J C Reed
G H Rothblat
The regulation of liver apolipoprotein (apo) A-I gene expression by fibrates was studied in human apo A-I transgenic mice containing a human genomic DNA fragment driving apo A-I expression in liver. Treatment with fenofibrate (0.5% wt/wt) for 7 d increased plasma human apo A-I levels up to 750% and HDL-cholesterol levels up to 200% with a shift to larger particles. The increase in human apo A-I plasma levels was time and dose dependent and was already evident after 3 d at the highest dose (0.5% wt/wt) of fenofibrate. In contrast, plasma mouse apo A-I concentration was decreased after fenofibrate in nontransgenic mice. The increase in plasma human apo A-I levels after fenofibrate treatment was associated with a 97% increase in hepatic human apo A-I mRNA, whereas mouse apo A-I mRNA levels decreased to 51%. In nontransgenic mice, a similar down-regulation of hepatic apo A-I mRNA levels was observed. Nuclear run-on experiments demonstrated that the increase in human apo A-I and the decrease in mouse apo A-I gene expression after fenofibrate occurred at the transcriptional level. Since part of the effects of fibrates are mediated through the nuclear receptor PPAR (peroxisome proliferator-activated receptor), the expression of the acyl CoA oxidase (ACO) gene was measured as a control of PPAR activation. Both in transgenic and nontransgenic mice, fenofibrate induced ACO mRNA levels up to sixfold. When transgenic mice were treated with gemfibrozil (0.5% wt/wt) plasma human apo A-I and HDL-cholesterol levels increased 32 and 73%, respectively, above control levels. The weaker effect of this compound on human apo A-I and HDL-cholesterol levels correlated with a less pronounced impact on ACO mRNA levels (a threefold increase) suggesting that the level of induction of human apo A-I gene is related to the PPAR activating potency of the fibrate used. Treatment of human primary hepatocytes with fenofibric acid (500 microM) provoked an 83 and 50% increase in apo A-I secretion and mRNA levels, respectively, supporting that a direct action of fibrates on liver human apo A-I production leads to the observed increase in plasma apo A4 and HDL-cholesterol.
L Berthou, N Duverger, F Emmanuel, S Langouët, J Auwerx, A Guillouzo, J C Fruchart, E Rubin, P Denèfle, B Staels, D Branellec
In genetically occurring non-insulin-dependent diabetes mellitus (NIDDM) model rats (GK rats), the activities of L- and T-type Ca2+ channels in pancreatic beta cells are found to be augmented, by measuring the Ba2+ currents via these channels using whole-cell patch-clamp technique, while the patterns of the current-voltage curves are indistinguishable. The hyper-responsiveness of insulin secretion to nonglucose depolarizing stimuli observed in NIDDM beta cells could be the result, therefore, of increased voltage-dependent Ca2+ channel activity. Perforated patch-clamp recordings reveal that the augmentation of L-type Ca2+ channel activity by glucose is markedly less pronounced in GK beta cells than in control beta cells, while glucose-induced augmentation of T-type Ca2+ channel activity is observed neither in the control nor in the GK beta cells. This lack of glucose-induced augmentation of L-type Ca2+ channel activity in GK beta cells might be causatively related to the selective impairment of glucose-induced insulin secretion in NIDDM beta cells, in conjunction with an insufficient plasma membrane depolarization due to impaired closure of the ATP-sensitive K+ channels caused by the disturbed intracellular glucose metabolism in NIDDM beta cells.
S Kato, H Ishida, Y Tsuura, K Tsuji, M Nishimura, M Horie, T Taminato, S Ikehara, H Odaka, I Ikeda, Y Okada, Y Seino
Patients with hypohidrotic ectodermal dysplasia (HED) and Tabby (Ta) mice lack sweat glands and there is compelling evidence that these phenotypes are caused by mutations in the same highly conserved but unidentified X-linked gene. Previous studies showed that exogenous epidermal growth factor (EGF) reversed the Ta phenotype but the EGF status in HED patients has not been studied at all. Studies reported herein investigated the hypothesis that the EGF signaling pathway is involved in HED/Ta. Fibroblasts from HED patients had a two- to eightfold decrease in binding capacity for (125)I-labeled EGF, a decreased expression of the immunoreactive 170-kD EGF receptor (EGFR) protein, and a corresponding reduction in EGFR mRNA. Reduced expression of the EGFR also was observed in Ta fibroblasts and liver membranes. Other aspects of the EGF signaling pathway, including EGF concentration in urine and plasma, were normal in both HED patients and Ta mice. We propose that a decreased expression of the EGFR plays a causal role in the HED/Ta phenotype.
G A Vargas, E Fantino, C George-Nascimento, J J Gargus, H T Haigler
FK506 is a powerful immunosuppressive drug currently in use that inhibits the activation of several transcription factors (nuclear factor (NF)-AT and NF-kappaB) critical for T cell activation. We show here that, contrary to the situation in T cells, FK506 activates transcription factor NF-kappaB in nonlymphoid cells such as fibroblasts and renal mesangial cells. We further show that FK506 induces NF-kappaB-regulated IL-6 production in vitro and in vivo, in particular in kidney. IL-6 has been shown previously to produce renal abnormalities in vivo, such as mesangioproliferative glomerulonephritis. Similar renal abnormalities were also observed in FK506-treated animals. These results thus suggest a causal relationship between FK506-induced NF-kappaB activation/IL-6 production and some of FK506-induced renal abnormalities.
K Muraoka, K Fujimoto, X Sun, K Yoshioka, K Shimizu, M Yagi, H Bose Jr, I Miyazaki, K Yamamoto
The primary hypothesis of this report is that the formation and subsequent removal of fibrin in specific tissues during pathologic processes reflects temporal changes in the local expression of key procoagulant and fibrinolytic genes. To begin to test this hypothesis, we have used quantitative PCR assays and in situ hybridization analysis to examine the effects of endotoxin on the expression of specific genes in murine tissues, and to relate these changes to fibrin deposition/dissolution using immunohistochemical approaches. Endotoxin caused large increases in plasminogen activator inhibitor-1 mRNA and modest increases in tissue factor mRNA in most tissues examined. However, fibrin was only detected in the kidneys and adrenals of endotoxin-treated mice, and it was transient. Unexpectedly, changes in urokinase-type plasminogen activator mRNA but not tissue-type plasminogen activator mRNA correlated with fibrin deposition/dissolution in these tissues. Pretreatment of mice with the fibrinolytic inhibitor epsilon-aminocaproic acid before endotoxin increased both the number of fibrin-positive tissues and the duration of fibrin deposition in the kidneys and adrenals. These results suggest that the absence of fibrin in some tissues reflects ongoing local fibrinolysis, and that increases in plasminogen activator inhibitory and tissue fac- tor gene expression and decreases in urokinase-type plasminogen activator expression are necessary for tissue-specific fibrin deposition. Changes in tissue-type plasminogen activator gene expression do not appear to be essential for fibrin deposition/dissolution in this murine model of sepsis.
K Yamamoto, D J Loskutoff
We have related experimentally induced post-cardiac transplant coronary arteriopathy to increased elastolytic activity, IL-1beta, fibronectin-mediated inflammatory and smooth muscle cell (SMC) migration, and SMC proliferation. Since our in vitro studies show that a serine elastase releases SMC mitogens and facilitates IL-lbeta induction of fibronectin, we hypothesized that administration in vivo of the specific serine elastase inhibitor, elafin, would decrease the post-cardiac transplant coronary arteriopathy. Cholesterol-fed rabbits underwent a heterotopic cardiac transplant without immunosuppression and received elafin (1.79 mg/kg per d continuous infusion after a 9 mg bolus, n = 6) or vehicle (n = 6). 1 wk later, hearts were harvested for morphometric, immunohistochemical, and biochemical analyses. A > 70% decrease in the total number of coronary arteries with intimal thickening in elafin-treated compared to control donor hearts (P < 0.002) was associated with reduced vascular elastolytic activity judged by fewer breaks in the internal elastic lamina (P < 0.03), less accumulation of immunoreactive fibronectin (P < 0.02), and reduced cell proliferation quantified by proliferating cell nuclear antigen (P < 0.0001). Despite myocardial lymphocytic infiltration, wet weight of elafin-treated donor hearts was reduced by 50% compared to untreated controls (P < 0.002) and associated with relative preservation of myocyte integrity, instead of extensive myocardial necrosis (P < 0.004). This protective effect correlated with decreased myocardial elastolytic activity (P < 0.0001) and inflammatory cell proliferation (P < 0.0001) and with an elafin-inhibitable elastase in lymphocytes. Serine elastase activity thus appears an important therapeutic target for post-cardiac transplant coronary arteriopathy and myocardial necrosis induced by rejection.
B Cowan, O Baron, J Crack, C Coulber, G J Wilson, M Rabinovitch
Remodeling of the extracellular matrix by activated mesenchymal cells (myofibroblasts) is a critical aspect of wound repair in all adult organs. Collagen-dependent gel contraction, a process requiring integrin function, is an established in vitro assay thought to mimic in vivo matrix remodeling. Numerous data have implicated the alpha2beta1 integrin in various cell types as the primary collagen receptor responsible for collagen gel contraction. However, evidence from the literature suggests that the major collagen binding integrin expressed on mesenchymally derived cells in situ is the alpha1beta1 integrin, not the alpha2beta1 integrin. In this report, we use a rat vascular injury model to illustrate that the alpha1beta1 integrin is the major collagen receptor expressed on vascular smooth muscle cells after injury. Using two smooth muscle cell lines, expressing either the alpha1beta1 integrin alone or both the alpha1beta1 and alpha2beta1 integrins, along with Chinese hamster ovary cells transfected with the alpha1 integrin, we demonstrate that alpha1beta1 supports not only collagen-dependent adhesion and migration, but also gel contraction. These data suggest that in vivo the alpha1beta1 integrin is a critical collagen receptor on mesenchymally derived cells potentially involved in matrix remodeling after injury.
P J Gotwals, G Chi-Rosso, V Lindner, J Yang, L Ling, S E Fawell, V E Koteliansky
The serpin alpha2-antiplasmin (alpha2-AP) is the major circulating inhibitor of plasmin; it plays a determining role in the regulation of intravascular fibrinolysis, In addition to blood plasma, plasmin formation occurs in various organs where it is thought to fulfill a spectrum of functions not restricted to clot lysis. Alpha2-AP is synthesized by hepatocytes, but other possible sites of production have not been investigated. To explore the potential extravascular contribution of alpha2-AP in the regulation of proteolysis, we have isolated the murine alpha2-AP cDNA and determined its mRNA distribution in adult tissues. In addition to liver, kidneys are major sites of alpha2-AP mRNA accumulation in the mouse. The transcript is present in epithelial cells lining the convoluted portion of proximal tubules, and its accumulation is under androgen control. Human kidneys also contain high levels of alpha2-AP mRNA. Moderate amounts Of alpha2-AP mRNA are detected in other murine tissues such as muscle, intestine, central nervous system, and placenta. Our observations indicate that alpha2-AP can be synthesized in a number of tissues, where it could function as a distal regulator of plasmin-mediated extracellular proteolysis.
P A Menoud, N Sappino, M Boudal-Khoshbeen, J D Vassalli, A P Sappino
Leukocyte accumulation in cerebrospinal fluid and disruption of the blood-brain barrier are central components of meningitis and are associated with a poor prognosis. Genetically engineered deficiencies or functional inhibition of endothelial leukocyte adhesion receptors P-, or P- plus E-selectins, lead to deficits in leukocyte rolling and extravasation. However, their impact on meningeal inflammation has not been tested previously. An acute cytokine-induced meningitis model associated with significant cerebrospinal fluid leukocyte accumulation (averaging 14,000 leukocytes/microl as early as 4 h) and blood-brain barrier permeability was developed in adult mice. This model was applied to mice deficient in P-selectin and mice doubly deficient in P- and E-selectins. Partial inhibition of cerebrospinal fluid leukocyte influx and permeability was noted in P-selectin-deficient mice. Mice doubly deficient in P- and E-selectins displayed a near complete inhibition of these parameters. Our results suggest that P- and E-selectins cooperatively contribute to meningitis and that functional blocking of both endothelial selectins in conjunction with antibiotics may provide a therapeutic approach for treatment of bacterial meningitis.
T Tang, P S Frenette, R O Hynes, D D Wagner, T N Mayadas
Chronically elevated shear stress and inflammation are important in hypertensive lung vessel remodeling. We postulate that 5-lipoxygenase (5-LO) is a molecular determinant of these processes. Immunohistology localized the 5-LO to macrophages of normal and chronically hypoxic rat lungs and also to vascular endothelial cells in chronically hypoxic lungs only. In situ hybridization of normal and chronically hypoxic lungs demonstrated that 5-LO mRNA is expressed in macrophages. Rats hypoxic for 4 wk-developed pulmonary hypertension increased translocation of the lung 5-LO from the cytosol to the membrane fraction and increased levels of lung tissue 5-lipoxygenase-activating protein (FLAP). A FLAP ligand, 3-[l-(4-chlorobenzyl)-3-t-butyl-thio-t-isopropylindol-2-yl]-2,2- dimethylpropanoic acid (MK-886), inhibited the acute angiotensin II and hypoxia-induced pulmonary vasoconstriction in vitro and the development of chronic hypoxic pulmonary hypertension in rats in vivo. Mice bred with the deletion of the 5-LO enzyme (5-LO knockout) developed less right heart hypertrophy than age-matched 5-LO competent mice. Our results support the hypothesis that the 5-LO is involved in lung vascular tone regulation and in the development of chronic pulmonary hypertension in hypoxic rodent models.
N F Voelkel, R M Tuder, K Wade, M Höper, R A Lepley, J L Goulet, B H Koller, F Fitzpatrick
The expression of the two cytoskeletal linking proteins, moesin and radixin, was examined in experimental mesangial proliferative nephritis in rats (anti-Thy1 model). Moesin and radixin mRNA and protein are constitutively expressed in all cell types of normal rat glomeruli, except podocytes. In the anti-Thy1 model the expression of moesin and radixin was increased in infiltrating macrophages and in activated, alpha-smooth muscle actin-positive mesangial cells and was concentrated in the cellular extensions of mesangial cells in areas of glomerular remodelling. Studies using neutralizing antibodies demonstrated that the increase in moesin and radixin expression by mesangial cells is mediated by PDGF, but not bFGF. The increase in these cytoskeletal proteins appears to be regulated primarily (radixin) or partially (moesin) posttranscriptionally. The data suggest that PDGF mediated upregulation of the cytoskeletal proteins, moesin and radixin, is important for cell migration and other changes that accompany the coordinated restoration of glomerular architecture after injury.
C Hugo, C Hugo, R Pichler, K Gordon, R Schmidt, M Amieva, W G Couser, H Furthmayr, R J Johnson
The renin-angiotensin system regulates normal cardiovascular homeostasis and is activated in certain forms of hypertension and in heart failure. Angiotensin II has multiple physiological effects and we have shown recently that its growth-promoting effects on vascular smooth muscle require autocrine activation of the IGF I receptor. To study the effect of angiotensin II on circulating IGF I, we infused rats with 500 ng/kg/min angiotensin II for up to 14 d. Angiotensin II markedly reduced plasma IGF I levels (56 and 41% decrease at 1 and 2 wk, respectively) and IGF binding protein-3 levels, and increased IGF binding protein-2 levels, a pattern suggestive of dietary restriction. Compared with sham, angiotensin II-infused hypertensive rats lost 18-26% of body weight by 1 wk, and pair-feeding experiments indicated that 74% of this loss was attributable to a reduction in food intake. The vasodilator hydralazine and the AT1 receptor antagonist losartan had comparable effects to reverse angiotensin II-induced hypertension, but only losartan blocked the changes in body weight and in circulating IGF I and its binding proteins produced by angiotensin II. Moreover, in Dahl rats that were hypertensive in response to a high-salt diet, none of these changes occurred. Thus, angiotensin II produces weight loss through a pressor-independent mechanism that includes a marked anorexigenic effect and an additional (likely metabolic) effect. These findings have profound implications for understanding the pathophysiology of conditions, such as congestive heart failure, in which the renin-angiotensin system is activated.
M Brink, J Wellen, P Delafontaine
The mouse mdr1a (also called mdr3) P-GP is abundant in the blood-brain barrier, and its absence in mdr1a (-/-) mice leads to highly increased levels of the drugs ivermectin, vinblastine, digoxin, and cyclosporin A in the brain. We show here that the drugs loperamide, domperidone, and ondansetron are transported substrates for the mouse mdr1a P-GP and its human homologue MDR1. Phenytoin is a relatively weaker substrate for each, and the drugs haloperidol, clozapine, and flunitrazepam are transported hardly or not at all. Tissue distribution studies demonstrated that the relative brain penetration of radiolabeled ondansetron and loperamide (and their metabolites) is increased four- and sevenfold, respectively, in mdr1a (-/-) mice. A pilot toxicity study with oral loperamide showed that this peripherally acting antidiarrheal agent gains potent opiatelike activity in the central nervous system of mdr1a (-/-) mice. mdr1a (-/-) mice also showed increased sensitivity to neurolepticlike side effects of oral domperidone. These results point to the possible role that the drug-transporting P-GP(s) may play in the clinical use of many drugs, especially those with potential targets in the central nervous system.
A H Schinkel, E Wagenaar, C A Mol, L van Deemter
Shaker genes encode voltage-gated potassium channels (Kv). We have shown previously that genes from Shaker subfamilies Kv1.1, 1.2, 1.4 are expressed in rabbit kidney. Recent functional and molecular evidence indicate that the predominant potassium conductance of the kidney medullary cell line GRB-PAP1 is composed of Shaker-like potassium channels. We now report the molecular cloning and functional expression of a new Shaker-related voltage-gated potassium channel, rabKv1.3, that is expressed in rabbit brain and kidney medulla. The protein, predicted to be 513 amino acids long, is most closely related to the Kv1.3 family although it differs significantly from other members of that family at the amino terminus. In Xenopus oocytes, rabKv1.3 cRNA expresses a voltage activated K current with kinetic characteristics similar to other members of the Kv1.3 family. However, unlike previously described Shaker channels, it is sensitive to glibenclamide and its single channel conductance saturates. This is the first report of the functional expression of a voltage-gated K channel clone expressed in kidney. We conclude that rabKv1.3 is a novel member of the Shaker superfamily that may play an important role in renal potassium transport.
X Yao, A Y Chang, E L Boulpaep, A S Segal, G V Desir
Dietary phosphorus (P) restriction is known to ameliorate secondary hyperparathyroidism in renal failure patients. In early renal failure, this effect may be mediated by an increase in 1,25-(OH)2D3, whereas in advanced renal failure, P restriction can act independent of changes in 1,25-(OH)2D3 and serum ionized calcium (ICa). In this study, we examined the effects of dietary P on serum PTH, PTH mRNA, and parathyroid gland (PTG) hyperplasia in uremic rats. Normal and uremic rats were maintained on a low (0.2%) or high (0.8%) P diet for 2 mo. PTG weight and serum PTH were similar in both groups of normal rats and in uremic rats fed the 0.2% P diet. In contrast, there were significant increases in serum PTH (130 +/- 25 vs. 35 +/- 3.5 pg/ml, P < 0.01), PTG weight (1.80 +/- 0.13 vs. 0.88 +/- 0.06 microg/gram of body weight, P < 0.01), and PTG DNA (1.63 +/- 0.24 vs. 0.94 +/- 0.07 microg DNA/gland, P < 0.01) in the uremic rats fed the 0.8% P diet as compared with uremic rats fed the 0.2% P diet. Serum ICa and 1,25-(OH)2D3 were not altered over this range of dietary P, suggesting a direct effect of P on PTG function. We tested this possibility in organ cultures of rat PTGs. While PTH secretion was acutely (30 min) regulated by medium calcium, the effects of medium P were not evident until 3 h. During a 6-h incubation, PTH accumulation was significantly greater in the 2.8 mM P medium than in the 0.2 mM P medium (1,706 +/- 215 vs. 1,033 +/- 209 pg/microg DNA, P < 0.02); the medium ICa was 1.25 mM in both conditions. Medium P did not alter PTH mRNA in this system, but cycloheximide (10 microg/ml) abolished the effect of P on PTH secretion. Thus, the effect of P is posttranscriptional, affecting PTH at a translational or posttranslational step. Collectively, these in vivo and in vitro results demonstrate a direct action of P on PTG function that is independent of ICa and 1,25-(OH)2D3.
E Slatopolsky, J Finch, M Denda, C Ritter, M Zhong, A Dusso, P N MacDonald, A J Brown
Microvascular endothelial cell invasion into the fibrin provisional matrix is an integral component of angiogenesis during wound repair. Cell surface receptors which interact with extracellular matrix proteins participate in cell migration and invasion. Malignant cells use CD44-related chondroitin sulfate proteoglycan (CSPG) as a matrix receptor to mediate migration and invasion. In this study, we examine whether cell surface CSPG can mediate similar events in nonmalignant wound microvascular endothelial cells or whether use of CSPG for migration and invasion is a property largely restricted to malignant cells. After inhibiting CSPG synthesis with p-nitrophenyl beta-d xylopyranoside (beta-d xyloside), wound microvascular endothelial cells were capable of attaching and spreading on the surface of a fibrin gel; however, their ability to invade the fibrin matrix was virtually eliminated. To begin to examine the mechanism by which endothelial cells use CSPG to invade fibrin matrices, cell adhesion and migration on fibrinogen was examined. Endothelial cell adhesion and migration on fibrinogen were inhibited by both beta-d xyloside and after cleavage of chondroitin sulfate from the core protein by chondroitinase ABC. We have determined that wound microvascular endothelial cells express the majority of their proteoglycan as CSPG and that the CSPG core protein is immunologically related to CD44. PCR studies show that these cells express both the "standard" (CD44H) isoform and an isoform containing the variably spliced exon V3. In addition, anti-CD44 antibody blocks endothelial cell migration on fibrinogen. Affinity chromatography studies reveal that partially purified microvascular endothelial cell CSPG binds fibrinogen. These findings suggest that CD44-related CSPG, a molecule implicated in the invasive behavior of tumor cells, is capable of binding fibrinogen/fibrin, thereby mediating endothelial cell migration and invasion into the fibrin provisional matrix during wound repair.
C A Henke, U Roongta, D J Mickelson, J R Knutson, J B McCarthy
The orphan nuclear receptor, peroxisome proliferator-activated receptor (PPAR) gamma, is implicated in mediating expression of fat-specific genes and in activating the program of adipocyte differentiation. The potential for regulation of PPAR gamma gene expression in vivo is unknown. We cloned a partial mouse PPAR gamma cDNA and developed an RNase protection assay that permits simultaneous quantitation of mRNAs for both gamma l and gamma 2 isoforms encoded by the PPAR gamma gene. Probes for detection of adipocyte P2, the obese gene product, leptin, and 18S mRNAs were also employed. Both gamma l and gamma 2 mRNAs were abundantly expressed in adipose tissue. PPAR gamma 1 expression was also detected at lower levels in liver, spleen, and heart; whereas, gamma l and gamma 2 mRNA were expressed at low levels in skeletal muscle. Adipose tissue levels of gamma l and gamma 2 were not altered in two murine models of obesity (gold thioglucose and ob/ob), but were modestly increased in mice with toxigene-induced brown fat ablation uncoupling protein diphtheria toxin A mice. Fasting (12-48 h) was associated with an 80% fall in PPAR gamma 2 and a 50% fall in PPAR gamma mRNA levels in adipose tissue. Western blot analysis demonstrated a marked effect of fasting to reduce PPAR gamma protein levels in adipose tissue. Similar effects of fasting on PPAR gamma mRNAs were noted in all three models of obesity. Insulin-deficient (streptozotocin) diabetes suppressed adipose tissue gamma l and gamma 2 expression by 75% in normal mice with partial restoration during insulin treatment. Levels of adipose tissue PPAR gamma 2 mRNA were increased by 50% in normal mice exposed to a high fat diet. In obese uncoupling protein diphtheria toxin A mice, high fat feeding resulted in de novo induction of PPAR gamma 2 expression in liver. We conclude (a) PPAR gamma 2 mRNA expression is most abundant in adipocytes in normal mice, but lower level expression is seen in skeletal muscle; (b) expression of adipose tissue gamma1 or gamma2 mRNAs is increased in only one of the three models of obesity; (c) PPAR gamma 1 and gamma 2 expression is downregulated by fasting and insulin-deficient diabetes; and (d) exposure of mice to a high fat diet increases adipose tissue expression of PPAR gamma (in normal mice) and induces PPAR gamma 2 mRNA expression in liver (in obese mice). These findings demonstrate in vivo modulation of PPAR gamma mRNA levels over a fourfold range and provide an additional level of regulation for the control of adipocyte development and function.
A Vidal-Puig, M Jimenez-Liñan, B B Lowell, A Hamann, E Hu, B Spiegelman, J S Flier, D E Moller
We have evaluated the contributions of nitric oxide (NO) and prostacyclin (PGI2) in the in vivo antiplatelet effects of clinically useful nitrovasodilators. In rats, intravenous infusion of three NO donors, glyceryl trinitrate, sodium nitroprusside, or 3'-morpholinosydnonimine, the stable metabolite of molsidomine, released 6-keto PGF1alpha (the stable metabolite of PGI2) and inhibited ex vivo human platelet aggregation to adenosine diphosphate by at least 80%. In in vitro studies, glyceryl trinitrate, sodium nitroprusside, and 3'-morpholinosydnonimine, at clinically attainable concentrations, increased cyclooxygenase activity in endothelial cells (EC), which resulted in a four- to sixfold release of 6-keto PGF1alpha. Pretreatment of the EC with hemoglobin which binds to and inactivates the biological actions of NO, but not by methylene blue (MelB), attenuated the NO-mediated PGI2 from the EC by at least 70%. Release of 6-keto PGF1alpha by the NO donors increased the ability of these compounds to inhibit thrombin-induced human platelet aggregation by at least 10 times; this potentiation was inhibited by hemoglobin but not by MeB. MeB blocked the direct anti-platelet effect of the NO donors in the absence of EC. In summary, we have demonstrated that NO, directly as well as together with an NO-driven cyclooxygenase activation (and hence PGI2), release contributes to the marked anti-platelet effects observed after the in vivo administration of clinically used nitrovasodilators.
D Salvemini, M G Currie, V Mollace
Insulin receptor substrates-1 (IRS-1) is the major cytoplasmic substrate of the insulin and IGF-1 receptors. Recent studies have identified multiple sequence variants of IRS-1, especially in patients with non-insulin-dependent diabetes mellitus. In the present study, we have examined insulin-stimulated processes in 32D(IR) cells, a myeloid progenitor cell stably overexpressing the insulin receptor, transfected with wild-type human-IRS-1 or the most common human variant of IRS-1 in which glycine 972 is replaced by arginine. As compared to wild-type IRS-1, insulin stimulation of cells transfected with mutant IRS-1 exhibited a 32% decrease in incorporation of [3H]thymidine into DNA (P = 0.002), a 36% decrease in IRS-1 associated phosphatidylinositol (PI) 3-kinase activity (P = 0.004) and a 25% decrease in binding of the p85 regulatory subunit of PI 3-kinase to IRS-1 (P = 0.002). There was also a tendency for a decrease in Grb2 binding to IRS-1 and insulin-stimulated mitogen-activated protein kinase activity, however, these were not statistically significant. The changes occurred with no change in insulin receptor or IRS-1 tyrosine phosphorylation. These data indicate that the mutation in codon 972 in IRS-1 impairs insulin-stimulated signaling, especially along the PI 3-kinase pathway, and may contribute to insulin resistance in normal and diabetic populations.
K Almind, G Inoue, O Pedersen, C R Kahn
Previous studies have shown that ontogeny of the epidermal permeability barrier and lung occur in parallel in the fetal rat, and that pharmacologic agents, such as glucocorticoids and thyroid hormone, accelerate maturation at comparable developmental time points. Gender also influences lung maturation, i.e., males exhibit delayed development. Sex steroid hormones exert opposite effects on lung maturation, with estrogens accelerating and androgens inhibiting. In this study, we demonstrate that cutaneous barrier formation, measured as transepidermal water loss, is delayed in male fetal rats. Administration of estrogen to pregnant mothers accelerates fetal barrier development both morphologically and functionally. Competent barriers also form sooner in skin explants incubated in estrogen-supplemented media in vitro. In contrast, administration of dihydrotestosterone delays barrier formation both in vivo and in vitro. Finally, treatment of pregnant rats with the androgen antagonist flutamide eliminates the gender difference in barrier formation. These studies indicate that (a) estrogen accelerates and testosterone delays cutaneous barrier formation, (b) these hormones exert their effects directly on the skin, and (c) sex differences in rates of barrier development in vivo may be mediated by testosterone.
K Hanley, U Rassner, Y Jiang, D Vansomphone, D Crumrine, L Komüves, P M Elias, K R Feingold, M L Williams
Endotoxin alters the metabolism of lipoproteins, including that of high density lipoprotein (HDL). Cholesteryl ester transfer protein (CETP) facilitates exchange of HDL cholesterol for very low density lipoprotein (VLDL) triglyceride, leading to catabolism of HDL. We investigated the effects of endotoxin and cytokines on CETP in Syrian hamsters. Endotoxin induced a rapid and progressive decrease in serum CETP levels, by 48 h CETP had decreased to < 20% of control levels. Endotoxin also decreased CETP mRNA and protein levels in adipose tissue, heart, and muscle, the tissues with highest levels of CETP mRNA, providing a plausible mechanism for the endotoxin-induced decrease in circulating CETP. Dexamethasone did not mimic the effects of endotoxin on CETP, but the combination of tumor necrosis factor and interleukin-1 did, indicating that these cytokines may in part mediate the effects of endotoxin on CETP. The endotoxin-induced decrease in CETP may help maintain HDL cholesterol levels during infection and inflammation when increased triglyceride levels could drive the exchange of HDL cholesteryl ester for VLDL triglyceride. Maintaining circulating HDL may be important because HDL protects against the toxic effects of endotoxin and provides cholesterol for peripheral cells involved in the immune response and tissue repair.
I Hardardóttir, A H Moser, J Fuller, C Fielding, K Feingold, C Grünfeld
To elucidate the role of specific proinflammatory cytokines in regulating airway responsiveness, we examined the effects and mechanisms of action of IL-1beta, TNF-alpha, and IL-2 on the beta-adrenoceptor- and postreceptor-coupled transmembrane signaling mechanisms regulating relaxation in isolated rabbit tracheal smooth muscle (TSM) segments. During half-maximal isometric contraction of the tissues with acetylcholine, relaxation responses to isoproterenol, PGE2, and forskolin were separately compared in control (untreated) TSM and tissues incubated for 18 h with IL-1beta (10 ng/ml), TNF-(alpha (100 ng/ml), or IL-2 (200 ng/ml). Relative to controls, IL-1beta- and TNF-alpha-treated TSM, but not IL-2-treated tissues, depicted significant attenuation of their maximal relaxation and sensitivity (i.e., -log dose producing 50% maximal relaxation) to isoproterenol (P < 0.001) and PGE2 (P < 0.05); whereas the relaxation responses to direct stimulation of adenylate cyclase with forskolin were similar in the control and cytokine-treated tissues. Further, the attenuated relaxation to isoproterenol and PGE2 was ablated in the IL-1beta-treated TSM that were pretreated with either the muscarinic M2-receptor antagonist, methoctramine (10(-6) M), or pertussis toxin (100 ng/ml). Moreover, Western immunoblot analysis demonstrated that: (a) Gi protein expression was significantly enhanced in membrane fractions isolated from IL-1beta-treated TSM; and (b) the latter was largely attributed to induced enhanced expression of the Gi alpha2 and Gi alpha3 subunits. Collectively, these observations provide new evidence demonstrating that IL-lbeta and TNF-alpha induce impaired receptor-coupled airway relaxation in naive TSM, and that the latter effect is associated with increased muscarinic M2-receptor/Gi protein-coupled expression and function.
H Hakonarson, D J Herrick, P G Serrano, M M Grunstein
To test the hypothesis that obesity/insulin resistance impairs both endothelium-dependent vasodilation and insulin-mediated augmentation of endothelium-dependent vasodilation, we studied leg blood flow (LBF) responses to graded intrafemoral artery infusions of methacholine chloride (MCh) or sodium nitroprusside (SNP) during saline infusion and euglycemic hyperinsulinemia in lean insulin-sensitive controls (C), in obese insulin-resistant subjects (OB), and in subjects with non-insulin-dependent diabetes mellitus (NIDDM). MCh induced increments in LBF were approximately 40% and 55% lower in OB and NIDDM, respectively, as compared with C (P < 0.05). Euglycemic hyperinsulinemia augmented the LBF response to MCh by - 50% in C (P < 0.05 vs saline) but not in OB and NIDDM. SNP caused comparable increments in LBF in all groups. Regression analysis revealed a significant inverse correlation between the maximal LBF change in response to MCh and body fat content. Thus, obesity/insulin resistance is associated with (a) blunted endothelium-dependent, but normal endothelium-independent vasodilation and (b) failure of euglycemic hyperinsulinemia to augment endothelium-dependent vasodilation. Therefore, obese/insulin-resistant subjects are characterized by endothelial dysfunction and endothelial resistance to insulin's effect on enhancement of endothelium-dependent vasodilation. This endothelial dysfunction could contribute to the increased risk of atherosclerosis in obese insulin-resistant subjects.
Helmut O. Steinberg, Haitham Chaker, Rosalind Leaming, Ann Johnson, Ginger Brechtel, Alain D. Baron
The intraportal injection of human pancreatic islets has been indicated as a possible alternative to the pancreas transplant in insulin-dependent diabetic patients. Aim of the present work was to study the effect of intraportal injection of purified human islets on: (a) the basal hepatic glucose production; (b) the whole body glucose homeostasis and insulin action; and (c) the regulation of insulin secretion in insulin-dependent diabetes mellitus patients bearing a kidney transplant. 15 recipients of purified islets from cadaver donors (intraportal injection) were studied by means of the infusion of labeled glucose to quantify the hepatic glucose production. Islet transplanted patients were subdivided in two groups based on graft function and underwent: (a) a 120-min euglycemic insulin infusion (1 mU/kg/min) to assess insulin action; (b) a 120-min glucose infusion (+75 mg/di) to study the pattern of insulin secretion. Seven patients with chronic uveitis on the same immunosuppressive therapy as grafted patients, twelve healthy volunteers, and seven insulin-dependent diabetic patients with combined pancreas and kidney transplantation were also studied as control groups. Islet transplanted patients have: (a) a higher basal hepatic glucose production (HGP: 5.1 +/- 1.4 mg/kg/ min; P < 0.05 with respect to all other groups) if without graft function, and a normal HGP (2.4 +/- 0.2 mg/kg/min) with a functioning graft; (b) a defective tissue glucose disposal (3.9 +/- 0.5 mg/kg/min in patients without islet function and 5.3 +/- 0.4 mg/kg/min in patients with islet function) with respect to normals (P < 0.01 for both comparisons); (c) a blunted first phase insulin peak and a similar second phase secretion with respect to controls. In conclusion, in spite of the persistence of an abnormal pattern of insulin secretion, successful intraportal islet graft normalizes the basal HGP and improves total tissue glucose disposal in insulin-dependent diabetes mellitus.
L Luzi, B J Hering, C Socci, G Raptis, A Battezzati, I Terruzzi, L Falqui, H Brandhorst, D Brandhorst, E Regalia, E Brambilla, A Secchi, G Perseghin, P Maffi, E Bianchi, V Mazzaferro, L Gennari, V Di Carlo, K Federlin, G Pozza, R G Bretzel
The Ul small nuclear ribonucleoprotein (snRNP), a complex of nine proteins with Ul RNA, is a frequent target of autoantibodies in human and murine systemic lupus erythematosus (SLE). Anti-Sm antibodies recognizing the B'/B, D, E, F, and G proteins of Ul snRNPs are highly specific for SLE, and are nearly always accompanied by anti-nRNP antibodies recognizing the Ul snRNP-specific 70K, A, and/or C proteins. Previous studies suggest that human anti-nRNP antibodies recognize primarily the U1-70K and Ul-A proteins, whereas recognition of Ul-C is less frequent. We report here that autoantibodies to U1-C are more common in human autoimmune sera than believed previously. Using a novel immunoprecipitation technique to detect autoantibodies to native Ul-C, 75/78 human sera with anti-nRNP/ Sm antibodies were anti-Ul-C (+). In striking contrast, only 1/65 anti-nRNP/Sm (+) MRL mouse sera of various Igh allotypes was positive. Two of ten anti-nRNP/Sm (+) sera from BALB/c mice with a lupus-like syndrome induced by pristane recognized Ul-C. Thus, lupus in MRL mice was characterized by a markedly lower frequency of anti-U1-C antibodies than seen in human SLE or pristane-induced lupus. The results may indicate different pathways of intermolecular-intrastructural diversification of autoantibody responses to the components of Ul snRNPs in human and murine lupus, possibly mediated by alterations in antigen processing induced by the autoantibodies themselves.
M Satoh, J J Langdon, K J Hamilton, H B Richards, D Panka, R A Eisenberg, W H Reeves
The Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by thrombocytopenia, eczema, disorders in cell-mediated and humoral immunity, and a proclivity to lymphoproliferative disease. The gene responsible encodes a 53-kD proline-rich protein of unknown function (WASP). We produced a FLAG-WASP fusion protein that was used to immunize mice and produce mAbs against WASP. Using monoclonal anti-WASP in Western immunoblots, we have determined that WASP is present in the cytoplasmic but not nuclear fraction of normal human peripheral blood mononuclear cells, in normal human platelets, in T lymphocytes, non-T lymphocytes, and monocytes. The protein is produced in the B cell immunoblastic cell line DS-1, in normal EBV-transformed B cell lines, and in HEL92.1.7, but is barely detectable in MOLT-4 and not detectable in K562. WASP was present in two of four EBV-transformed cell lines from WAS patients. Splenic tissue immunostaining was performed in two patients, and the results correlated with the results of the Western blots. Sequence analysis of WASP cDNA from two patients who produce WASP show mutations causing amino acid substitutions. These studies establish a foundation for further studies aimed at understanding the function of WASP.
D M Stewart, S Treiber-Held, C C Kurman, F Facchetti, L D Notarangelo, D L Nelson
Cytomegalovirus (CMV) has been associated with immunosuppression. Previously CMV was reported to interfere with signal transduction pathways in T cells. In this report the mechanisms underlying CMV-mediated immunosuppression were examined. Supernatants of CMV (Strains C-87, AD-169)-infected primary human monocyte (MO) cultures inhibited mitogenic T cell proliferative responses by > 95%. The inhibitory activity was observed 24 h through day 7 postinfection. The infection of MO was associated with a sustained elevation of intracellular levels of cAMP and the release of arachidonic acid (AA) and its metabolite PGE2 (activator of adenylate cyclase) in culture supernatants. The AA release was incidentally associated with TNF-alpha production. Monoclonal antibodies to TNF-alpha and pentoxyphylline (inhibitor of TNF synthesis) inhibited both AA and PGE2 release. The release of AA required protein synthesis and occurred under conditions consistent with the expression of CMV immediate early genes. Treatment of MO cultures at time of infection with 100 microM indomethacin or 1 microg of TNF-alpha mAb abolished the CMV-induced T cell inhibitory activity of the supernatants by 100%. These data suggest that TNF dependent release of AA and PGE2 contributes to CMV-induced immunosuppression.
M A Nokta, M I Hassan, K Loesch, R B Pollard
Obliterative bronchiolitis (OB) is the most serious late complication of lung transplantation, but the pathogenesis of this disorder has not been elucidated. We sought evidence that OB is mediated by a cellular immunologic response by characterizing T cell antigen receptor beta-chain variable gene (TCRBV) repertoires in lung allograft recipients. Expression levels of 27 TCRBV among recipients were determined by multiprobe RNase protection assay after PCR amplification. In comparison to recipients with no evidence of rejection (n = 9), the PBL TCRBV repertoires of OB subjects (n = 16) exhibited more frequent expansions (16 vs. 9% of all measured TCRBV, P < 0.02), and the magnitudes of these abnormalities were greater (8.2 +/- 0.8 vs. 4.5 +/- 0.3 SD from mean normal values, P < 0.01). TCRBV sequencing showed these expansions were composed of clonal or oligoclonal populations. Thus, T cell responses in the recipients are marked by highly selective clonal expansions, presumably driven by indirect recognition of a limited number of immunodominant alloantigens. These processes are exaggerated among allograft recipients with OB, implying that cognate immune mechanisms are important in the pathogenesis of the disorder. Furthermore, the prominence of finite, distinct TCR phenotypes raise possibilities for development of novel diagnostic modalities and targeted immunotherapies for OB and other manifestations of chronic allograft rejection.
S R Duncan, V Valentine, M Roglic, D J Elias, K W Pekny, J Theodore, D H Kono, A N Theofilopoulos
We have studied the expression of members of the bcl-2 family in human breast cancer. The expression pattern of these genes in breast cancer tissue samples was compared with the expression pattern in normal breast epithelium. No marked difference with regard to bcl-2 and bcl-xL expression was observed between normal breast epithelium and cancer tissue. In contrast, bax-alpha, a splice variant of bax, which promotes apoptosis, is expressed in high amounts in normal breast epithelium, whereas only weak or no expression could be detected in 39 out of 40 cancer tissue samples examined so far. Of interest, downregulation of bax-alpha was found in different histological subtypes. Furthermore, we transfected bax-alpha into breast cancer cell lines under the control of a tetracycline-dependent expression system. We were able to demonstrate for the first time that induction of bax expression in breast cancer cell lines restores sensitivity towards both serum starvation and APO-I/Fas-triggered apoptosis and significantly reduces tumor growth in SCID mice. Therefore, we propose that dysregulation of apoptosis might contribute to the pathogenesis of breast cancer at least in part due to an imbalance between members of the bcl-2 gene family.
R C Bargou, C Wagener, K Bommert, M Y Mapara, P T Daniel, W Arnold, M Dietel, H Guski, A Feller, H D Royer, B Dörken
In addition to its ability to remove cholesterol from cells, HDL also delivers cholesterol to cells through a poorly defined process in which cholesteryl esters are selectively transferred from HDL particles into the cell without the uptake and degradation of the lipoprotein particle. The HDL-cholesteryl ester selective uptake pathway is known to occur in human, rabbit, and rodent hepatocytes where it may contribute to the clearance of plasma cholesteryl ester. The selective uptake pathway has been studied most extensively in steroidogenic cells of rodents in which it accounts for 90% or more of the cholesterol destined for steroid production or cholesteryl ester accumulation. In this study we have used apo A-I-, apo A-II-, and apo E-deficient mice created by gene targeting in embryonic stem cells to test the importance of the three major HDL proteins in determining cholesteryl ester accumulation in steroidogenic cells of the adrenal gland, ovary, and testis. apo E and apo A-II deficiencies were found to have only modest effects on cholesteryl ester accumulation. In contrast, apo A-I deficiency caused an almost complete failure to accumulate cholesteryl ester in steroidogenic cells. These results suggest that apo A-I is essential for the selective uptake of HDL-cholesteryl esters. The lack of apo A-I has a major impact on adrenal gland physiology causing diminished basal corticosteroid production, a blunted steroidogenic response to stress, and increased expression of compensatory pathways to provide cholesterol substrate for steroid production.
A S Plump, S K Erickson, W Weng, J S Partin, J L Breslow, D L Williams
Prostaglandins formed by the cyclooxygenase (COX) enzymes are important mediators of inflammation in arthritis. The contribution of the inducible COX-2 enzyme to inflammation in rat adjuvant arthritis was evaluated by characterization of COX-2 expression in normal and arthritic paws and by pharmacological inhibition of COX-2 activity. The injection of adjuvant induced a marked edema of the hind footpads with coincident local production of PGE2. PG production was associated with upregulation of COX-2 mRNA and protein in the affected paws. In contrast, the level of COX-1 mRNA was unaffected by adjuvant injection. TNF-alpha and IL-6 mRNAs were also increased in the inflamed paws as was IL-6 protein in the serum. Therapeutic administration of a selective COX-2 inhibitor, SC-58125, rapidly reversed paw edema and reduced the level of PGE2 in paw tissue to baseline. Interestingly, treatment with the COX-2 inhibitor also reduced the expression of COX-2 mRNA and protein in the paw. Serum IL-6 and paw IL-6 mRNA levels were also reduced to near normal levels by SC-58125. Furthermore, inhibition of COX-2 resulted in a reduction of the inflammatory cell infiltrate and decreased inflammation of the synovium. Notably, the antiinflammatory effects of SC-58125 were indistinguishable from the effects observed for indomethacin. These results suggest that COX-2 plays a prominent role in the inflammation associated with adjuvant arthritis and that COX-2 derived PGs upregulate COX-2 and IL-6 expression at inflammatory sites.
G D Anderson, S D Hauser, K L McGarity, M E Bremer, P C Isakson, S A Gregory
Mice with chronic granulomatous disease (X-CGD mice) generated by mutating the X-linked gene for a subunit of NADPH oxidase have been analyzed for their ability to respond to intravenous injection of purified cobra venom factor (CVF). This agent in wild-type mice produces a neutrophil-dependent and catalase-sensitive form of lung injury. Lung injury was evaluated by measuring the accumulation of extravascular albumin. Quite unexpectedly, the lungs of X-CGD mice showed no difference in the increased accumulation of extravascular albumin after injection of CVF when compared to wild-type mice. In both X-CGD and wild-type mice, full development of injury required neutrophils. While catalase was highly protective in wild-type mice, its protective effects were completely lost in the X-CGD mice. Furthermore, a competitive antagonist of L-arginine, N(G)-methyl-L-arginine, was protective in X-CGD mice but not in wild-type mice. Allopurinol was protective in both types of mice. Both the basal and the CVF-inducible lung mRNA for inducible nitric oxide synthase and IL-1beta was similar in X-CGD and wild-type mice. These data indicate that oxygen radical production and lung injury in response to injection of CVF occurs through alternative pathways in mice with genetic deletion of NADPH oxidase.
H Kubo, D Morgenstern, W M Quinian, P A Ward, M C Dinauer, C M Doerschuk