Issue published January 16, 2026 Previous issue

On the cover: Endoplasmic reticulum–associated protein degradation regulates insulin biosynthesis

Arunagiri et al. report that disrupting endoplasmic reticulum–associated (ER-associated) degradation in pancreatic β cells, by conditional deletion of the ER membrane–associated ubiquitin ligase HRD1, impairs proinsulin synthesis and triggers diabetes in mice.  The cover image shows a β cell–specific Hrd1-knockout pancreas, with pancreatic islets (lighter color) nestled within the darker-staining acinar architecture.

ASCI Milestone Award
Review Series
Abstract

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have become an essential drug class for treating type 2 diabetes, offering proven benefits in glycemic control, weight reduction, and cardiovascular and renal protection. However, growing evidence of heterogeneity in GLP-1RA treatment effects highlights the potential for developing precision medicine approaches to more accurately allocate GLP-1RAs to maximize patient benefit. In this Review, we explore the evidence for treatment effect heterogeneity with GLP-1RAs, focusing on clinical and genetic factors that robustly influence established therapeutic outcomes. We also highlight the potential of recent predictive models that integrate routine clinical data with personalize treatment decisions, comparing GLP-1RA to other major type 2 diabetes drug classes. While such models have shown considerable promise in identifying optimal type 2 diabetes treatment based on glycemic response, their utility for informing treatment choice for other clinical outcomes remains largely unexplored.

Authors

Pedro Cardoso, John M. Dennis, Ewan R. Pearson

×

Abstract

Historically, antiobesity medications have been modestly effective at best, with side-effect profiles that limit compliance and often preclude the long-term therapy required to maintain weight loss. Recently developed therapies based on analogs of the gut hormone glucagon-like peptide-1 (GLP-1) have transformed the medical management of obesity, leading both to a degree of weight loss that rivals bariatric surgery and a reduction in morbidity and mortality associated with obesity-related complications. GLP-1 receptor agonist (GLP-1RA) therapies were developed to mimic the peripheral effects of GLP-1, but it is now well established that their efficacy in the treatment of obesity depends on reducing energy intake through their action in the central nervous system (CNS). Recent data indicate that the aversive gastrointestinal side effects of GLP-1RAs are also CNS mediated. Although a complete understanding of the neural circuits underlying GLP-1RA–induced weight loss remains elusive, a great deal has been learned in recent years. This Review summarizes proposed gut-brain and central mechanisms through which GLP-1 and its synthetic analogs regulate food intake and bodyweight.

Authors

Lisa R. Beutler

×

Abstract

The glucagon-like peptide-1 receptor (GLP-1R) is a class B1 G protein–coupled receptor and major therapeutic target in type 2 diabetes and obesity. Beyond its canonical role in Gαs/cAMP signaling, GLP-1R is increasingly recognized as an organizer of spatiotemporally defined signaling nanodomains, or “signalosomes.” This Review highlights our current knowledge on the mechanisms of assembly and regulation of GLP-1R signalosomes, including the involvement of biomolecular condensates formed by liquid-liquid phase separation, and the role of membrane contact sites between the endoplasmic reticulum (ER) and other organelles as key locations for GLP-1R signaling assemblies. Furthermore, we discuss existing data on the molecular composition and functional impact of two predicted GLP-1R nanodomains, one at ER–plasma membrane contact sites, where GLP-1R might interact with ion channels and transporters to influence local excitability and coordinated insulin secretion, and another at ER–mitochondria membrane contact sites, with the capacity to control lipid and calcium signaling and modulate ER and/or mitochondrial activity. We additionally discuss the role of GLP-1R posttranslational modifications as critical modulators of GLP-1R signal specification and nanodomain organization. Conceptualizing GLP-1R as a dynamic architect of spatiotemporally encoded signalosomes opens new avenues for a deeper understanding of incretin biology with the potential for identification of novel GLP-1R effectors and the development of refined therapeutic strategies for metabolic disease.

Authors

Gregory Austin, Alejandra Tomas

×
Review
Abstract

Advances in cancer therapy have greatly extended patient survival but have also introduced a growing burden of cardiovascular toxicity that threatens long-term outcomes. These toxicities encompass a broad and often unpredictable range of clinical presentations, complicating oncologic care. Understanding how chemotherapy, targeted agents, and immune modulators impair cardiovascular function is essential for early detection, prevention, and management. Emerging insights into the cellular and molecular mechanisms, ranging from immune activation to transcriptional reprogramming and disrupted intercellular communication, underscore the complexity of cancer therapy–induced cardiac injury. Unraveling these mechanisms will be key to developing personalized, mechanism-based strategies that preserve cardiac function without compromising anticancer efficacy. As survivorship continues to improve, mitigating cardiotoxicity remains a critical priority for preserving both the quality and duration of life of patients.

Authors

Giulia Guerra, Marco Mergiotti, Hossein Ardehali, Emilio Hirsch, Alessandra Ghigo

×
Commentary
Abstract

Alveolar macrophages (AMs) help defend the lungs against infection, but during pneumonia many alveolar macrophages die. In this issue of the JCI, Malainou et al. explored the mechanism underpinning AM death during viral pneumonia and its effect on the outcomes of bacterial superinfection, a secondary infection that occurs before the first infection is cleared. In mouse models of influenza A infection, recruited neutrophils secreted TNF superfamily member 14 (TNFSF14), and AMs increased expression of the TNFSF14 receptors TNFSFR14 and type I transmembrane lymphotoxin β receptor (LTβR). TNFSF14 signaling via the LTβR was sufficient to cause AM apoptosis. TNFSF14 deficiency or blockade preserved AMs during influenza infection and diminished bacterial burdens and mouse mortality during pneumococcal superinfection. The adoptive transfer of AMs decreased the severity of pneumococcal superinfections, if those AMs lacked the LTβR. Thus, preserving AMs by interrupting TNFRSF14-LTβR interactions can make virus-infected lungs less susceptible to severe bacterial superinfection.

Authors

Elise M.R. Armstrong, Joseph P. Mizgerd

×
Research Letters




Abstract

Authors

Amit Prabhakar, Eckart M.D.D. De Bie, Jacqueline T. DesJardin, Prajakta Ghatpande, Stefan Gräf, Luke S. Howard, S. John Wort, Colin Church, David G. Kiely, UK Pulmonary Arterial Hypertension Cohort Study Consortium, Emily Sumpena, Thin Aung, Shenrae Carter, Jasleen Kukreja, Steven Hays, John R. Greenland, Jonathan P. Singer, Michael Wax, Paul J. Wolters, Marc A. Simon, Mark Toshner, Giorgio Lagna, Akiko Hata

×
Research Articles
Abstract

Acute myeloid leukemia (AML) is an aggressive cancer with very poor outcomes. To identify additional drivers of leukemogenesis, we analyzed sequencing data from 1,727 unique individual patients with AML, which revealed mutations in ubiquitin ligase family genes in 11.2% of samples from adult patients with AML with mutual exclusivity. The SKP1/CUL1/F-box (SCF) E3 ubiquitin ligase complex gene, FBXO11, was the most significantly downregulated gene of the SCF complex in AML. We found that FBXO11 interacts with and catalyzes K63-linked ubiquitination of LONP1 in the cytosol, to promote LONP1 entry into mitochondria. We show that depletion of FBXO11 or LONP1 reduced mitochondrial respiration through impaired LONP1 chaperone activity to assemble electron transport chain Complex IV. Reduced mitochondrial respiration secondary to FBXO11 or LONP1 depletion imparted myeloid-biased stem cell properties in primary CD34+ hematopoietic stem and progenitor cells (HSPCs) in vitro. In a human xenograft model, depletion of FBXO11 cooperated with AML1-ETO and mutant KRASG12D to generate serially transplantable AML. Our findings suggest that reduced FBXO11 cooperates to initiate AML by priming HSPC for myeloid-biased self renewal through attenuation of LONP1-mediated regulation of mitochondrial respiration.

Authors

Hayle Kincross, Ya-Chi Angela Mo, Xuan Wang, Linda Chang, Gerben Duns, Franziska Mey, Jihong Jiang, Zurui Zhu, Naomi Isak, Harwood Kwan, Tammy T.Y. Lau, T. Roderick Docking, Pranav Garg, Jessica Tran, Shane Colborne, Se-Wing Grace Cheng, Shujun Huang, Nadia Gharaee, Elijah Willie, Jeremy D.K. Parker, Joshua Bridgers, Davis Wood, Ramon I. Klein Geltink, Gregg B. Morin, Aly Karsan

×

Abstract

Secondary bacterial infection, often caused by Streptococcus pneumoniae, is one of the most frequent and severe complications of influenza A virus–induced (IAV-induced) pneumonia. Phenotyping of the pulmonary immune cell landscape after IAV infection revealed a substantial depletion of the tissue-resident alveolar macrophage (TR-AM) population at day 7, which was associated with increased susceptibility to S. pneumoniae outgrowth. To elucidate the molecular mechanisms underlying TR-AM depletion, and to define putative targets for treatment, we combined single-cell transcriptomics and cell-specific PCR profiling in an unbiased manner, using in vivo models of IAV infection and IAV and S. pneumoniae coinfection. The TNF superfamily 14 (TNFSF14) ligand/receptor axis was revealed as the driving force behind post-influenza TR-AM death during the early infection phase, enabling the transition to pneumococcal pneumonia, whereas intrapulmonary transfer of genetically modified TR-AMs and antibody-mediated neutralization of specific pathway components alleviated disease severity. With mainly neutrophilic expression and high abundance in the bronchoalveolar fluid of patients with severe virus-induced acute respiratory distress syndrome, TNFSF14 emerged as a key determinant of virus-driven lung injury. Targeting the TNFSF14-mediated intercellular communication network in the virus-infected lung can, therefore, improve host defense, minimizing the risk of subsequent bacterial pneumonia and ameliorating the disease outcome.

Authors

Christina Malainou, Christin Peteranderl, Maximiliano Ruben Ferrero, Ana Ivonne Vazquez-Armendariz, Ioannis Alexopoulos, Katharina Franz, Klara Knippenberg, Julian Better, Mohammad Estiri, Cheng-Yu Wu, Hendrik Schultheis, Judith Bushe, Maria-Luisa del Rio, Jose Ignacio Rodriguez-Barbosa, Klaus Pfeffer, Stefan Günther, Mario Looso, Achim Dieter Gruber, István Vadász, Ulrich Matt, Susanne Herold

×

Abstract

In pancreatic β cells, misfolded proinsulin is a substrate for ER-associated protein degradation (ERAD) via HRD1/SEL1L. Alternately, β cell HRD1 activity is reported to improve, or impair, insulin biogenesis. Further, while β cell SEL1L deficiency causes HRD1 hypofunction and diminishes islet insulin content, reports conflict as to whether β cell ERAD deficiency increases or decreases proinsulin levels. Here, we examined β cell–specific Hrd1-KO mice (chronic deficiency) and rodent (and human islet) β cells treated acutely with HRD1 inhibitor. β-Hrd1–KO mice developed diabetes with decreased islet proinsulin, yet a relative increase of misfolded proinsulin redistributed to the ER. They also showed upregulated biochemical markers of β cell ER stress and autophagy, electron microscopy evidence of ER enlargement and decreased insulin granule content, and increased glucagon-positive islet cells. Misfolded proinsulin was also increased in islets treated with inhibitors of lysosomal degradation. Preceding any loss of total proinsulin, acute HRD1 inhibition triggered increased nonnative proinsulin, increased phospho-eIF2α with inhibited proinsulin synthesis, and increased LC3b-II (the abundance of which requires expression of ΣR1). We posit a subset of proinsulin molecules undergo HRD1-mediated disposal. When HRD1 is unavailable, misfolded proinsulin accumulates, accompanied by increased phospho-eIF2α that limits further proinsulin synthesis, plus ΣR1-dependent autophagy activation, ultimately lowering steady-state β cell proinsulin (and insulin) levels and triggering diabetes.

Authors

Anoop Arunagiri, Leena Haataja, Maroof Alam, Noah F. Gleason, Emma Mastroianni, Chao-Yin Cheng, Sami Bazzi, Jeffrey Knupp, Ibrahim Metawea, Anis Hassan, Dennis Larkin, Deyu Fang, Billy Tsai, Ling Qi, Peter Arvan

×

Abstract

Infiltration of T cell acute lymphoblastic leukemia (T-ALL) into the meninges worsens prognosis, underscoring the need to understand mechanisms driving meningeal involvement. Here, we show that T-ALL cells expressing CXCR3 exploit normal T cell function to infiltrate the inflamed meninges. CXCR3 deletion hampered disease progression and extramedullary dissemination by reducing leukemic cell proliferation and migration. Conversely, forced expression of CXCR3 facilitated T-ALL trafficking to the meninges. We identified the ubiquitin-specific protease 7 as a key regulator of CXCR3 protein stability in T-ALL. Furthermore, we discovered elevated levels of CXCL10, a CXCR3 ligand, in the cerebrospinal fluid from patients with T-ALL and leukemia-bearing mice. Our studies demonstrate that meningeal stromal cells, specifically pericytes and fibroblasts, induce CXCL10 expression in response to leukemia and that loss of CXCL10 attenuated T-ALL influx into the meninges. Moreover, we report that leukemia-derived proinflammatory cytokines, TNF-α, IL-27, and IFN-γ, induced CXCL10 in the meningeal stroma. Pharmacological inhibition or deletion of CXCR3 or CXCL10 reduced T-ALL cell migration and adhesion to meningeal stromal cells. Finally, we reveal that CXCR3 and CXCL10 upregulated VLA-4/VCAM-1 signaling, promoting cell-cell adhesion and thus T-ALL retention in the meninges. Our findings highlight the pivotal role of CXCR3-CXCL10 signaling in T-ALL progression and meningeal colonization.

Authors

Nitesh D. Sharma, Esra’a Keewan, Wojciech Ornatowski, Silpita Paul, Monique Nysus, Christopher C. Barnett, Julie Wolfson, Quiteria Jacquez, Bianca L. Myers, Huining Kang, Katherine E. Zychowski, Stuart S. Winter, Mignon L. Loh, Stephen P. Hunger, Eliseo F. Castillo, Tom Taghon, Christina Halsey, Tou Yia Vue, Nicholas Jones, Panagiotis Ntziachristos, Ksenia Matlawska-Wasowska

×

Abstract

Disorders of GABRA3, the only epilepsy-associated GABAA receptor subunit gene on the X chromosome, have eluded clinical clarity due to ambiguous inheritance patterns and variable phenotypes. The long-standing assumption that all pathogenic variants cause loss of function further obscured genotype–phenotype relationships and hindered progress. Here, we curated a cohort of individuals with a GABRA3 variant, integrating deep phenotyping, genotyping, family history, and electrophysiology with a targeted mouse model. Among 43 individuals with 19 GABRA3 variants, functional analyses revealed gain- and loss-of-function effects, each linked to distinct clinical profiles. Gain-of-function variants were associated with severe, treatment-resistant epilepsy and profound intellectual disability, disproportionately affecting males, who were often nonambulant and had cortical visual impairment. Loss-of-function variants produced milder phenotypes, with epilepsy rarely observed; affected males showed behavioral issues and language delay, while females were unaffected carriers. Our gain-of-function (Gabra3Q242L/+) mouse model mirrored these sex-specific differences, showing increased seizure susceptibility, early death, and marked cortical hyperexcitability. These insights resolve longstanding uncertainties surrounding GABRA3 and redefine how X-linked disorders are interpreted. They demonstrate that it is the functional impact of a variant, not its mere presence, that determines whether a condition manifests dominantly or recessively. This distinction carries important implications for genetic counseling, precision medicine, and the broader interpretation of X-linked neurodevelopmental disorders.

Authors

Katrine M. Johannesen, Khaing Phyu Aung, Vivian W.Y. Liao, Nathan Absalom, Han C. Chua, Xue N. Gan, Miaomiao Mao, Chaseley E. McKenzie, Hian M. Lee, Sebastian Ortiz, Rebecca C. Spillmann, Vandana Shashi, Rodney A. Radtke, Ghayda M. Mirzaa, P. Anne Weisner, Josue Flores Daboub, Caroline Hagedorn, Pinar Bayrak-Toydemir, Desiree DeMille, Jian Zhao, Nandita Bajaj, Yline Capri, Boris Keren, Miriam Schmidts, Ingrid M.B.H. van de Laar, Marjon A. van Slegtenhorst, Rafal Ploski, Marta Bogotko, Danielle K. Bourque, Ebba Alkhunaizi, Lauren Chad, Nada Quercia, Houda Elloumi, Ingrid M. Wentzensen, Michael C. Kruer, Pritha Bisarad, Carolina I. Galaz-Montoya, Violeta Rusu, Dominique Braun, Katie Angione, Jessica C. Win, Camilo Espinosa-Jovel, Pia Zacher, Konrad Platzer, Samuel F. Berkovic, Ingrid E. Scheffer, Mary Chebib, Guido Rubboli, Rikke S. Møller, Christopher A. Reid, Philip K. Ahring

×

Abstract

Protectin DX (PDX) is a member of the superfamily of specialized proresolving mediators and exerts anti-inflammatory actions in animal models; however, its signaling mechanism remains unclear. Here, we demonstrate the analgesic actions of PDX in a mouse model of tibial fracture–induced postoperative pain (fPOP). Intravenous early- and late-phase treatment of PDX (100 ng/mouse) effectively alleviated fPOP. Compared with protectin D1 (PD1)/neuroprotectin D1, DHA, steroids, and meloxicam, PDX provided superior pain relief. While dexamethasone and meloxicam prolonged fPOP, PDX shortened the pain duration. The analgesic effects of PDX were abrogated in Gpr37−/− mice, which displayed deficits in fPOP resolution. PDX was shown to bind GPR37 and induce calcium responses in peritoneal macrophages. LC-MS/MS–based lipidomic analysis revealed that endogenous PDX levels were approximately 10-fold higher than those of PD1 in muscle at the fracture site. PDX promoted macrophage polarization via GPR37-dependent phagocytosis and efferocytosis through calcium signaling in vitro, and it further enhanced macrophage viability and efferocytosis in vivo via GPR37. Finally, PDX rapidly modulated nociceptor neuron responses by suppressing C-fiber–induced muscle reflex in vivo and calcium responses in DRG neurons ex vivo and by reducing TRPA1/TRPV1-induced acute pain and neurogenic inflammation in vivo. Our findings highlight multiple benefits of PDX to manage postoperative pain and promote perioperative recovery.

Authors

Yize Li, Sangsu Bang, Jasmine Ji, Jing Xu, Min Lee, Sharat Chandra, Charles N. Serhan, Ru-Rong Ji

×

Abstract

Immunotherapy has been effective in many cancer types but has failed in multiple clinical trials in prostate cancers, with the underlying mechanisms remaining largely unclear. Here, we demonstrate that androgen receptor pathway inhibitor (ARPI) plus irradiation (IR) triggered robust anticancer immunity in prostate cancers in both patients and mice. We show that androgen-activated AR suppressed innate immune signaling by inducing inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKBKE) gene repression through HDAC2 interaction with an IKBKE enhancer RNA (IKBKE eRNA, or IKBKE-e). ARPI treatment caused IKBKE derepression and enhanced an IR-induced innate immune response via action of RIG-I and MDA5 dsRNA sensors. IKBKE-e ablation largely enhanced innate immunity in prostate cancer cells in culture and anticancer immunity in mice. Our results revealed AR, HDAC2, and IKBKE eRNA as critical intrinsic immune suppressors in prostate cancer cells, suggesting that rejuvenating inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKε) signaling by targeting IKBKE-e is an actionable strategy to elicit synthetic anticancer immunity in immunologically “cold” cancers such as prostate cancer.

Authors

Xiang Li, Rui Sun, Hao Li, Jacob J. Orme, Xu Zhang, Yu Hou, Sean S. Park, Yu Zhang, Yi He, Liguo Wang, Veronica Rodriguez-Bravo, Josep Domingo-Domenech, Shancheng Ren, Dan Xia, Guanghou Fu, Zhankui Jia, Haojie Huang

×

Abstract

Mutation-associated neoantigens (MANAs) are highly cancer-specific targets for immunotherapy where peptides derived from intracellular mutant proteins are presented on the cell surface via HLA molecules. T cell–engaging bispecific antibodies and CAR T cells can target MANAs to eliminate cancer cells via T cell activation. However, the low antigen density of MANAs on the cell surface can limit therapeutic efficacy. Here, we investigated whether increasing the affinity of the H2 single-chain variable fragment (scFv) targeting the p53 R175H MANA (HMTEVVRHC presented on HLA-A*02:01) improves its therapeutic effect. We identified higher-affinity H2 variants via phage biopanning and a thiocyanate elution method. Increasing bispecific antibody affinity to the low nanomolar range increased cancer cell killing and tumor control in mouse xenograft models without sacrificing antigen specificity. We next asked how increasing scFv affinity impacts CAR T cell function — a matter of debate. We appended each variant scFv to a CD28z CAR, CD3γ, or the T cell receptor. In striking contrast to the bispecific antibody results, increasing CAR affinity decreased function in each CAR format due to lower T cell activation upon interaction with target cancer cells. These results have important implications for the design of future immunotherapeutic approaches targeting low-density antigens.

Authors

Sarah R. DiNapoli, Katharine M. Wright, Brian J. Mog, Alexander H. Pearlman, Tushar D. Nichakawade, Nikita Marcou, Emily Han-Chung Hsiue, Michael S. Hwang, Jacqueline Douglass, Qiang Liu, Evangeline Watson, Marco Dal Molin, Joshua D. Cohen, Maria Popoli, Suman Paul, Maximilian F. Konig, Nicolas Wyhs, P. Aitana Azurmendi, Stephanie Glavaris, Jiaxin Ge, Tolulope O. Awosika, Jin Liu, Kathleen L. Gabrielson, Sandra B. Gabelli, Drew M. Pardoll, Chetan Bettegowda, Nickolas Papadopoulos, Kenneth W. Kinzler, Shibin Zhou, Bert Vogelstein

×

Abstract

Hormone receptor–positive (HR+) breast cancers (BCs) are typically “immune-cold,” poorly immune-infiltrated tumors that do not respond to immune-checkpoint blockade (ICB) therapies. Using clinical data, we report that estrogen receptor α (ERα) signaling was associated with immunosuppressive pathways and a lack of response to ICB in patients with HR+ BC. In this study, we validated ER-mediated immunosuppression by engineering and modulating the ER in preclinical models in vitro, in vivo, and ex vivo. Mechanistically, we found that ERα hijacked LCOR, a nuclear receptor corepressor, thereby preventing LCOR’s function in the induction of tumor immunogenicity and immune infiltration, which is normally observed in the absence of ERα, such as in ER– BC. In HR+ BC, we demonstrate that the molecular disruption of LCOR and ERα interaction using anti-ER therapies or using a mutant of the LCOR nuclear receptor–binding domain (LSKLL into LSKAA) that does not interact with ERα, restored the immunogenic functions of LCOR. Remarkably, the LCOR-ERα disruption converted HR+ BC immune-cold tumors into immune-hot tumors responsive to ICB by increased antigen presentation machinery expression, immune infiltration, T cell recognition, and T cell–mediated killing. In conclusion, ERα inhibition and the disruption of LCOR-ERα interaction represent a therapeutic strategy and an opportunity to elicit immunotherapeutic benefit in patients with HR+ BC.

Authors

José Ángel Palomeque, Gabriel Serra-Mir, Sandra Blasco-Benito, Helena Brunel, Pau Torren-Duran, Iván Pérez-Núñez, Chiara Cannatá, Laura Comerma, Silvia Menendez, Sonia Servitja, Tamara Martos, Maria Castro, Rodrigo L. Borges, Joanna I. López-Velazco, Sara Manzano, Santiago Duro-Sánchez, Joaquín Arribas, María M. Caffarel, Ander Urruticoechea, José A. Seoane, Lluis Morey, Joan Albanell, Toni Celià-Terrassa

×

Abstract

Myelodysplastic syndromes (MDSs) are malignant hematopoietic stem and progenitor cell (HSPC) disorders that lead to ineffective blood production with poor outcomes. We previously showed that F-box only protein 11 (FBXO11) is downregulated in MDS, and here we report how this event contributes to disease progression. Integration of multiomics data revealed that the SCF-FBXO11 complex regulates spliceosome and ribosome components in a nucleophosmin 1 (NPM1)-centric network. FBXO11 facilitates the ubiquitylation of NPM1, whereby deletion of FBXO11 results in the reorganization of NPM1 and a de-repression of alternative splicing. Label-free total quantitative proteomics demonstrated that the FBXO11-NPM1 interactome was markedly downregulated in cells from patients with CD34+ MDS. In addition, we discovered that MYC was evicted from the FBXO11 promoter by TLR2 activation, revealing that it was a MYC target gene and explaining why FBXO11 expression was decreased in MDS. In MDS mouse models, genetic ablation of Fbxo11 exacerbated neutropenia concomitant with a profound decrease in NPM1 protein levels. Finally, we discovered rare mutations in FBXO11, which mapped to a previously unstudied functional intrinsically disordered region (IDR) in the N-terminus responsible for binding NPM1. These data support a model in which FBXO11 rewires RNA binding and ribosomal subnetworks through ubiquitylation of NPM1, ultimately restricting MDS progression.

Authors

Madeline Niederkorn, Lavanya Bezavada, Anitria Cotton, Lance E. Palmer, Lahiri Konada, Trent Hall, Vishwajeeth R. Pagala, Jinbin Zhai, Zuo-Fei Yuan, Yingxue Fu, Jacob A. Steele, Shilpa Narina, Andrew Schild, Chengzhou Wu, Sarah Aminov, Michael Schieber, Erin McGovern, Aaron B. Taylor, Sandeep Gurbuxani, Peng Xu, Peng Ji, Laura J. Janke, Anthony A. High, Guolian Kang, Shondra M. Pruett-Miller, Mitchell Weiss, Amit Verma, Raajit K. Rampal, John D. Crispino

×

Abstract

Epstein-Barr virus (EBV) is of growing interest for its potential role in neurodegenerative diseases such as multiple sclerosis (MS) and its possible utility as a therapeutic target in herpesvirus-associated chronic diseases. The effects of brincidofovir (BCV) on EBV reactivation were evaluated in vitro using EBV-infected spontaneous lymphoblastoid cell lines (SLCLs) and peripheral blood mononuclear cells (PBMCs) derived from patients with MS and healthy controls. In addition, a B lymphoblastoid cell line and PBMCs from common marmosets (Callithrix jacchus) naturally infected with an EBV-related gammaherpesvirus (Callitrichine herpesvirus 3, CalHV-3) were used to measure BCV efficacy in a nonhuman primate model. BCV significantly inhibited gammaherpesvirus reactivation, with decreased lytic and latent viral transcript expression. These results suggest that BCV may be a useful antiviral for inhibiting EBV activity in patients with MS. Additionally, this work further validates the utility of CalHV-3 in marmosets as a translational model for the investigation of successful EBV-targeting therapeutics.

Authors

Abaigeal Donaldson, Madeleine R. Druker, Maria Chiara Monaco, Emily H. Stack, Paige Zimmerman, Amanda Lee, Izabela Bialuk, William Frazier, Irene Cortese, Heather Narver, Masatoshi Hazama, Fuminori Yoshida, Xiaofan Li, Laurie T. Krug, Stacey L. Piotrowski, Steven Jacobson

×

Abstract

N6-methyladenosine (m6A), the most predominant RNA modification in humans, participates in various fundamental and pathological bioprocesses. Dynamic manipulation of m6A deposition in the transcriptome is critical for cancer progression, though how this regulation is achieved remains understudied. Here, we report that, in prostate cancer (PCa), Polycomb group (PcG) protein Enhancer of Zeste Homolog 2 (EZH2) exerts an additional function in m6A regulation via its enzymatic activity. Mechanistically, EZH2 methylates and stabilizes FOXA1 proteins from degradation, which, in turn, facilitates the transcription of m6A reader YTHDF1. Through activating an m6A autoregulation pathway, YTHDF1 enhances the translation of METTL14 and WTAP, 2 critical components of the m6A methyltransferase complex (MTC), and thereby upregulates the global m6A level in PCa cells. We further demonstrate that inhibiting the catalytic activity of EZH2 suppresses the translation process globally through targeting the YTHDF1-m6A axis. By disrupting both the expression and interaction of key m6A MTC subunits, combinational treatment of EZH2 degrader MS8815 and m6A inhibitor STM2457 mitigates prostate tumor growth synergistically. Together, our study decodes a previously hidden interrelationship between EZH2 and mRNA modification, which may be leveraged to advance the EZH2-targeting curative strategies in cancer.

Authors

Yang Yi, Joshua Fry, Chaehyun Yum, Rui Wang, Siqi Wu, Sharath Narayan, Qi Liu, Xingxing Zhang, Htoo Zarni Oo, Ning Xie, Yanqiang Li, Xinlei Gao, Xufen Yu, Xiaoping Hu, Qiaqia Li, Kemal Keseroglu, Ertuğrul M. Özbudak, Sarki A. Abdulkadir, Kaifu Chen, Jian Jin, Jonathan C. Zhao, Xuesen Dong, Daniel Arango, Rendong Yang, Qi Cao

×

Abstract

Ciliary dysfunction results in multiorgan developmental diseases, collectively known as ciliopathies. The B9D1-B9D2-MKS1protein complex maintains the gatekeeper function at the ciliary transition zone (TZ). However, the function of B9 proteins and the mechanisms underlying why different variants in the same B9 gene cause different ciliopathies are not fully understood. Here, we investigated the function of B9 proteins and revealed 2 critical functions. First, the B9 complex interacted with and anchored TMEM67 to the TZ membrane. Disruption of the B9-TMEM67 complex reduced posttranslational modifications of axonemal microtubules due to deregulation of tubulin-modifying enzymes within cilia. Second, B9 proteins localized to centrioles prior to ciliogenesis, where they facilitated the initiation of ciliogenesis. In addition, we identified B9D2 variants in a cohort of patients with Joubert syndrome. We found that Joubert syndrome–associated B9D2 variants primarily affected axonemal microtubule modifications without disrupting ciliogenesis, whereas the Meckel syndrome–associated B9D2 variant disrupted both ciliogenesis and axonemal microtubule modifications. Thus, besides its role as a gatekeeper for ciliary membrane proteins, the B9 complex also controls axonemal microtubule posttranslational modifications and early stages of ciliogenesis, providing insights into the distinct pathologies arising from different variants of the same gene.

Authors

Ruida He, Yan Li, Minjun Jin, Huike Jiao, Yue Shen, Qize Han, Xilang Pan, Suning Wang, Zaisheng Lin, Jingshi Li, Chao Lu, Dan Meng, Zongfu Cao, Qing Shang, Nan Lv, Kai Wan, Huafang Gao, Xu Ma, Haiyan Yin, Haishuang Chang, Liang Wang, Minna Luo, Junmin Pan, Chengtian Zhao, Muqing Cao

×

Abstract

Androgen deprivation therapy is the primary treatment for advanced prostate tumors. While initially effective, tumor progression to the therapy-resistant stage is inevitable. Paradoxically, UDP glucuronosyltransferase family 2 member B17 (UGT2B17), the key enzyme responsible for androgen catabolism in prostate tumor cells, is upregulated in therapy-resistant tumors, though its role in tumor progression remains unclear. Here, we demonstrate that UGT2B17 possesses multiple oncogenic functions independent of androgen catabolism. It modulates protein-folding pathways, allowing tumor cells to endure therapy-induced stress. UGT2B17 also regulates transcription associated with cell division and the DNA damage response, enabling unchecked cell proliferation. Targeting the newly identified UGT2B17 functions using a combination of inhibitors reduced tumor growth in therapy-resistant tumor models, highlighting a promising therapeutic strategy. Collectively, these findings reveal a mechanism by which prostate tumors exploit UGT2B17 to evade therapy and highlight its potential as a therapeutic target in advanced prostate cancer.

Authors

Tingting Feng, Ning Xie, Lin Gao, Qiongqiong Jia, Sonia H.Y. Kung, Tunc Morova, Yinan Li, Lin Wang, Ladan Fazli, Louis Lacombe, Chantal Guillemette, Eric Lévesque, Nathan A. Lack, Jianfei Qi, Bo Han, Xuesen Dong

×

Abstract

Despite overexpression of N-acetyltransferase 10 (NAT10) in colorectal cancer (CRC), its immunomodulatory role in the tumor microenvironment remains elusive. Here, we reveal that NAT10 promotes immune evasion through N4-acetylcytosine–dependent (ac4C-dependent) mRNA stabilization. Using syngeneic mouse models (MC38/CT-26), intestinal epithelial-cell specific Nat10 conditional KO (Nat10cKO) mice, patient-derived organoids, and clinical specimens, we show that Nat10 ablation enhanced CD8+ T cell–mediated antitumor immunity. Single-cell RNA-seq revealed increased cytotoxic CD8+ T cell infiltration in Nat10cKO tumors, which was corroborated by the inverse correlation of tumoral NAT10 expression and CD8+ T cell number in clinical specimens. Multi-omics integration analysis identified DKK2 as the predominant NAT10-regulated transcript. NAT10 stabilized DKK2 mRNA via ac4C modification, leading to high expression of the DKK2 protein. Secreted DKK2 engaged LRP6 receptors to activate AKT-mTOR signaling, inducing cholesterol accumulation in CD8+ T cells and impairing their cytotoxicity. Pharmacological NAT10 inhibition (Remodelin treatment) or DKK2 neutralization restored CD8+ T cell function and synergized with anti–PD-1 therapy. Our findings establish the NAT10/DKK2/LRP6/AKT-mTOR/cholesterol axis as a critical regulator of CD8+ T cell dysfunction in CRC, positioning NAT10/DKK2 as a potential target to enhance immunotherapy efficacy.

Authors

Mengmeng Li, Xiaoya Zhao, Jun Wu, Shimeng Zhou, Yao Fu, Chen Chen, Zhuang Ma, Jiawen Xu, Yun Qian, Zhangding Wang, Bo Wang, Qiang Wang, Qingqing Ding, Changyu Chen, Honggang Wang, Xiaozhong Yang, Weijie Dai, Wenjie Zhang, Shouyu Wang

×
Retractions

Corrigendum

In-Press Preview - More

Abstract

Epidermal growth factor receptor (EGFR)-activating mutations are established biomarkers of resistance to immune checkpoint blockade (ICB) in lung cancer, yet the precise molecular mechanism and effective therapeutic strategies remain elusive. In this study, we show that EGFR overexpression and amplification recapitulate the negative impact of EGFR driver mutations to ICB response, indicating a proactive involvement of EGFR signaling in antagonizing antitumor immune response. Functional studies unveil that EGFR activation suppresses cellular response to interferon-gamma (IFN-γ) following ICB treatment across multiple cancer models. This impairment in IFN-γ responsiveness further limits the upregulation of T cell-recruiting chemokines and antigen presentation, resulting in reduced T cell infiltration and activation, ultimately undermining antitumor immunity. Mechanistically, EGFR promotes SHP2 activation to accelerate STAT1 dephosphorylation, leading to premature termination of the IFN-γ response. SHP2 inhibition restored ICB sensitivity in EGFR-activated tumors, significantly reducing tumor burden while maintaining a favorable safety profile. Our findings suggest that EGFR/SHP2 axis functions as a molecular brake to disrupt the initiation and amplification of IFN-γ mediated anti-tumor response during immunotherapy. This discovery unveils a potential avenue to overcome immunotherapy resistance in EGFR-driven tumors, particularly lung cancer, through SHP2-targeted combination strategies.

Authors

Wei-Tao Zhuang, Lan-Lan Pang, Li-Yang Hu, Jun Liao, Jian-Hua Zhan, Ting Li, Ri-Xin Chen, Jia-Ni Zheng, An-Lin Li, Wen-Yan Yu, Tian-Qin Mao, Liang Chen, Yu-Jian Huang, Shao-Dong Hong, Jing Li, Jun-Han Wu, Yi-Ming Zeng, Meng-Juan Yang, Hai-Qing Zeng, Ya-Xiong Zhang, Li Zhang, Wen-Feng Fang

×

Abstract

Dysregulation of cell cycle checkpoints is a cancer hallmark with ubiquitination controlled protein stability playing pivotal roles. Although p21, a key cyclin-dependent kinase inhibitor, is tightly regulated by ubiquitin-mediated degradation, the key upstream modulators of its ubiquitination remain incompletely defined. Here, we identify poly(ADP-ribose) glycohydrolase (PARG) as a regulator of p21 stability in gastric cancer (GC) cells. We show that PARG expression is markedly upregulated in GC tissues and correlates with poor patient prognosis. Functional assays revealed that genetic depletion of PARG triggers G2/M phase arrest and impairs GC cell proliferation. Mechanistically, we demonstrate that PARG loss enhances p21 PARylation, which disrupts its association with E3 ubiquitin ligase, thereby reducing K48-linked ubiquitination and leading to p21 protein stabilization. Moreover, we identify lysine residues K161 and K163 as critical sites for PARG-mediated regulation of p21 ubiquitination. Our findings reveal a post-translational regulatory axis in which PARG governs cell cycle progression by modulating the PARylation-dependent ubiquitination of p21. These results broaden the understanding of p21 regulation in cancer and highlight PARG as a potential therapeutic target for GC treatment.

Authors

Yangchan Hu, Qimei Bao, Yixing Huang, Yan Wang, Xin Zhao, Junjun Nan, Yuxin Meng, Mingcong Deng, Yuancong Li, Zirui Zhuang, Hanyi He, Dan Zu, Yuke Zhong, Chunkai Zhang, Bing Wang, Ran Li, Yanhua He, Qihan Wang, Min Liu, John A. Tainer, Yin Shi, Xiangdong Cheng, Ji Jing, Zu Ye

×

Abstract

Drug-associated environmental cues can trigger drug-seeking behavior and precipitate relapse. In the current study, we identified that the claustrum (CL) connects the ventral tegmental area (VTA) with the medial prefrontal cortex (mPFC), forming the VTA–CL–mPFC circuit. By using methamphetamine (METH) conditioned place preference (CPP) model in male mice, we found that manipulating the VTA–CL–mPFC circuit or CL neuronal ensemble receiving projections from VTA and projecting to mPFC (VTA–CL–mPFC) could disrupt the retrieval of METH-paired context memory, resulting in the blockage of the acquisition of METH CPP in male mice. During the process, dopamine (DA) release and dopamine 1-like receptor (D1R)-mediated the activation of CL neurons were required for the retrieval of METH-induced reward memory in male mice. These findings reveal a midbrain-to-cortical circuit orchestrated by CL neurons, which plays an essential role in the retrieval of drug-paired environmental cue memory.

Authors

Ziheng Zhao, Yuhong He, Yang Liu, Quying Feng, Hee Young Kim, Yu Fan, Xiaowei Guan

×

Abstract

Short-lived, clade-specific immune responses with limited mucosal priming are limitations faced by current COVID-19 mRNA vaccines. We have developed a nasal booster vaccine candidate that induced robust, sustained, cross-clade, systemic and mucosal protective immunity. Two recombinant Clec9A-specific monoclonal antibodies fused to the Receptor Binding Domain (RBD) from Omicron XBB.1.5 and SARS-CoV-1, respectively were generated. In Comirnaty mRNA-vaccinated mice, boosting with both constructs combined (Clec9AOMNI) induced cross-clade neutralizing antibodies (nAbs) and T-cell responses that were greater in magnitude and more sustained compared to bivalent Comirnaty (BC) mRNA vaccine booster. Persistence of RBD-specific follicular helper CD4+ T cells, germinal centre B cells, and long-lived plasma cells that facilitated affinity maturation, correlated with detection of triple cross-reactive B cells binding the RBDs of SARS-CoV-2 ancestral, XBB.1.5, and SARS-CoV-1. Remarkably, intranasal boosting with Clec9AOMNI elicited robust and durable immunity across the upper and lower airways while concurrently boosting the systemic immunity to levels matching or exceeding those from systemic boosting. Correspondingly, Clec9AOMNI nasal booster conferred superior protection against SARS-CoV-2 challenge compared to BC mRNA booster, with undetectable viral titers in the respiratory tract. Hence, Clec9AOMNI is a promising nasal booster vaccine candidate that has the potential to mitigate pandemic threats from emerging sarbecoviruses.

Authors

You Zhi Nicholas CHEANG, Wee Chee Yap, Kirsteen M. TULLETT, Xinlei QIAN, Peck S. TAN, Kiren PURUSHOTORMAN, Wan Yi TAN, Yun Yan MAH, Paul MACARY, Chee Wah TAN, Mireille H. LAHOUD, Sylvie ALONSO

×

Abstract

Malignant tumors with TP53 mutations exhibit poor therapeutic outcomes and high recurrence rates. T cell receptor (TCR)-based T cell therapy shows great promise for targeting intracellular cancer neoantigens. However, the immunogenic potential of TP53 hotspot mutations remain poorly characterized. Here, we identify a immunogenic neoantigen derived from the recurrent TP53R248Q mutation, presented by the prevalent Human Leukocyte Antigen (HLA)-A*11:01 allele. Additionally, we isolated a TP53R248Q reactive TCR that specifically recognize the TP53R248Q mutation without any discernable cross-activity to cognate wild-type TP53 or other TP53 mutants at the same codon position. Functional characterization revealed that TP53R248Q TCR-T cells exhibited selectively cytotoxicity against tumor cells expressing both TP53R248Q mutation and HLA-A*11:01 in vitro. Importantly, the adoptive transfer of TP53R248Q TCR-T cells exhibited significant anti-tumor activity in a clinically relevant patient-derived xenograft (PDX) model engrafted with TP53R248Q/HLA-A*11:01 positive human tumor tissues. Collectively, our study validates the immunogenicity of the TP53R248Q hotspot mutation and provides a TCR with high therapeutic potential for the development of T cell therapies targeting TP53R248Q/HLA-A*11:01 positive cancers.

Authors

Lianghua Shen, Ziyu Chen, Jian Xu, Qiaomei He, Changmeng Zhang, Xiao Zhou, Xiaodan Ding, Jinan Fang, Fanlin Li, Ming Jiao, Yuqin Yang, Baoxia Dong, Liping Wan, Xueying Ding, Yan Zheng, Jingyi Zhou, Chijian Zuo, Tian Min, Ming Zhu, Bin Ma, Yuhua Wan, Qiufang Guo, Hua Zhang, Jian Hua, Pengran Wang, Qi Li, Jiang Long, Xianmin Song, Yan Zhang

×

Advertisement

Review Series - More

Clinical innovation and scientific progress in GLP-1 medicine

Series edited by Daniel J. Drucker

Therapies targeting the glucagon-like peptide 1 (GLP-1) receptor have revolutionized the treatment of obesity and diabetes. This series of reviews, curated by Dr. Dan Drucker, describes the latest research in this fast-moving in field, from our evolving understanding of the mechanism of GLP-1 receptor signaling to the medicines’ impact on inflammation and the consequences for heart, kidney, and brain health. The reviews also explore the impact of these medicines on conditions beyond their initial indications, including cancer and neurodegenerative disease risk.

×