A M Scanu, G M Fless
Insulin-induced hypoglycemia (IIH) is a strong stimulator of pituitary ACTH secretion. The mechanisms by which IIH activates the corticotrophs are still controversial. Indeed, in rats the variations of corticotropin-releasing factor (CRF) and arginine vasopressin (AVP) secretion in hypophysial portal blood (HPB) during IIH have been diversely appreciated. This may be due to the stressful conditions required for portal blood collection in rats. We studied the effects of IIH on the secretion of CRF and AVP in HPB and on the release of ACTH and cortisol in peripheral plasma in conscious, unrestrained, castrated rams. After the injection of a low (0.2 IU/kg) or high dose (2 IU/kg) of insulin, ACTH and cortisol levels in peripheral plasma increased in a dose-related manner. After injection of the low dose of insulin, CRF and AVP secretion in HPB were equally stimulated. After injection of the high dose of insulin, CRF secretion was further stimulated, while AVP release was dramatically increased. These results suggest that when the hypoglycemia is moderate, CRF is the main factor triggering ACTH release, and that the increased AVP secretion potentiates the stimulatory effect of CRF. When hypoglycemia is deeper, AVP secretion becomes predominant and may by itself stimulate ACTH release.
A Caraty, M Grino, A Locatelli, V Guillaume, F Boudouresque, B Conte-Devolx, C Oliver
We established a transformed B cell line expressing both IgM and IgG on the cell surface from a patient with hyper IgM immunodeficiency using Epstein-Barr viruses. DNA and RNA of the cells were analyzed. DNA rearrangements of Ig JH gene loci were observed on both chromosomes. Cloning and DNA sequence analyses showed that one has a VHDHJH structure while the other has a DHJH structure. Southern hybridization with 5'-S mu and S gamma region-containing probes indicated germline configuration in the switch regions of mu and gamma genes on both chromosomes. To test expression of mu and gamma chains in the transformed cells at the mRNA-level, we used the polymerase chain reaction with three kinds of synthetic oligonucleotides as primers, one of which was part of the VH gene, while the other two were complementary to parts of C mu and C gamma genes. Sequence analysis of the amplified products showed that the same VHDHJH sequence is directly connected with either the C mu or the C gamma sequence in the mRNAs. This is direct evidence showing that in double isotype-bearing cells one VHDHJH exon in the transcript is alternatively spliced to C mu or C gamma without DNA rearrangement. The defect in this disease could be at the S-S recombination stage.
Y Akahori, Y Kurosawa, Y Kamachi, S Torii, H Matsuoka
After arterial denudation by external rubbing of the left main renal artery, we assessed renal plasma flow rate (RPF) and glomerular filtration rate (GFR) in left and right kidneys of Munich-Wistar rats before and after intravenous infusion of acetylcholine (ACH), atrial natriuretic peptide (ANP), or nitroprusside (NP). In the right kidney RPF and/or GFR increased in response to both endothelium-derived relaxing factor (EDRF)-dependent (i.e., ACH) and -independent vasodilators (i.e., ANP and NP); on average, RPF rose by 22 +/- 4% (P less than 0.005), 19 +/- 10% (P less than 0.005), and 37 +/- 12% (P greater than 0.05), respectively. By contrast, in the left kidney RPF failed to increase after ACH (falling by 23 +/- 10%, P less than 0.001) and rose only in response to ANP and NP. To further evaluate the main renal artery's contribution to renal vasodilation, ACH and another EDRF-dependent agent, histamine, were infused through a micropipette into either the proximal or distal portions of the endothelium-intact renal artery. Proximal infusion of ACH led to increases in RPF and GFR, on average by 8 +/- 2% (P less than 0.025) and 10 +/- 3% (P less than 0.01), while bypassing the arterial endothelium by distal infusion failed to increase RPF and GFR, which fell by 24 +/- 6% (P less than 0.025) and 22 +/- 6% (P less than 0.005), respectively. Similarly, proximal infusion of histamine increased RPF by 12 +/- 3% (P less than 0.05), while distal infusion was virtually without effects on plasma flow. Micropuncture study during intravenous ACH infusion revealed significantly higher afferent and efferent arteriolar resistances and lower ultrafiltration coefficients in denuded versus nondenuded kidneys. These data indicate that the main renal artery is a major regulator of renal blood flow and vascular resistances. Similar to other endothelium-derived substances, EDRF may be elaborated mainly by large vessels and may act on the downstream microcirculatory systems, which determine organ blood flow and transcapillary fluid transfer.
V Kon, R C Harris, I Ichikawa
Enhanced activity of the Na+/H+ antiporter is increasingly reported as a feature of cells from hypertensive subjects but the intracellular pH (ipH) dependency of its activity has not been examined. This study was designed to characterize the kinetic properties of the Na+/H+ antiporter in lymphocytes from adult spontaneously hypertensive rats (SHR) and in those from age-matched normotensive Wistar-Kyoto (WKY) controls. Steady-state ipH, estimated from the measurement of BCECF fluorescence, was significantly lower in lymphocytes from the SHR than in those from WKY rats (7.09 +/- 0.02, n = 17 and 7.17 +/- 0.03, n = 19, respectively, P less than 0.025). The velocity of the antiporter determined from the product of the change in intracellular hydrogen ion concentration (i[H+]) by the buffering power measured concurrently at each starting ipH exhibited similar kinetic parameters in SHR and WKY cells: Vmax, 72 +/- 18 vs. 79 +/- 24 mM H+/30 s; pKH, 10.04 +/- 0.87 vs. 8.49 +/- 0.80; and Hill coefficient, 1.67 +/- 0.12 vs. 1.44 +/- 0.10, respectively. Likewise, no significant differences were observed between SHR and WKY cells in either the Km (29 +/- 5 and 32 +/- 8 mM, respectively) or the Vmax (6.0 +/- 1.0 and 5.53 +/- 1.0 mM H+/30 s, respectively) of the sodium activation curve. We conclude that while the ipH of SHR lymphocytes is reduced, the kinetic properties of the Na+/H+ antiporter are virtually identical in SHR and WKY lymphocytes. Consequently, a primary abnormality in the activity of this antiporter is not an inherent feature of lymphocytes from the SHR model of genetic hypertension. We propose that the activity of the Na+/H+ antiporter in SHR cells is apt to be increased as a result of reduction in ipH which dictates a higher set point in its steady-state activity.
A M Saleh, D C Batlle
Small cell lung cancer (SCLC) tumor progression can involve partial or complete conversion to a more treatment-resistant non-small cell (NSCLC) phenotype. In a cell culture model of this phenomenon, we have previously demonstrated that insertion of the viral Harvey ras gene (v-Ha-ras) into SCLC cell lines with amplification and overexpression of the c-myc gene induced many NSCLC phenotypic features. We now report that the v-Ha-ras gene can also induce morphologic, biochemical, and growth characteristics consistent with the NSCLC phenotype in an N-myc amplified SCLC cell line, NCI-H249. We show that v-Ha-ras has novel effects on these cells, abrogating an SCLC-specific growth requirement for gastrin-releasing peptide, and inducing mRNA expression of three NSCLC-associated growth factors and receptors, platelet-derived growth factor B chain, transforming growth factor-alpha (TGF-alpha), and epidermal growth factor receptor (EGF-R). TGF-alpha secretion and EGF-R also appear, consistent with the induction of an autocrine loop previously shown to be growth stimulatory for NSCLC in culture. These data suggest that N-myc and v-Ha-ras represent functional classes of genes that may complement each other in bringing about the phenotypic alterations seen during SCLC tumor progression, and suggest that such alterations might include the appearance of growth factors and receptors of potential importance for the growth of the tumor and its surrounding stroma.
J P Falco, S B Baylin, R Lupu, M Borges, B D Nelkin, R K Jasti, N E Davidson, M Mabry
This study reports on the potent cytocidal and interleukin-1 releasing properties of Escherichia coli hemolysin (ECH) on human monocytes. Nanomolar concentrations of purified ECH (250-2,000 ng/ml) caused rapid and irreversible depletion of cellular ATP to levels below 20% of controls within 60 min. Subcytocidal doses (10-200 ng/ml) of ECH induced rapid release within 60-120 min of large amounts of interleukin 1 beta (IL-1 beta) from cultured monocytes. IL-1 beta release occurred in the presence of actinomycin D and cycloheximide, and was thus probably due to processing and export of intracellular IL-1 beta precursor. Incubation of toxin-producing E. coli at ratios of only 0.3-3 colony-forming units per monocyte evoked approximately 50% depletion of total cellular ATP within 90 min. Toxin producers also stimulated synthesis and release of large amounts of interleukin 1, but not of tumor necrosis factor within the same time span. In contrast, non-toxin producers caused neither cell death nor rapid interleukin 1 release. Stimulation of rapid interleukin 1 release coupled with potent cytocidal effects on cells of monocytic origin may represent pathogenetically significant events incurred by bacterial strains that produce ECH and related cytolysins.
S Bhakdi, M Muhly, S Korom, G Schmidt
Polypeptide hormone signal transmission by receptor tyrosine kinases requires the rapid reversal of tyrosine phosphorylation by protein phosphotyrosine phosphatases (PPTPases). We studied hepatic PPTPases in the rat with emphasis on acute and chronic regulation by insulin. PPTPase activity with artificial substrates ([32P]Tyr-reduced, carboxyamidomethylated, and maleylated lysozyme and [32P]Tyr-poly[glutamic acid:tyrosine] 4:1) was present in distinct membrane, cytoskeletal, and cytosolic fractions. These PPTPase activities were unaffected by alloxan diabetes. Acute administration of insulin to normal animals also did not change PPTPase activity in liver plasma membranes or endosomal membranes. Although alloxan diabetes did not affect PPTPase activity measured with artificial substrates or with epidermal growth factor receptors, a decrease in insulin receptor dephosphorylation was noted. Dephosphorylation of hepatic receptors from normal and diabetic rats by membrane PPTPase from control rats was similar. These results indicate that alloxan diabetes does not lead to a generalized effect on hepatic PPTPase activity, although a substrate-specific decrease in activity with the insulin receptor may occur.
P A Gruppuso, J M Boylan, B I Posner, R Faure, D L Brautigan
These studies, using in vivo micropuncture techniques in the Munich-Wistar rat, document the magnitude of changes in glomerular and tubular function and structure 24 h after approximately 75% nephron loss (Nx) and compared these results with those obtained in sham-operated rats. The contribution of either nephron hypertrophy or renal prostaglandin to these adjustments in nephron function was also explored. After acute Nx, single nephron GFR (SNGFR) was increased, on average by approximately 30%, due primarily to glomerular hyperperfusion and hypertension. The approximately 45% reduction in preglomerular and the constancy in postglomerular vascular resistances was entirely responsible for these adaptations. Although increases in fluid reabsorption in proximal convoluted tubules correlated closely with increase in SNGFR, the fractional fluid reabsorption between late proximal and early distal tubular segments was depressed. Nephron hypertrophy could not be substantiated based on either measurements of protein content in renal tissue homogenates or morphometric analysis of proximal convoluted tubules. However, acute Nx was associated with increased urinary excretory rates per functional nephron for 6-keto-PGF1 alpha and TXB2. Prostaglandin synthesis inhibition did not affect function in control nephrons, but this maneuver was associated with normalization of glomerular and tubular function in remnant nephrons. The results suggest that enhanced synthesis of cyclooxygenase-dependent products is one of the earliest responses to Nx, and even before hypertrophy the pathophysiologic effects of prostaglandin may be important contributors to the adaptations in remnant nephron function.
J C Pelayo, P F Shanley
Crohn's disease represents part of a spectrum of inflammatory bowel diseases characterized by immune regulatory defects and genetic predisposition. T cell antigen receptor V gene usage by T lymphocytes was investigated using four MAbs specific for various V gene products. One MAb (Ti3a), reactive with V beta 8 gene products, detected increased numbers of T cells in a subset of Crohn's disease patients as compared with normal controls and ulcerative colitis patients. In family studies there was no apparent inherited predisposition to the use of V beta 8 genes, and there was no association between a restriction fragment length polymorphism of the V beta 8.1 gene and Crohn's disease. The V beta 8+ T cells were concentrated in the mesenteric lymph nodes draining the inflammatory lesions and belonged to both the CD4+ and CD8+ T cell subsets. In contrast, lamina propria and intraepithelial T cells were not enriched in V beta 8+ T cells, suggesting that these cells were participating in the afferent limb of a gut-associated immune response. The expanded V beta 8+ T cells in Crohn's disease appear to result from an immune response to an as yet unknown antigen.
D N Posnett, I Schmelkin, D A Burton, A August, H McGrath, L F Mayer
Peripheral blood monocytes from patients with active tuberculosis are "activated" by a number of criteria, including selective depression of T-lymphocyte responses to the mycobacterial antigen, tuberculin-purified protein derivative (PPD). We studied monocytes from patients with tuberculosis and healthy skin test reactive controls for expression and function of IL 2 receptors (IL 2R). Depletion of adherent monocytes increased the IL 2 activity of supernatants of PPD-stimulated T cell cultures from patients by 30-fold. When cultured with purified IL 2, adherent cells from the patients depleted IL 2 activity by 66%. Monocytes from patients displayed IL 2R on their surface as evidenced by anti-Tac reactivity, and released soluble IL 2R into the medium during culture. The release of soluble IL 2R was augmented when monocytes were cultured with PPD. Finally, freshly isolated adherent monocytes from patients but not healthy individuals expressed the gene encoding Tac protein. Thus, blood monocytes from patients with tuberculosis express functional IL 2R constitutively. This property may be important in the immunoregulatory and effector function of mononuclear phagocytes during tuberculosis.
Z Toossi, J R Sedor, J P Lapurga, R J Ondash, J J Ellner
To examine the relationship between plasma insulin concentration and intracellular glucose metabolism in control and diabetic rats, we measured endogenous glucose production, glucose uptake, whole body glycolysis, muscle and liver glycogen synthesis, and rectus muscle glucose-6-phosphate (G-6-P) concentration basally and during the infusion of 2, 3, 4, 12, and 18 mU/kg.min of insulin. The contribution of glycolysis decreased and that of muscle glycogen synthesis increased as the insulin levels rose. Insulin-mediated glucose disposal was decreased by 20-30% throughout the insulin dose-response curve in diabetics compared with controls. While at low insulin infusions (2 and 3 mU/kg.min) reductions in both the glycolytic and glycogenic fluxes contributed to the defective tissue glucose uptake in diabetic rats, at the three higher insulin doses the impairment in muscle glycogen repletion accounted for all of the difference between diabetic and control rats. The muscle G-6-P concentration was decreased (208 +/- 11 vs. 267 +/- 18 nmol/g wet wt; P less than 0.01) compared with saline at the lower insulin infusion, but was gradually increased twofold (530 +/- 16; P less than 0.01 vs. basal) as the insulin concentration rose. The G-6-P concentration in diabetic rats was similar to control despite the reduction in glucose uptake. These data suggest that (a) glucose transport is the major determinant of glucose disposal at low insulin concentration, while the rate-limiting step shifts to an intracellular site at high physiological insulin concentration; and (b) prolonged moderate hyperglycemia and hypoinsulinemia determine two distinct cellular defects in skeletal muscle at the levels of glucose transport/phosphorylation and glycogen synthesis.
L Rossetti, A Giaccari
The effects of replacing luminal chloride with gluconate on distal tubule bicarbonate transport were studied in vivo in normally fed rats, overnight-fasted rats, and rats made mildly alkalotic by administration of desoxycorticosterone acetate (DOCA). In paired microperfusions of the same tubule with 0 or 55 mM Cl at 25 nl/min, net secretion of bicarbonate by distal tubules of fed rats was inhibited by chloride replacement. Zero chloride perfusion in DOCA rats also resulted in an inhibition of net bicarbonate secretion at 25 nl/min. In contrast, replacement of 45 mM chloride also perfused at 25 nl/min in fasted rats caused an increase in net bicarbonate reabsorption. To further characterize the effects of changes in luminal chloride, experiments were undertaken in fasted rats with 0, 45, and 100 mM chloride-containing solutions perfused at 8 and 25 nl/min. Perfusion with zero Cl resulted in net bicarbonate reabsorption at 8 nl/min that increased markedly with high flow, whereas bicarbonate reabsorption did not change significantly during perfusion at high flow with a 45-mM Cl perfusate. In marked contrast, perfusion with a 100-mM Cl solution resulted in only minimal bicarbonate reabsorption at 8 nl/min with significant secretion observed at high flow. Thus, chloride-free perfusates inhibit bicarbonate secretion and enhance bicarbonate reabsorption, while high chloride perfusates elicit net bicarbonate secretion in usually reabsorbing distal tubules.
D Z Levine, D Vandorpe, M Iacovitti
We have previously shown that the intracellular free Ca2+ increase induced by erythropoietin is likely related to differentiation rather than proliferation in human BFU-E-derived erythroblasts (1989. Blood. 73:1188-1194). Since cell differentiation involves transcription of specific regions of the genome, and since nuclear endonucleases responsible for single strand DNA breaks observed in cells undergoing differentiation are Ca2+ dependent, we investigated whether the erythropoietin-induced calcium signal is transmitted from cytosol to nucleus in this study. To elucidate subcellular Ca2+ gradients, the technique of optical sectioning microscopy was used. After determining the empirical three-dimensional point spread function of the video imaging system, contaminating light signals from optical planes above and below the focal plane of interest were removed by deconvolution using the nearest neighboring approach. Processed images did not reveal any discernible subcellular Ca2+ gradients in unstimulated erythroblasts. By contrast, with erythropoietin stimulation, there was a two- to threefold higher Ca2+ concentration in the nucleus compared to the surrounding cytoplasm. We suggest that the rise in nuclear Ca2+ may activate Ca2(+)-dependent endonucleases and initiate differentiation. The approach described here offers the opportunity to follow subcellular Ca2+ changes in response to a wide range of stimuli, allowing new insights into the role of regional Ca2+ changes in regulation of cell function.
R V Yelamarty, B A Miller, R C Scaduto Jr, F T Yu, D L Tillotson, J Y Cheung
To define the immunoregulatory mechanisms underlying serum IgE levels found in patients with filariasis, we studied polyclonal IgE production by peripheral blood mononuclear cells (PBMC) from 15 patients with filarial infections, with a focus on the role of interleukin-4 (IL-4) and interferon-gamma (IFN-gamma) in the generation and regulation of the response. Spontaneous in vitro IgE production was elevated in 10 of the 15 patients (836-6,464 pg/ml; normals, less than 500 pg/ml). Addition of filarial parasite antigen to PBMC cultures significantly stimulated polyclonal IgE production in an antigen dose-dependent manner in 10 of 12 patients tested (P less than 0.001). The essential role of IL-4 in the generation of this response was demonstrated when simultaneous addition of anti-IL-4 completely inhibited antigen-stimulated IgE production in all 10 patients studied. An inhibitory role of endogenously produced IFN-gamma was also indicated when the addition of anti-IFN-gamma to the cultures significantly augmented filarial antigen-stimulated IgE production by 33-1,238% in these same patients. Addition of 10-1,000 U/ml of recombinant human IFN-gamma to PBMC completely inhibited parasite antigen-induced IgE production. This study demonstrates that filarial antigen-stimulated IgE production in patients with filariasis is mediated by IL-4 and down regulated by IFN-gamma and suggests that the amount of IgE produced depends on the relative quantity of IL-4 and IFN-gamma generated by parasite-specific T cells.
C L King, E A Ottesen, T B Nutman
Increased tonic contractile activity from exercise or electrical stimulation induces a variety of changes in skeletal muscle, including vascular growth, myoblast proliferation, and fast to slow fiber type conversion. Little is known about the cellular control of such changes, but pleiotropic biochemical modulators such as fibroblast growth factors (FGFs) may be involved in this response and thus may be regulated in response to such stimuli. We examined the regulation of FGF expression in an in vivo model of exercise conditioning previously shown to exhibit vascular growth and fast to slow fiber conversion. FGFs were extracted by heparin-affinity chromatography from extensor digitorum longus muscles of adult rabbits subjected to chronic motor nerve stimulation at 10 Hz. Growth factor activity (expressed in growth factor units [GFUs]) of muscle stimulated for 3 and 21 d was assayed by [3H]thymidine incorporation in 3T3 fibroblasts and compared with that present in the contralateral unstimulated muscle. A small increase in heparin-binding mitogenic activity was observed as early as 3 d of stimulation, and by 21 d mitogenic activity increased significantly when normalized to either wet weight (stimulated, 287 +/- 61 GFU/g; unstimulated, 145 +/- 39 GFU/g) or to protein (stimulated, 5.3 +/- 1.1 GFU/mg; unstimulated, 2.2 +/- 0.6 GFU/mg) (+/- SE, P less than 0.05). Western analysis demonstrated increased amounts of peptides with immunological identity to acidic and basic FGFs in stimulated muscle. The increase in FGF content observed in this study is synchronous with neovascularization, myoblast proliferation, and fast to slow fiber type conversion previously shown in this model. These results demonstrate that increased expression of FGFs is associated with motor nerve stimulation and increased tonic contractile activity of skeletal muscle, and suggests that these proteins may play a regulatory role in the cellular changes that occur during exercise conditioning.
N G Morrow, W E Kraus, J W Moore, R S Williams, J L Swain
Three patients with chronic lacticacidemia and deficiency of the pyruvate dehydrogenase complex demonstrated in cultured skin fibroblasts showed abnormalities on Western blotting with anti-pyruvate dehydrogenase complex antiserum which were not located in the E1 (alpha and beta) component of the complex. One of these patients had an enzymatically demonstrable deficiency in the E2 dihydrolipoyl transacetylase segment of the complex and very low observable E2 protein component on Western blotting of fibroblast proteins. The other two patients had abnormalities observable in the X component but no observable reduction in either E1, E2, or E3 enzymatic activities. One patient appeared to have a missing X component while the other had two distinct bands where X should be on Western blotting of fibroblast proteins. All three patients appeared to have severe clinical sequelae resulting from these defects. This is the first time that defects in either the E2 or the X component of the pyruvate dehydrogenase complex have been observed in the human population.
B H Robinson, N MacKay, R Petrova-Benedict, I Ozalp, T Coskun, P W Stacpoole
Although some cultured human melanoma cell lines are responsive to melanotropins (melanocyte-stimulating hormones [MSH]), the prevalence and tissue distribution of MSH receptors in melanoma are unknown. We report here the use of an in situ binding technique to demonstrate specific MSH receptors in surgical specimens of human melanoma. The distribution and binding properties of specific MSH binding sites were determined by autoradiography and image analysis after incubation of frozen tumor tissue sections with a biologically active, radiolabeled analogue of alpha-MSH, [125I]iodo-Nle4, D-Phe7-alpha-MSH ([125I]NDP-MSH). In melanoma specimens from 11 patients, 3 showed high levels of specific binding, 5 showed low levels, and in 3 patients specific binding of [125I]NDP-MSH was not detectable. Specific MSH binding sites were present in melanoma cells, but not in adjacent connective or inflammatory tissues. Melanotropins, including alpha-MSH, NDP-MSH, and ACTH, inhibited [125I]NDP-MSH binding in a concentration-dependent manner, whereas unrelated peptides (somatostatin and substance P) did not. The apparent affinity of alpha-MSH for this binding site was in the nanomolar range (EC50 = 2 X 10(-9) M for inhibition of [125I]NDP-MSH binding in situ), similar to that recently described for the murine melanoma receptor. In one patient, analysis of multiple intratumor samples and tumors excised on three separate occasions revealed high levels of specific MSH binding in all samples. These results suggest that endogenous melanotropins may modulate the activities of human melanoma cells in vivo.
J B Tatro, M Atkins, J W Mier, S Hardarson, H Wolfe, T Smith, M L Entwistle, S Reichlin
The cellular distribution and temporal expression of transcripts from transforming growth factor-beta 1 (TGF-beta 1) and procollagen alpha 1(I), alpha 1(III), and alpha 1(IV) genes were studied in carbon tetrachloride (CCl4)-induced rat liver fibrosis by using in situ hybridization technique. During the fibrotic process, TGF-beta 1 and procollagen genes were similarly and predominantly expressed in Desmin-positive perisinusoidal cells (e.g., fat-storing cells and myofibroblasts) and fibroblasts and their expression continued to be higher than those observed in control rats. These transcripts were also observed in inflammatory cells mainly granulocytes and macrophage-like cells at the early stages of liver fibrosis. The production of extracellular matrix along small blood vessels and fibrous septa coincided with the expression of these genes. Expression of TGF-beta 1 and procollagen genes were not detected in hepatocytes throughout the experiment. No significant differences in cellular distribution or time course of gene expression among procollagen alpha 1(I), alpha 1(III), and alpha 1(IV) were observed. Desmin-positive perisinusoidal cells and fibroblasts appeared to play the principal role in synthesis of collagens in CCl4-induced hepatic fibrosis. The simultaneous expression of TGF-beta 1 and procollagen genes in mesenchymal cells, including Desmin-positive perisinusoidal cells, during hepatic fibrosis suggests the possibility that TGF-beta 1 may have an important role in the production of fibrosis.
H Nakatsukasa, P Nagy, R P Evarts, C C Hsia, E Marsden, S S Thorgeirsson
Obesity is characterized by decreased rates of skeletal muscle insulin-mediated glucose uptake (IMGU). Since IMGU equals the product of the arteriovenous glucose difference (AVGd) across muscle and blood flow into muscle, reduced blood flow and/or tissue activity (AVGd) can lead to decreased IMGU. To examine this issue, we studied six lean (weight 68 +/- 3 kg, mean +/- SEM) and six obese (94 +/- 3 kg) men. The insulin dose-response curves for whole body and leg IMGU were constructed using the euglycemic clamp and leg balance techniques over a large range of serum insulin concentrations. In lean and obese subjects, whole body IMGU, AVGd, blood flow, and leg IMGU increased in a dose dependent fashion and maximal rates of all parameters were reduced in obese subjects compared to lean subjects. The dose-response curves for whole body IMGU, leg IMGU, and AVGd were right-shifted in obese subjects with an ED50 two- to threefold higher than that of lean subjects for each parameter. Leg blood flow increased approximately twofold from basal 2.7 +/- 0.2 to 4.4 +/- 0.2 dl/min in lean, P less than 0.01, and from 2.5 +/- 0.3 to 4.4 +/- 0.4 dl/min in obese subjects, P less than 0.01. The ED50 for insulin's effect to increase leg blood flow was about fourfold higher for obese (957 pmol/liter) than lean subjects (266 pmol/liter), P less than 0.01. Therefore, decreased insulin sensitivity in human obesity is not only due to lower glucose extraction in insulin-sensitive tissues but also to lower blood flow to these tissues. Thus, in vivo insulin resistance can be due to a defect in insulin action at the tissue level and/or a defect in insulin's hemodynamic action to increase blood flow to insulin sensitive tissues.
M Laakso, S V Edelman, G Brechtel, A D Baron
The immediate early (IE) genes of human cytomegalovirus (HCMV) can be expressed in monocytes/macrophages and are known to regulate other viral genes. The purpose of these studies was to determine if HCMV IE gene products also modulate expression of a monocyte/macrophage-derived gene, interleukin 1 (IL-1) beta. Steady-state cell-derived IL-1 beta mRNA was increased in lipopolysaccharide (LPS)-stimulated THP-1 cells when transfected with the HCMV IE1 + 2 genes, when compared to cells transfected with a control DNA. LPS-stimulated THP-1 cells also exhibited approximately 30-fold higher IL-1 CAT activity when cotransfected with IE1 + 2 than was observed for the same cells cotransfected with IL-1 CAT and a control plasmid containing the IE promoter alone. LPS increased IL-1 CAT activity in the absence of HCMV genes only twofold. IE1, by itself, increased IL-1 CAT activity in LPS-stimulated cells, whereas, IE2, by itself, caused no change in IL-1 CAT activity. These studies show that the IE1 gene of HCMV can regulate IL-1 beta gene expression. The observations further suggest that some of the inflammatory processes associated with HCMV infection may be due to an effect of HCMV IE genes on cell-derived genes, such as the IL-1 beta gene.
G K Iwamoto, M M Monick, B D Clark, P E Auron, M F Stinski, G W Hunninghake
We assessed the effect of alcohol, before and after autonomic blockade, on left ventricular (LV) performance in conscious dogs. 10 animals were instrumented to determine LV volume from ultrasonic LV internal dimensions and measure LV pressure with a micromanometer. The animals were studied in the conscious state after full recovery from the operation. Blood alcohol was undetectable before and 67 +/- 14 mg/dl (mean +/- SD) at 20 min after alcohol administration. In response to alcohol, the LV systolic pressure was reduced slightly, the left ventricular end-diastolic pressure increased slightly. The maximum time derivative of LV pressure (dP/dtmax) and stroke volume were decreased. The end-systolic volume (VES), as well as effective arterial elastance, were significantly increased. There was no significant change in heart rate. Variably loaded pressure-volume loops were generated by acute caval occlusion before, immediately, and 20 min after the intravenous infusion of alcohol (0.2 g/kg). Three measures of LV performance were derived from these variably loaded pressure-volume loops: the end-systolic pressure-volume relation; the stroke work-end-diastolic volume relation; and maximum dP/dt-VED relation. The slopes of all three relations were significantly decreased in response to alcohol, and all three relations were shifted toward the right, indicating a depression of LV contractile performance. Similar, but greater depressions of LV performance with alcohol were observed following autonomic blockade. LV performance was restored by infusing dobutamine. We conclude that mildly intoxicating levels of alcohol (blood concentration less than 100 mg/dl) are capable of producing LV contractile depression in conscious animals, which is more marked after autonomic blockade. This suggests that patients with impaired LV function should avoid even small amounts of alcohol.
C P Cheng, Z Shihabi, W C Little
22 of 61 systemic lupus erythematosus (SLE) patients produced antibodies to the p24 gag protein of HIV-1 demonstrated by Western blotting. 20 of these 22 patients (91%) also express the 4B4 idiotype (Id 4B4) previously identified on a human anti-Sm monoclonal antibody called 4B4. This represents an enrichment for this Id (seen in only 52% of SLE patients generally). Eight of these 22 SLE patients also have anti-Sm antibody activity. Sm partially inhibits the antibody binding of p24 gag suggesting immunologic cross-reactivity between the retroviral antigen p24 gag and the autoantigen Sm. Anti-Id 4B4 also inhibits p24 gag antibody binding by as much as 40%. Finally the monoclonal antibody 4B4 showed cross-reactivity to Sm and p24 gag. The following points emerge from our studies: (a) SLE patients make antibodies to p24 gag of HIV-1, (b) there is a relationship between immunity to p24 gag and a conserved idiotype, and (c) anti-Sm antibodies can cross-react with p24 gag.
N Talal, R F Garry, P H Schur, S Alexander, M J Dauphinée, I H Livas, A Ballester, M Takei, H Dang
Retinoblastoma is a malignant intraocular tumor that primarily affects small children. These tumors are primitive neuroectodermal malignancies, however some of them show morphologic evidence of differentiation into photoreceptors. Phototransduction cascades are a series of biochemical reactions that convert a photon of light into a neural impulse in rods and cones. The components of these cascades are uniquely expressed in photoreceptors and, although functionally similar, distinct components of these cascades are expressed in rods and cones. Using HPLC anion exchange chromatography, Western blot analysis, and specific monoclonal and polyclonal antibodies, we found that the cone but not the rod cGMP phosphodiesterase is functionally expressed in all six primary retinoblastomas examined and in three continuous retinoblastoma cell lines. Morphologic evidence of differentiation did not correlate with the expression of the enzyme. Furthermore, GTP analogues could activate the phosphodiesterase activity suggesting that an intact phototransduction cascade is present in the tumors. The presence of the cone phototransduction cascade in retinoblastoma confirms that this tumor has biochemically differentiated along the cone cell lineage.
R L Hurwitz, E Bogenmann, R L Font, V Holcombe, D Clark
To further the understanding of the role of T cells in immunity to the parasite Toxoplasma gondii, antigen-specific T cell clones were generated using peripheral blood mononuclear cells from seropositive individuals. Whole parasites were used to stimulate a proliferative expansion of antigen-reactive cells, followed by limiting dilution cloning in the presence of irradiated, autologous PBMC and rIL-2. Three parasite antigen-specific T cell clones expressing the CD3+ phenotype were selected for further characterization. Phenotypic analysis with monoclonal antibodies revealed two clones reactive with CD8 (RTg1 and RTg3) while the other (RTg2) phenotyped as CD4+, CD8-. When tested in a proliferation assay using a panel of different T. gondii proteins, clone RTg1 reacted with a single large protein (Mr greater than 180,000) as well as smaller components (less than 12,000), clone RTg2 reacted with a protein of Mr = 28,000 and clone RTg3 reacted with a protein of 116,000 plus smaller components (less than 12,000). Only the 28,000 = Mr antigen recognized by RTg2 was reactive on Western blot with autologous donor antisera. All three clones produced IFN-gamma and IL-2 in varying amounts upon antigenic stimulation in the presence of irradiated APC. Moreover, one clone RTg1, exhibited direct parasite cytotoxicity, inhibiting extracellular T. gondii by greater than 70% when incubated at an effector/target ratio of 40:1. This clone was alpha, beta TCR heterodimer positive and exerted its cytotoxic parasiticidal activity in the apparent absence of MHC restriction. The results provide evidence for the existence of circulating antigen-specific cytotoxic T cells in normal humans who are toxoplasma antibody seropositive.
I A Khan, K A Smith, L H Kasper
Amplification of oncogenes has been found to be an important prognostic factor in behavior of patients' malignancies. In this study we have used new gel electrophoresis techniques to follow the location of amplified c-myc oncogene sequences in HL-60 promyelocytic leukemia cells. In passages 46-62 of the cells, the cells contain amplified c-myc sequences on submicroscopic circular extrachromosomal DNA (episomes). With increased passages in culture (passages 63-72) the cells lose the episome c-myc sequences with a shift of those sequences to double minutes. With additional passage in culture, the c-myc shifts from the double minutes to a chromosomal site der(5)t(5;17)(q11.2;q?11.2). Concomitant with the shift of the c-myc sequences into the chromosomal compartment is a phenotypic change of a shortened cell-doubling time. These studies provide the first molecular evidence of a progression from a submicroscopic location for amplified oncogene sequences to a chromosomal location for the amplified sequences. This molecularly documented model can now be used to test various strategies to prevent incorporation of extrachromosomally located oncogene sequences into chromosomal sites. Prevention of integration of the oncogene sequences into chromosomal sites could modulate progression of patients' tumors.
D D Von Hoff, B Forseth, C N Clare, K L Hansen, D VanDevanter
The in vivo alterations in organ-specific substrate processing and endogenous mediator production induced by endotoxin were investigated in healthy volunteers. An endotoxin bolus (20 U/kg) produced increased energy expenditure, hyperglycemia, hypoaminoacidemia, and an increase in circulating free fatty acids. These changes included increased peripheral lactate and free fatty acid output, along with increased peripheral uptake of glucose. Coordinately, there were increased splanchnic uptake of oxygen, lactate, amino acids, and free fatty acids, and increased splanchnic glucose output. There were no changes in circulating glucagon, or insulin and transient changes in epinephrine and cortisol were insufficient to explain the metabolic changes. Plasma cachectin levels peaked 90 min after the endotoxin infusion, and hepatic venous (HV) cachectin levels (peak 250 +/- 50 pg/ml) were consistently higher than arterial levels (peak 130 +/- 30 pg/ml, P less than 0.05 vs. HV). No interleukin 1 alpha or 1 beta was detected in the circulation. Circulating interleukin 6, measured by B.9 hybridoma proliferation, peaked 2 h after the endotoxin challenge (arterial, 16 +/- 2 U/ml; HV, 21 +/- 3 U/ml). The net cachectin efflux (approximately 7 micrograms) from the splanchnic organs demonstrates that these tissues are a major site for production of this cytokine. Hence, splanchnic tissues are likely influenced in a paracrine fashion by regional cachectin production and may also serve as a significant source for systemic appearance of this cytokine.
Y M Fong, M A Marano, L L Moldawer, H Wei, S E Calvano, J S Kenney, A C Allison, A Cerami, G T Shires, S F Lowry
In this study, we examined whether inhalation of hypertonic saline aerosols increases vascular permeability in the rat trachea, and we examined the role of neurogenic inflammation in this response. Stereological point counting was performed to measure the percent area occupied by Monastral blue-labeled blood vessels as a means of quantifying the increase in vascular permeability in tracheal whole mounts. Hypertonic saline aerosols (3.6-14.4% NaCl) increased vascular permeability in a dose-dependent fashion compared with 0.9% NaCl. Thus, the area density of Monastral blue-labeled vessels after inhalation of 3.6% NaCl was greater (21.2 +/- 3.5% mean +/- SEM, n = 5) than after 0.9% NaCl aerosol (3.3 +/- 0.9%, n = 5, P less than 0.5). The neutral endopeptidase inhibitor phosphoramidon (2.5 mg/kg, i.v.) significantly potentiated the increase of vascular permeability caused by 3.6% NaCl. Desensitization of sensory nerve endings by pretreatment with capsaicin markedly reduced the usual increase in vascular permeability caused by 3.6% NaCl, but the increase in vascular permeability induced by aerosolized substance P (10(-4) M) was unchanged. These findings suggest that hypertonic saline increases vascular permeability in the rat trachea by stimulating the release of neuropeptides from sensory nerves.
E Umeno, D M McDonald, J A Nadel
In previous studies, IL-4 has been reported to interfere with IL-2-driven generation of lymphokine-activated killer (LAK) activity. In this investigation, we have demonstrated that IL-4 inhibited the IL-2-induced differentiation of large granular lymphocytes (LGL) into LAK effectors by a mechanism involving, at least in part, an increase in LGL intracellular cAMP levels. In contrast, with its capacity to induce cAMP accumulation in resting LGL, IL-4 had a very negligible effect on LAK activity induction, and cAMP levels increase in LGL that had been preincubated with IL-2. Furthermore, the inhibitory effect of IL-4 on LAK activity generation also correlated with a marked decrease in N-CBZ-L-lysine thiobenzylester esterase activity, with an inhibition of tumor necrosis factor (TNF) mRNA expression and TNF production by IL-2-stimulated LGL. These results strongly suggest that complex signaling processes could be ascribed to the dual activities of cytokines and their interplay in LAK promotion.
J Y Blay, D Branellec, E Robinet, B Dugas, F Gay, S Chouaïb
Cytokines produced by mononuclear cells are important regulatory and effector molecules and evidence has been presented to support a role at least for tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) in host defense against Leishmania. In the present study, we examined the production of TNF-alpha and interleukin 1 (IL-1) by resting and IFN-gamma-primed peripheral blood monocytes infected in vitro with Leishmania donovani. Monocytes produced neither IL-1 nor TNF-alpha during challenge with Leishmania. Cells preinfected with Leishmania synthesized normal amounts of TNF-alpha, but had diminished production of IL-1 in response to stimulation with either S. aureus or lipopolysaccharide (LPS). The induction by S. aureus or LPS of IL-1 beta mRNA accumulation in infected cells was normal despite diminished intracellular or supernatant IL-1 protein and bioactivity. Thus, inhibition of IL-1 production by Leishmania most probably reflected diminished translation of IL-1 beta mRNA. Pretreatment of cells with IFN-gamma abrogated infection-induced inhibition of IL-1 production and primed cells for the production of both IL-1 and TNF-alpha upon subsequent exposure to Leishmania. These results indicate that L. donovani has evolved the capacity to infect mononuclear phagocytes, without stimulating the production of two potentially host-protective monokines. The ability of IFN-gamma to prime monocytes to produce TNF-alpha and IL-1 in response to infection with Leishmania and to prevent inhibition of IL-1 production may have implications for immunotherapy with this lymphokine.
N E Reiner, W Ng, C B Wilson, W R McMaster, S K Burchett
Escherichia coli ingested by PMN are promptly growth arrested but undergo limited destruction. We have studied bacterial phospholipid hydrolysis as a possible limiting factor in the disassembly of ingested E. coli, comparing the fates, during phagocytosis by rabbit peritoneal exudate PMN, of three isogenic strains, differing in their content of the pldA gene encoding the principal E. coli phospholipase A (PLA), i.e., pldA-, pldA+, pldA (the latter strain bearing the pldA gene in a multicopy plasmid resulting in a 20-fold increase in PLA content). Ingestion and growth inhibition (greater than 99% within 15 min) were the same for the three strains, but phospholipid degradation differed according to bacterial PLA content: pldA up to 60%, pldA+ up to 30%, and pldA- up to 20%. Since the pldA- strain has no activatable PLA, phospholipid degradation in this strain demonstrates the action of a PMN PLA. Added PLA2-rich ascitic fluid (AF) or purified AF PLA2 increased the rate and extent of degradation of the pldA- strain, provided the enzyme was added before ingestion was complete. 125I-AF-PLA2 binds to both E. coli and PMN and thus can enter the vacuole during phagocytosis. Although up to 50-fold more AF-PLA2 than the PLA2 content of the PMN could be loaded into the PMN in this way, degradation of pldA- E. coli did not exceed 30%. Increased phospholipid degradation had no effect on the degradation of bacterial macromolecules. In contrast, bacterial disassembly manifest as structural disorganization, release of bacterial protein derived material, and inhibition of protein synthesis were markedly enhanced when greater than 50% of prelabelled bacterial phospholipids were degraded. These findings reveal a link between envelope phospholipid degradation and overall bacterial destruction, suggesting therefore that factors limiting PLA action limit the destruction of E. coli ingested by PMN.
G C Wright, J Weiss, K S Kim, H Verheij, P Elsbach
Cytokines are recognized as critical early mediators of organ injury. We attempted to determine whether or not severe hepatic ischemia/reperfusion injury results in tumor necrosis factor-alpha (TNF-alpha) release with subsequent local and systemic tissue injury. After 90 min of lobar hepatic ischemia, TNF was measurable during the reperfusion period in the plasma of all 14 experimental animals, with levels peaking between 9 and 352 pg/ml. Endotoxin was undetectable in the plasma of these animals. Pulmonary injury, as evidenced by a neutrophilic infiltrate, edema and intra-alveolar hemorrhage developed after hepatic reperfusion. The neutrophilic infiltrate was quantitated using a myeloperoxidase (MPO) assay; this demonstrated a significant increase in MPO after only 1 h of reperfusion. Anti-TNF antiserum pretreatment significantly reduced the pulmonary MPO after hepatic reperfusion. After a 12-h reperfusion period, there was histologic evidence of intra-alveolar hemorrhage and pulmonary edema. Morphometric assessment showed that pretreatment with anti-TNF antiserum was able to completely inhibit the development of pulmonary edema. Liver injury was quantitated by measuring serum glutamic pyruvic transaminase which showed peaks at 3 and 24 h. Anti-TNF antiserum pretreatment was able to significantly reduce both of these peak elevations. These data show that hepatic ischemia/reperfusion results in TNF production, and that this TNF is intimately associated with pulmonary and hepatic injury.
L M Colletti, D G Remick, G D Burtch, S L Kunkel, R M Strieter, D A Campbell Jr
Insulin-dependent diabetes mellitus (IDDM) is characterized by a progressive autoimmune destruction of the pancreatic beta-cells. One of the best-suited animal models for IDDM is the nonobese diabetic (NOD) mouse. In this investigation pancreatic islets were isolated from female NOD mice aged 5-7, 8-11, and 12-13 wk and examined immediately (day 0) or after 7 d of culture (day 7). The mice showed a progressive disturbance in glucose tolerance with age, and a correspondingly increased frequency of pancreatic insulitis. Islets isolated from the oldest mice often contained inflammatory cells on day 0, which resulted in an elevated islet DNA content. During culture these islets became depleted of infiltrating cells and the DNA content of the islets decreased on day 7. Islets of the eldest mice failed to respond with insulin secretion to high glucose, whereas a response was observed in the other groups. After culture all groups of islets showed a markedly improved insulin secretion. Islets from the 12-13-wk-old mice displayed a lower glucose oxidation rate at 16.7 mM glucose on day 0 compared with day 7. Islet (pro)insulin and total protein biosynthesis was essentially unaffected. In conclusion, islets obtained from 12-13-wk-old NOD mice exhibit an impaired glucose metabolism, which may explain the suppressed insulin secretion observed immediately after isolation. This inhibition of beta-cell function can be reversed in vitro. Thus, there may be a stage during development of IDDM when beta-cell destruction can be counteracted and beta-cell function restored, provided the immune aggression is arrested.
E Strandell, D L Eizirik, S Sandler
Because of their paternal antigens, the fetus and placenta may be considered an allograft in the maternal host. Local properties of the maternal-fetal interface, the placenta and decidua basalis, are important in preventing maternal immunologic rejection of the fetoplacental allograft. However, the exact nature of these local properties remains a fundamental unsolved problem in immunology. We now report that three macrophage functions were inhibited by the substratum formed by monolayers of decidual stromal cells via a novel pathway. Solid-phase inhibitors blocked macrophage adhesion, spreading, and lysis of tumor necrosis factor-alpha-resistant P815 mastocytoma tumor cells. Inhibition was not solely attributable to an inability of macrophages to adhere to decidual substratum because there were differences in macrophage functions on this surface versus polyhema where no adherence occurred. Because macrophages play a central role in cell-mediated immunity, including allograft rejection, inhibiting their function in the decidua basalis may help prevent maternal antifetal responses.
R W Redline, D B McKay, M A Vazquez, V E Papaioannou, C Y Lu
Previous studies have shown that the middle third of the rat inner medullary collecting duct (IMCD-2) secretes protons despite the absence of intercalated cells, the cell thought to secrete protons in other portions of the collecting duct. A new cell, the IMCD cell, is the predominant cell in IMCD-2. The mechanism responsible for base exit in the IMCD cell was characterized by measuring cell pH of isolated perfused tubules with 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein. Reduction of bath HCO3- caused a significant and reversible decrease in cell pH, whereas a similar change in luminal HCO3- had a significantly smaller effect, indicating that the HCO3-/H+ permeability of the basolateral membrane is much larger than the apical membrane. The rate of cell acidification induced by reduction in bath HCO3-, a measure of basolateral HCO3- transport, was significantly decreased in the absence of bath and lumen Cl. Decreases in bath Cl caused a significant and reversible increase in cell pH, which was not changed significantly by complete removal of Na from perfusate and bath, but was significantly inhibited by basolateral 4',5'-diisothiocyanostilbene-2,2'-disulfonic acid. A chemical voltage clamp did not inhibit the rate of cell alkalinization after bath Cl removal, indicating that Cl-/HCO3- exchange is not via parallel Cl and HCO3- conductances. Cell pH was measured in single cells by low-light-level imaging to show that most cells contain the chloride-dependent HCO3- pathway. We conclude that the rat IMCD cell possesses a basolateral Na-independent CL-/HCO3- exchanger which may serve as the base exit step for transepithelial proton secretion.
R A Star
Sera from patients with dihydralazine-induced hepatitis were shown to contain anti-liver microsomal autoantibodies (anti-LM) by indirect immunofluorescence. These anti-LM antibodies were different from anti-liver/kidney microsomes (anti-LKM) 1 or 2 autoantibodies which have been previously described. Sera recognized a single 53,000 = Mr polypeptide in human liver microsomes as judged by immunoblotting, and the target antigen was identified as cytochrome P-450IA2 (P-450IA2) by (a) comparison of immunoblotting patterns with anti-human P-450IA2 and anti-rat P-450IA2 and with five anti-LM sera, and (b) specific immunoinhibition of microsomal ethoxyresorufin and phenacetin O-deethylation activities (both P-450IA2 supported reactions) by anti-LM antibodies. Finally, purified human P-450IA2 was recognized by these anti-LM sera. The anti-LM antibodies are specific for the disease because none of the other antisera tested behaved in the same manner as anti-LM, even those from patients treated with dihydralazine and without hepatic disease. A possible role of P-450IA2 in the metabolism of dihydralazine was suggested by competitive inhibition of ethoxyresorufin-O-deethylase observed in microsomal incubations. Thus, a new example is presented in which a cytochrome P-450 may be a target for autoantibodies in drug-induced hepatitis.
M Bourdi, D Larrey, J Nataf, J Bernuau, D Pessayre, M Iwasaki, F P Guengerich, P H Beaune
While much is known regarding acute nephrotoxic serum (NTS)-induced glomerular injury, the glomerular dynamics and pathophysiologic mediators of the more relevant chronic autologous phase remain poorly defined. Studies were performed in rats 14 d after injection of rabbit serum (n = 6), NTS in the absence (n = 6), or presence, of a cyclooxygenase inhibitor, ibuprofen (n = 6) or a thromboxane A2 (TxA2) receptor antagonist, L-670,596 (n = 5). A mesangial macrophage/monocyte infiltrate was noted with equal intensity in all NTS-treated rats. Glomerular generation rates of prostaglandin (PG) E2, PGF2a, and TxA2 in nephritic kidneys were dramatically increased as compared to controls. 2 wk after NTS, there was an increase in glomerular plasma flow rate (SNPF), attainment of filtration pressure disequilibrium, and augmentation of net transcapillary hydraulic pressure difference (delta P). Glomerular filtration rate (GFR), however, was reduced, due to a marked fall in the glomerular capillary ultrafiltration coefficient (Kf). Cyclooxygenase inhibition resulted in normalization of glomerular eicosanoid generation rates, amelioration of proteinuria, afferent vasoconstriction, and normalization of SNPF, delta P, Kf, and GFR. Selective antagonism of TxA2 also led to preservation of Kf, but was without effect on SNPF, thereby leading to elevated values for GFR. Thus, in contrast to the pathophysiologic role of arachidonate-lipoxygenase products in the early heterologous phase, PG-mediated vasodilatation and TxA2-induced reductions in Kf and GFR underlie glomerular functional changes during autologous mesangioproliferative glomerulonephritis.
K Takahashi, G F Schreiner, K Yamashita, B W Christman, I Blair, K F Badr
Porcine plasma factor VIII (fVIII) molecules are heterodimers composed of a 76,000-mol wt light chain (-A3-C1-C2) and a heavy chain ranging in molecular weight from 82,000 (A1-A2) to 166,000 (A1-A2-B). Proteolytic activation of fVIII by thrombin results in fVIIIa heterotrimers lacking B domains (A1, A2, A3-C1-C2). In this study, immunoaffinity purified fVIII was further fractionated by mono S or mono Q chromatography to prepare heterodimers containing a light chain and an A1-A2-B heavy chain (fVIII 166/76) or an A1-A2 heavy chain (fVIII 82/76). Mass analysis of scanning transmission electron microscopic (STEM) images of fVIII 166/76 indicated that heterodimers (mass 237 +/- 20 kD) had irregularly globular core structures 10-12 nm across, and frequently displayed a diffuse, occasionally globular to ovoid satellite structure extending 5-14 nm from the core, and attached to it by a thin stalk. Factor VIII 82/76 molecules (mass 176 +/- 20 kD) had the same core structures as fVIII 166/76 molecules, but lacked the satellite structure. These findings indicate that A1-A2 domains of heavy chains and the light chains of the fVIII procofactor molecule are closely associated and constitute the globular core structure, whereas the B domainal portion of heavy chains comprises the peripheral satellite appendage. Factor VIII core structures commonly displayed a finger-like projection near the origin of the B domainal stalk that was also a consistent feature of the free heavy chains (mass 128-162 kD) found in fVIII 166/76 preparations. Factor VIII light chain monomers (mass, 76 +/- 16 kD) were globular to c-shaped particles 6-8 nm across. These chains commonly possessed a v-shaped projection originating from its middle region, that could also be observed at the periphery of fVIII core molecules. Factor VIIIa preparations contained heterotrimers (mass 162 +/- 13 kD) that had the same dimensions as fVIII core structures, lacked the B domainal appendage, and sometimes possessed the same core features as fVIII molecules. Molecular species corresponding to heterodimers (mass, 128 +/- 13 kD) and unassociated subunit chains (40-100 kD) were also observed in fVIIIa preparations, suggesting that heterotrimers have an appreciable tendency to dissociate, a phenomenon that could explain the decay of fVIIIa activity after thrombin activation of fVIII.
M W Mosesson, D N Fass, P Lollar, J P DiOrio, C G Parker, G J Knutson, J F Hainfeld, J S Wall
We examined the effects of activation of endothelial protein kinase C (PKC) of the endothelial barrier function. Exposure of confluent bovine pulmonary artery endothelial cell monolayers to phorbol 12-myristate 13-acetate (PMA) resulted in concentration-dependent (10(-8)-10(-6) M) increases in PKC activity and in the transendothelial flux of 125I-albumin. Exposure of the endothelium to 1-oleoyl 2-acetyl glycerol (OAG) also increased the transendothelial flux of 125I-albumin in a concentration-dependent manner. Neither 4 alpha-phorbol didecanoate nor 1-mono-oleoyl glycerol, which do not activate PKC, altered permeability. The increase in 125I-albumin permeability induced by PMA was inhibited by 25 microM H7 (a PKC inhibitor), but not by the control compound HA1004 (25 microM). After 16 h of exposure to PMA, 125I-albumin permeability returned to baseline and a significant reduction in cytosolic PKC activity was noted. Further challenge with PMA at this time resulted in no significant increase in PKC activity indicating downregulation of the enzyme; moreover, this PMA challenge did not increase endothelial permeability. Exposure of endothelial monolayers to phospholipase C (PLC), which increases membrane phosphatidylinositide turnover, or to alpha-thrombin also induced concentration-dependent activation of PKC and increases in 125I-albumin endothelial permeability. The thrombin- and PLC-induced permeability increases were inhibited by H7, but not by HA1004. The activation of endothelial PKC directly by PMA or OAG and by PLC and alpha-thrombin increases the transendothelial albumin permeability, indicating that PKC activation is an important signal transduction pathway by which extracellular mediators increase endothelial macromolecular transport.
J J Lynch, T J Ferro, F A Blumenstock, A M Brockenauer, A B Malik
Ca2(+)-ATPase activity in human red cell membranes is dependent on the presence of calmodulin. All trans-retinoic acid inhibited human red cell membrane Ca2(+)-ATPase activity in vitro in a concentration-dependent manner (10(-8) to 10(-4) M). In contrast, retinol, retinal, 13-cis-retinoic acid and the benzene ring analogue of retinoic acid did not alter enzyme activity. Purified calmodulin (up to 500 ng/ml, 3 X 10(-8) M) added to red cell membranes, in the presence of inhibitory concentrations of retinoic acid, only partially restored Ca2(+)-ATPase activity. 125I-Calmodulin bound to red cell membranes was displaced by unlabeled retinoic acid (50% reduction at 10(-8) M retinoic acid), as effectively as by unlabeled calmodulin. Another calmodulin-stimulable enzyme, bovine brain cyclic nucleotide phosphodiesterase, was unaffected by retinoic acid. 8-Anilino-1-naphthalene sulfonic acid bound to calmodulin, studied spectrofluorometrically, was not displaced by retinoic acid. Thus, retinoic acid inhibits calmodulin binding to red cell membranes, reducing calmodulin-stimulable Ca2(+)-ATPase activity. Retinoic acid does not directly interact with calmodulin, but rather exerts its effect by interfering with calmodulin access to the membrane enzyme. These effects occur at physiological concentrations of the retinoid.
F B Davis, T J Smith, M R Deziel, P J Davis, S D Blas
A large percentage of vascular reconstructions, endarterectomies, and angioplasties fail postoperatively due to thrombosis and restenosis. Many of these failures are thought to result from an inability of the vascular endothelium to adequately regenerate and cover the denuded area. After balloon catheter denudation of the rat carotid artery, regrowth of endothelium ceases after approximately 6 wk, leaving a large area devoid of endothelium. Here we show that this cessation of reendothelialization can be overcome by the systemic administration of basic fibroblast growth factor (bFGF). Administration of 120 micrograms bFGF over an 8-h period caused a highly significant increase in the replication rate of endothelial cells at the leading edge of 38.5 vs. 2.1% in controls, and, when given over a longer period of time (12 micrograms daily for 12 d), resulted in a significant increase in the extent of endothelial outgrowth onto the denuded surface. Furthermore, total regrowth could be achieved within 10 wk after balloon catheter denudation when 12 micrograms bFGF was injected twice per week for a period of 8 wk. Endothelium in unmanipulated arteries responded to bFGF with a significant increase in replication, but no increase in endothelial cell density was observed in these arteries. These data demonstrate that bFGF can act as a potent mitogen for vascular endothelial cells in vivo, and add considerably to our understanding of the mechanism underlying endothelial repair after in vivo vascular injuries.
V Lindner, R A Majack, M A Reidy
Information on the origin of brain glutathione and the possibility of its transport from blood to brain is limited. We found a substantial uptake of 35S-labeled glutathione by the rat brain using the carotid artery injection technique. The brain uptake index of glutathione with and without an irreversible gamma-glutamyl transpeptidase inhibitor, acivicin, was similar. No significant differences in the regional uptake of labeled glutathione were found in rats pretreated with acivicin. The brain uptake index of tracer glutathione was similar to that of cysteine tracer and was lower than that of phenylalanine. The transport of oxidized glutathione (glutathione disfulfide) across the blood-brain barrier was not significantly different from that of sucrose, an impermeable marker. Brain radioactivity 15 s after carotid artery injection of labeled glutathione to rats pretreated with acivicin was predominantly in the form of glutathione. The in vivo glutathione uptake was saturable with an apparent Km of 5.84 mM. Amino acids, amino acid analogues, and other compounds [cysteine, phenylalanine, glutathione disulfide, gamma-glutamylglutamate, gamma-glutamyl p-nitroanilide, 2-aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH)] did not affect glutathione transport. Our data suggest that glutathione is transported across the blood-brain barrier by a saturable and specific mechanism.
R Kannan, J F Kuhlenkamp, E Jeandidier, H Trinh, M Ookhtens, N Kaplowitz
We investigated the tubular action of endothelin in rat nephron segments. The effects of endothelin on arginine vasopressin (AVP)-, parathyroid hormone-, glucagon-, calcitonin-, and isoproterenol-dependent cAMP accumulation were studied. The following nephron segments were microdissected: glomerulus (Gl), proximal convoluted tubule (PCT), cortical and medullary thick ascending limbs of Henle's loop (cTAL and mTAL, respectively), cortical collecting duct (CCD), outer medullary collecting duct (OMCD), and inner medullary collecting duct (IMCD). Endothelin dose dependently (10(-8)-10(-10)M) inhibited AVP-dependent cAMP accumulation in CCD, OMCD, and IMCD. This effect was independent of the presence or absence of phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, Ca channel blocker nicardipine, or indomethacin, but was abolished in the presence of protein kinase C inhibitor H-7. Protein kinase C stimulator dioctanoyl glycerol mimicked the effect of endothelin. On the other hand, endothelin had no inhibitory effect on AVP-dependent cAMP accumulation in cTAL or mTAL, parathyroid hormone-dependent cAMP accumulation in Gl and PCT, or glucagon-, calcitonin-, and isoprotereol-dependent cAMP accumulation in OMCD. We conclude that endothelin specifically inhibits AVP-dependent cAMP accumulation in CCD, OMCD, and IMCD through activating protein kinase C. This effect possibly has a role in maintaining urine volume to counteract the decrease in GFR caused by endothelin itself.
K Tomita, H Nonoguchi, F Marumo
Patients with the severe form of leukocyte adhesion deficiency syndrome do not express the CD11/CD18 adhesion complex on any of their leukocytes. Nevertheless, their lymphocytes, unlike their phagocytes, emigrate to extravascular sites of inflammation, demonstrating that surface proteins other than CD11/CD18 can mediate lymphocyte adherence to endothelium. Using a B-lymphoblastoid cell line (B-LCL) established from a CD11/CD18-deficient patient and cultured human umbilical vein endothelial cells (HEC), we investigated the CD11/CD18-independent mechanism(s) of lymphocyte adherence to endothelium. Monoclonal antibodies directed to the alpha 4 polypeptide (CD49d) and the beta 1 polypeptide (CD29) of the lymphocyte VLA-4 integrin receptor (CD49d/CD29), and to vascular cell adhesion molecule-1 (VCAM-1) on the endothelial cell significantly inhibited the adherence of the CD11/CD18-deficient B-LCL to untreated HEC and to HEC treated with recombinant human tumor necrosis factor-alpha. We suggest that the interaction of the lymphocyte receptor VLA-4 with the endothelial ligand VCAM-1 induced by cytokines at sites of inflammation or immune reaction represents a CD11/CD18-independent pathway of lymphocyte emigration.
B R Schwartz, E A Wayner, T M Carlos, H D Ochs, J M Harlan
Idiopathic pulmonary fibrosis (IPF) is characterized by accumulation of alveolar macrophages spontaneously releasing exaggerated amounts of the potent mesenchymal cell growth factor platelet-derived growth factor (PDGF). To evaluate the relative contribution of the two PDGF genes to this process, PDGF-A and -B gene transcription rates and mRNA levels were examined in normal and IPF alveolar macrophages. While normal alveolar macrophages constitutively transcribe both PDGF-A and PDGF-B genes, LPS stimulation increases the transcription of both genes more than threefold. Importantly, IPF alveolar macrophages spontaneously transcribe both genes at a rate similar to that observed for normal macrophages after in vitro stimulation. Consistent with the transcription data, normal macrophages contain mRNA for both PDGF-A and -B, but PDGF-B mRNA is 10-fold more abundant. Strikingly, in IPF, both PDGF-A and -B mRNA levels were markedly increased, with persistence of the 10-fold dominance of PDGF-B mRNA. Thus, the exaggerated release of PDGF by IPF alveolar macrophages is likely modulated by upregulated PDGF gene transcription rates and concomitantly increased mRNA levels and the persistent 10-fold excess of B greater than A PDGF mRNA suggests that the PDGF released by alveolar macrophages is likely mostly of the potent B-chain homodimeric form.
I Nagaoka, B C Trapnell, R G Crystal