Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Infantile parkinsonism-dystonia: a dopamine “transportopathy”
Craig Blackstone
Craig Blackstone
Published May 26, 2009
Citation Information: J Clin Invest. 2009;119(6):1455-1458. https://doi.org/10.1172/JCI39632.
View: Text | PDF
Commentary

Infantile parkinsonism-dystonia: a dopamine “transportopathy”

  • Text
  • PDF
Abstract

The dopamine transporter (DAT) retrieves the neurotransmitter dopamine from the synaptic cleft at dopaminergic synapses. Variations in solute carrier family 6A, member 3 (SLC6A3/DAT1), the human gene encoding DAT, have been implicated in attention deficit hyperactivity and bipolar disorders, and DAT is a prominent site of action for drugs such as amphetamines and cocaine. In this issue of the JCI, Kurian et al. report that an autosomal recessive infantile parkinsonism-dystonia is caused by loss-of-function mutations in DAT that impair dopamine reuptake (see the related article beginning on page 1595). Though this might be predicted to result in dopamine excess in the synaptic cleft, it likely also causes depletion of presynaptic dopamine stores and possibly downregulation of postsynaptic dopamine receptor function, resulting in impairments in dopaminergic neurotransmission consistent with the clinical presentation. This is the first report of a genetic alteration in DAT function underlying a parkinsonian disorder.

Authors

Craig Blackstone

×

Figure 1

Diagram of a dopaminergic synapse illustrating possible effects of the loss of DAT function.

Options: View larger image (or click on image) Download as PowerPoint
Diagram of a dopaminergic synapse illustrating possible effects of the l...
(A) Presynaptic and postsynaptic neuron membranes and the synaptic cleft are indicated. D1-class and D2-class dopamine receptors are positively or negatively coupled to adenylate cyclase (AC) via G proteins (G). Coupling to other signaling pathways is not shown. Catechol O-methyltransferase (COMT) and monoamine oxidase B (MAO-B) are involved in the metabolism of dopamine (blue circles) to products such as homovanillic acid (HVA) and 3-methoxytyramine (3-MT). Dopamine in the cleft can bind presynaptically to D2 autoreceptors or the DAT, or postsynaptically to D1- and D2-class receptors. The DAT is predominately located perisynaptically. (B) In this issue of the JCI, Kurian et al. (14) show that SLC6A3/DAT1 loss-of-function mutations in individuals with infantile parkinsonism-dystonia result in inhibition of DAT-mediated dopamine reuptake activity. Increased time that dopamine is present in the synaptic cleft will result in dopamine degradation there, predominantly by COMT, as well as increased levels of the dopamine metabolite homovanillic acid in the cerebrospinal fluid. Overstimulation of D2 autoreceptors is predicted to inhibit the phosphorylation-dependent activation of tyrosine hydroxylase (TH), which is rate limiting for the production of dopamine. Mutations in the gene encoding TH have been implicated in other movement disorders such as L-dopa–responsive dystonia and infantile parkinsonism. Prolonged dopamine presence in the synaptic cleft may result in desensitization or downregulation of postsynaptic dopamine receptors, with alterations in downstream signaling.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts