Arunagiri et al. report that disrupting endoplasmic reticulum–associated (ER-associated) degradation in pancreatic β cells, by conditional deletion of the ER membrane–associated ubiquitin ligase HRD1, impairs proinsulin synthesis and triggers diabetes in mice. The cover image shows a β cell–specific Hrd1-knockout pancreas, with pancreatic islets (lighter color) nestled within the darker-staining acinar architecture.
Epidermal growth factor receptor (EGFR)-activating mutations are established biomarkers of resistance to immune checkpoint blockade (ICB) in lung cancer, yet the precise molecular mechanism and effective therapeutic strategies remain elusive. In this study, we show that EGFR overexpression and amplification recapitulate the negative impact of EGFR driver mutations to ICB response, indicating a proactive involvement of EGFR signaling in antagonizing antitumor immune response. Functional studies unveil that EGFR activation suppresses cellular response to interferon-gamma (IFN-γ) following ICB treatment across multiple cancer models. This impairment in IFN-γ responsiveness further limits the upregulation of T cell-recruiting chemokines and antigen presentation, resulting in reduced T cell infiltration and activation, ultimately undermining antitumor immunity. Mechanistically, EGFR promotes SHP2 activation to accelerate STAT1 dephosphorylation, leading to premature termination of the IFN-γ response. SHP2 inhibition restored ICB sensitivity in EGFR-activated tumors, significantly reducing tumor burden while maintaining a favorable safety profile. Our findings suggest that EGFR/SHP2 axis functions as a molecular brake to disrupt the initiation and amplification of IFN-γ mediated anti-tumor response during immunotherapy. This discovery unveils a potential avenue to overcome immunotherapy resistance in EGFR-driven tumors, particularly lung cancer, through SHP2-targeted combination strategies.
Wei-Tao Zhuang, Lan-Lan Pang, Li-Yang Hu, Jun Liao, Jian-Hua Zhan, Ting Li, Ri-Xin Chen, Jia-Ni Zheng, An-Lin Li, Wen-Yan Yu, Tian-Qin Mao, Liang Chen, Yu-Jian Huang, Shao-Dong Hong, Jing Li, Jun-Han Wu, Yi-Ming Zeng, Meng-Juan Yang, Hai-Qing Zeng, Ya-Xiong Zhang, Li Zhang, Wen-Feng Fang
Dysregulation of cell cycle checkpoints is a cancer hallmark with ubiquitination controlled protein stability playing pivotal roles. Although p21, a key cyclin-dependent kinase inhibitor, is tightly regulated by ubiquitin-mediated degradation, the key upstream modulators of its ubiquitination remain incompletely defined. Here, we identify poly(ADP-ribose) glycohydrolase (PARG) as a regulator of p21 stability in gastric cancer (GC) cells. We show that PARG expression is markedly upregulated in GC tissues and correlates with poor patient prognosis. Functional assays revealed that genetic depletion of PARG triggers G2/M phase arrest and impairs GC cell proliferation. Mechanistically, we demonstrate that PARG loss enhances p21 PARylation, which disrupts its association with E3 ubiquitin ligase, thereby reducing K48-linked ubiquitination and leading to p21 protein stabilization. Moreover, we identify lysine residues K161 and K163 as critical sites for PARG-mediated regulation of p21 ubiquitination. Our findings reveal a post-translational regulatory axis in which PARG governs cell cycle progression by modulating the PARylation-dependent ubiquitination of p21. These results broaden the understanding of p21 regulation in cancer and highlight PARG as a potential therapeutic target for GC treatment.
Yangchan Hu, Qimei Bao, Yixing Huang, Yan Wang, Xin Zhao, Junjun Nan, Yuxin Meng, Mingcong Deng, Yuancong Li, Zirui Zhuang, Hanyi He, Dan Zu, Yuke Zhong, Chunkai Zhang, Bing Wang, Ran Li, Yanhua He, Qihan Wang, Min Liu, John A. Tainer, Yin Shi, Xiangdong Cheng, Ji Jing, Zu Ye
Drug-associated environmental cues can trigger drug-seeking behavior and precipitate relapse. In the current study, we identified that the claustrum (CL) connects the ventral tegmental area (VTA) with the medial prefrontal cortex (mPFC), forming the VTA–CL–mPFC circuit. By using methamphetamine (METH) conditioned place preference (CPP) model in male mice, we found that manipulating the VTA–CL–mPFC circuit or CL neuronal ensemble receiving projections from VTA and projecting to mPFC (VTA–CL–mPFC) could disrupt the retrieval of METH-paired context memory, resulting in the blockage of the acquisition of METH CPP in male mice. During the process, dopamine (DA) release and dopamine 1-like receptor (D1R)-mediated the activation of CL neurons were required for the retrieval of METH-induced reward memory in male mice. These findings reveal a midbrain-to-cortical circuit orchestrated by CL neurons, which plays an essential role in the retrieval of drug-paired environmental cue memory.
Ziheng Zhao, Yuhong He, Yang Liu, Quying Feng, Hee Young Kim, Yu Fan, Xiaowei Guan
Short-lived, clade-specific immune responses with limited mucosal priming are limitations faced by current COVID-19 mRNA vaccines. We have developed a nasal booster vaccine candidate that induced robust, sustained, cross-clade, systemic and mucosal protective immunity. Two recombinant Clec9A-specific monoclonal antibodies fused to the Receptor Binding Domain (RBD) from Omicron XBB.1.5 and SARS-CoV-1, respectively were generated. In Comirnaty mRNA-vaccinated mice, boosting with both constructs combined (Clec9AOMNI) induced cross-clade neutralizing antibodies (nAbs) and T-cell responses that were greater in magnitude and more sustained compared to bivalent Comirnaty (BC) mRNA vaccine booster. Persistence of RBD-specific follicular helper CD4+ T cells, germinal centre B cells, and long-lived plasma cells that facilitated affinity maturation, correlated with detection of triple cross-reactive B cells binding the RBDs of SARS-CoV-2 ancestral, XBB.1.5, and SARS-CoV-1. Remarkably, intranasal boosting with Clec9AOMNI elicited robust and durable immunity across the upper and lower airways while concurrently boosting the systemic immunity to levels matching or exceeding those from systemic boosting. Correspondingly, Clec9AOMNI nasal booster conferred superior protection against SARS-CoV-2 challenge compared to BC mRNA booster, with undetectable viral titers in the respiratory tract. Hence, Clec9AOMNI is a promising nasal booster vaccine candidate that has the potential to mitigate pandemic threats from emerging sarbecoviruses.
You Zhi Nicholas CHEANG, Wee Chee Yap, Kirsteen M. TULLETT, Xinlei QIAN, Peck S. TAN, Kiren PURUSHOTORMAN, Wan Yi TAN, Yun Yan MAH, Paul MACARY, Chee Wah TAN, Mireille H. LAHOUD, Sylvie ALONSO
Malignant tumors with TP53 mutations exhibit poor therapeutic outcomes and high recurrence rates. T cell receptor (TCR)-based T cell therapy shows great promise for targeting intracellular cancer neoantigens. However, the immunogenic potential of TP53 hotspot mutations remain poorly characterized. Here, we identify a immunogenic neoantigen derived from the recurrent TP53R248Q mutation, presented by the prevalent Human Leukocyte Antigen (HLA)-A*11:01 allele. Additionally, we isolated a TP53R248Q reactive TCR that specifically recognize the TP53R248Q mutation without any discernable cross-activity to cognate wild-type TP53 or other TP53 mutants at the same codon position. Functional characterization revealed that TP53R248Q TCR-T cells exhibited selectively cytotoxicity against tumor cells expressing both TP53R248Q mutation and HLA-A*11:01 in vitro. Importantly, the adoptive transfer of TP53R248Q TCR-T cells exhibited significant anti-tumor activity in a clinically relevant patient-derived xenograft (PDX) model engrafted with TP53R248Q/HLA-A*11:01 positive human tumor tissues. Collectively, our study validates the immunogenicity of the TP53R248Q hotspot mutation and provides a TCR with high therapeutic potential for the development of T cell therapies targeting TP53R248Q/HLA-A*11:01 positive cancers.
Lianghua Shen, Ziyu Chen, Jian Xu, Qiaomei He, Changmeng Zhang, Xiao Zhou, Xiaodan Ding, Jinan Fang, Fanlin Li, Ming Jiao, Yuqin Yang, Baoxia Dong, Liping Wan, Xueying Ding, Yan Zheng, Jingyi Zhou, Chijian Zuo, Tian Min, Ming Zhu, Bin Ma, Yuhua Wan, Qiufang Guo, Hua Zhang, Jian Hua, Pengran Wang, Qi Li, Jiang Long, Xianmin Song, Yan Zhang
Therapies targeting the glucagon-like peptide 1 (GLP-1) receptor have revolutionized the treatment of obesity and diabetes. This series of reviews, curated by Dr. Dan Drucker, describes the latest research in this fast-moving in field, from our evolving understanding of the mechanism of GLP-1 receptor signaling to the medicines’ impact on inflammation and the consequences for heart, kidney, and brain health. The reviews also explore the impact of these medicines on conditions beyond their initial indications, including cancer and neurodegenerative disease risk.
×
In this episode, Dr. Seth J. Zost presents an antibody lineage from a single donor that binds the active site of influenza neuraminidase, cross-reacts with antigenically diverse viruses, and protects mice from infection...