, which exhibit severe osteoporosis due to excessive receptor activator of NF-κB ligand/receptor activator of NF-κB (RANKL/RANK) stimulation, we show herein that oral treatment of these mice with 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] inhibited bone resorption and prevented bone loss, suggesting that VDR counters RANKL/RANK signaling. In M-CSF–dependent osteoclast precursor cells isolated from mouse bone marrow, 1α,25(OH)2D3 potently and dose-dependently inhibited their differentiation into multinucleate osteoclasts induced by RANKL. Among signaling molecules downstream of RANK, 1α,25(OH)2D3 inhibited the induction of c-Fos protein after RANKL stimulation, and retroviral expression of c-Fos protein abrogated the suppressive effect of 1α,25(OH)2D3 on osteoclast development. By screening vitamin D analogs based on their c-Fos–suppressing activity, we identified a new analog, named DD281, that inhibited bone resorption and prevented bone loss in ovariectomized mice, more potently than 1α,25(OH)2D3, with similar levels of calcium absorption. Thus, c-Fos protein is an important target of the skeletal action of VDR-based drugs, and DD281 is a bone-selective analog that may be useful for the treatment of bone diseases with excessive osteoclastic activity.
Hisashi Takasu, Atsuko Sugita, Yasushi Uchiyama, Nobuyoshi Katagiri, Makoto Okazaki, Etsuro Ogata, Kyoji Ikeda
Eosinophilic esophagitis (EE) is an emerging disorder with a poorly understood pathogenesis. In order to define disease mechanisms, we took an empirical approach analyzing esophageal tissue by a genome-wide microarray expression analysis. EE patients had a striking transcript signature involving 1% of the human genome that was remarkably conserved across sex, age, and allergic status and was distinct from that associated with non-EE chronic esophagitis. Notably, the gene encoding the eosinophil-specific chemoattractant eotaxin-3 (also known as CCL26) was the most highly induced gene in EE patients compared with its expression level in healthy individuals. Esophageal eotaxin-3 mRNA and protein levels strongly correlated with tissue eosinophilia and mastocytosis. Furthermore, a single-nucleotide polymorphism in the human eotaxin-3 gene was associated with disease susceptibility. Finally, mice deficient in the eotaxin receptor (also known as CCR3) were protected from experimental EE. These results implicate eotaxin-3 as a critical effector molecule for EE and provide insight into disease pathogenesis.
Carine Blanchard, Ning Wang, Keith F. Stringer, Anil Mishra, Patricia C. Fulkerson, J. Pablo Abonia, Sean C. Jameson, Cassie Kirby, Michael R. Konikoff, Margaret H. Collins, Mitchell B. Cohen, Rachel Akers, Simon P. Hogan, Amal H. Assa’ad, Philip E. Putnam, Bruce J. Aronow, Marc E. Rothenberg
Xiaocheng Dong, Sunmin Park, Xueying Lin, Kyle Copps, Xianjin Yi, Morris F. White
Alberto Pugliese, Douglas Brown, David Garza, Djanira Murchison, Markus Zeller, Maria J. Redondo, Juan Diez, George S. Eisenbarth, Dhavalkumar D. Patel, Camillo Ricordi
Tomohisa Nagoshi, Takashi Matsui, Takuma Aoyama, Annarosa Leri, Piero Anversa, Ling Li, Wataru Ogawa, Federica del Monte, Judith K. Gwathmey, Luanda Grazette, Brian Hemmings, David A. Kass, Hunter C. Champion, Anthony Rosenzweig
Quan Li Zhen, Chun Xie, Tianfu Wu, Meggan Mackay, Cynthia Aranow, Chaim Putterman, Chandra Mohan
Charuhas V. Thakar, Kamyar Zahedi, Monica P. Revelo, Zhaohui Wang, Charles E. Burnham, Sharon Barone, Shannon Bevans, Alex B. Lentsch, Hamid Rabb, Manoocher Soleimani