In this study we investigated the influence of mature adipocytes, derived from rat adipose tissue, on the replication and differentiation of preadipocytes in primary culture. Mature fat did not inhibit preadipocyte replication within the 6-d period studied. Preadipocyte differentiation, as assessed by both cytoplasmic lipid accretion and an increase in glycerophosphate dehydrogenase (GPDH) activity, was significantly stimulated by the presence of mature fat tissue or isolated adipocytes. The proportion of cells containing visible lipid droplets by oil red O staining was 47 +/- 10 to 58 +/- 10% (depending on the site of origin of the preadipocytes) when cocultured with mature fat compared with less than 1 to 2 +/- 1% when cultured in medium alone, while GPDH activity was 344 +/- 9 compared with 43 +/- 3 nM NADH/min per mg protein, respectively. This effect was not due to release of triacylglycerols from damaged adipocytes. Fatty acids added to the medium promoted lipid accumulation but did not stimulate a rise in GPDH activity. We concluded that mature adipocytes may release factor(s) that promote preadipocyte differentiation (and maturation).
G Shillabeer, J M Forden, D C Lau
The role of elevated plasma epinephrine concentrations in the regulation of plasma leucine kinetics and the contribution of beta-receptors were assessed in man. Epinephrine (50 ng/kg per min) was infused either alone or combined with propranolol (beta-blockade) into groups of six subjects fasted overnight; leucine flux, oxidation, and net plasma leucine forearm balance were determined during 180 min. Constant plasma insulin and glucagon concentrations were maintained in all studies by infusing somatostatin combined with insulin and glucagon replacements. Plasma leucine concentrations decreased from baseline during epinephrine infusion by 27 +/- 5 mumol/liter (P less than 0.02) due to a 22 +/- 6% decrease in leucine flux (P less than 0.05 vs. controls receiving saline) and to an increase in the metabolic clearance rate of leucine (P less than 0.02). Leucine oxidation decreased by 36 +/- 8% (P less than 0.01 vs. controls). beta-Blockade abolished the effect of epinephrine on leucine flux and oxidation. Net forearm release of leucine increased during epinephrine (P less than 0.01), suggesting increased muscle proteolysis; the fall of total body leucine flux was therefore due to diminished proteolysis in nonmuscle tissues, such as splanchnic organs. Nonoxidative leucine disappearance as a parameter of protein synthesis was not significantly influenced by epinephrine. Plasma glucose and FFA concentrations increased via beta-adrenergic mechanisms (P less than 0.001). The results suggest that elevation of plasma epinephrine concentrations similar to those observed in severe stress results in redistribution of body proteins and exerts a whole body protein-sparing effect; this may counteract catabolic effects of other hormones during severe stress.
M E Kraenzlin, U Keller, A Keller, A Thélin, M J Arnaud, W Stauffacher
A full-length cDNA clone for human thyroid peroxidase (TPO) inserted into the mammalian cell expression vector pECE was stably transfected into Chinese hamster ovary (CHO) cells. Clones were assayed for human TPO mRNA, TPO protein, and TPO enzymatic activity. One subclone, expressing the highest TPO enzymatic activity, was used in further studies. FACS analysis of these cells preincubated in Hashimoto's serum revealed approximately 100-fold greater fluorescence compared with controls, indicating that recombinant TPO is expressed on the cell surface. Particulate antigen was extracted from these cells and studied by Western blot analysis using a panel of Hashimoto's sera of known antimicrosomal antibody (anti-MSA) titer. Under nonreducing conditions a broad, immunoreactive band of approximately 200 kD was observed, as well as a doublet of approximately 110 kD. All of the 36 Hashimoto's sera tested reacted with these bands, most in proportion to their anti-MSA titer. Six normal sera tested against this antigen(s) were nonreactive, as were the Hashimoto's sera tested against nontransfected CHO cells. Western blots under reducing conditions revealed a considerably diminished signal, with some of the sera of lower anti-MSA titer becoming negative, the loss of the 200-kD broad band, and the apparent conversion of the 110-kD doublet into a single band. Preincubation of cells in tunicamycin revealed no decrease in TPO immunoreactivity. In conclusion, we expressed enzymatically active human TPO in nonthyroidal eukaryotic cells. Our data prove that functionally active TPO is a major component of the thyroid microsomal antigen.
K D Kaufman, B Rapoport, P Seto, G D Chazenbalk, R P Magnusson
At least two genetically distinct glucose transporters (GTs) coexist in adipose cells, one cloned from human hepatoma cells and rat brain (HepG2/brain) and another from rat skeletal muscle, heart, and adipose cells (adipose cell/muscle). Here we demonstrate differential regulation of these two GTs in adipose cells of diabetic and insulin-treated diabetic rats and compare changes in the expression of each GT with marked alterations in insulin-stimulated glucose transport activity. Adipose cell/muscle GTs detected by immunoblotting with the monoclonal antiserum 1F8 (James, D. E., R. Brown, J. Navarro, and P. F. Pilch. 1988. Nature (Lond.). 333:183-185), which reacts with the protein product of the newly cloned adipose cell/muscle GT cDNA, decrease 87% with diabetes and increase to 8.5-fold diabetic levels with insulin treatment. These changes concur qualitatively with previous detection of GTs by cytochalasin B binding and with insulin-stimulated 3-O-methylglucose transport. Northern blotting reveals that the adipose/muscle GT mRNA decreases 50% with diabetes and increases to 6.8-fold control (13-fold diabetic) levels with insulin treatment. In contrast, GTs detected with antisera to the carboxyl terminus of the HepG2 GT or to the human erythrocyte GT show no significant change with diabetes or insulin treatment. The HepG2/brain GT mRNA is unchanged with diabetes and increases threefold with insulin treatment. These results suggest that (a) altered expression of the adipose cell/muscle GT forms the molecular basis for the dysregulated glucose transport response to insulin characteristic of diabetes, (b) the expression of two types of GTs in rat adipose cells is regulated independently, and (c) alterations in mRNA levels are only part of the mechanism for in vivo regulation of the expression of either GT species.
B B Kahn, M J Charron, H F Lodish, S W Cushman, J S Flier
The pathways by which islet B, A, and D cells bind and internalize homologous (self) and heterologous (other) islet hormones were compared. [125I-Tyr]Somatostatin-14 (S-14), 125I-insulin, and 125I-glucagon were incubated with monolayer cultures of neonatal rat islet cells. Tissues were processed for quantitative electron microscopic autoradiography by the probability circle method coupled to morphometry. For all three radioligands and all three cell types surface labeling was rapidly followed by internalization of the radioligands into endocytotic vesicles. The further intracellular movement of the ligand occurred in a time- and temperature-related manner and depended on whether it was homologous or heterologous for the cell in question. Thus [125I-Tyr]S-14 in B and A cells, 125I-insulin in A and D cells, and 125I-glucagon in B and D cells were rapidly transferred from endocytotic vesicles to lysosomal structures. By contrast, [125I-Tyr]S-14 in D cells, 125I-insulin in B cells, and 125I-glucagon in A cells showed poor progression from endocytotic vesicles to downstream vesicular structures. We conclude that (a) each of the three radioligands is internalized by islet cells in a time- and temperature-dependent manner; (b) after initial internalization the further intracellular progression of the endocytosed radioligand occurs freely in cells heterologous for the radioligand but poorly in cells homologous for the radioligand; and (c) binding and endocytosis can be uncoupled from lysosomal degradation of ligand.
M Amherdt, Y C Patel, L Orci
Arginine vasopressin (AVP) is a potent vasopressor and antidiuretic neurohormone. However, when administered intravenously to humans, AVP causes forearm vasodilation. This effect has been attributed to sympathetic withdrawal, secondary to AVP-induced sensitization of baroreceptors. The possibility that AVP also causes forearm vasodilation directly has not been examined. Accordingly, the direct effect of AVP was determined by studying the forearm blood flow (FBF) response to intraarterial (IA) AVP infusion (0.01-1.0 ng/kg per min). Infusion of IA AVP increased FBF (96%) in the infused arm, but not the control arm, in a dose-dependent manner. The role of specific AVP V1 receptors in mediating this FBF response was determined before and after pretreatment with a V1 antagonist (AVP-A). AVP-A alone had no effect on FBF, but coadministration of AVP and AVP-A potentiated the vasodilatory response (223%). IA infusion of the V2 agonist, 1-desamino[8-D-arginine] vasopressin, caused a dose-dependent increase in FBF. These findings suggest that AVP causes direct, dose-dependent vasodilation in the human forearm that may be mediated by V2 vasopressinergic receptors. In contrast, AVP infusion caused digital vasoconstriction that was blocked by AVP-A, whereas dDAVP did not affect digital blood flow. Thus, AVP induces regionally selective vascular effects, with concurrent forearm vasodilation and digital vasoconstriction.
A T Hirsch, V J Dzau, J A Majzoub, M A Creager
Forearm vascular responses to arginine vasopressin (AVP) infused into a brachial artery in a wide range of infusion rates (0.05-2.0 ng/kg per min) were examined in 20 young healthy volunteers. Intraarterial AVP at lower doses (0.05 and 0.1 ng/kg per min) caused forearm vasoconstriction, whereas AVP at a dose of 0.2 ng/kg per min or higher caused forearm vasodilatation. The maximal forearm vasoconstriction was induced at the venous plasma AVP level of 76.3 +/- 8.8 pg/ml. Forearm vasodilatation was associated with the venous plasma AVP level of 369 +/- 43 pg/ml or higher. Forearm vasodilatation was the result of the direct effect of AVP since forearm blood flow and vascular resistance in the contralateral arm did not change. We attempted to explore the mechanisms involved in AVP-induced direct vasodilatation. The treatment with indomethacin, 75 mg/d for 3 d, did not alter AVP-induced forearm vasodilatation. In contrast, intraarterial infusion of isoosmolar CaCl2 totally prevented AVP-induced forearm vasodilatation. Intra-arterial CaCl2 also markedly attenuated forearm vasodilatation induced by intraarterial sodium nitroprusside, but did not alter forearm vasodilatation induced by intraarterial isoproterenol. These results indicate that the direct vascular effects of intra-arterial AVP on the forearm vessels are biphasic, causing vasoconstriction at lower doses and vasodilatation at higher doses. The direct vasodilatation induced by intraarterial AVP at higher doses is not mediated by prostaglandins but may involve cGMP-related mechanisms.
S Suzuki, A Takeshita, T Imaizumi, Y Hirooka, M Yoshida, S Ando, M Nakamura
The exposure of endothelial cells (EC) to fibrin has been shown to stimulate the rapid release of von Willebrand factor (vWf) from storage sites in Weibel-Palade bodies. We have now investigated the fibrin structural features required for stimulation of release. The role of fibrinopeptide cleavage was examined by preparing fibrin with thrombin to remove both fibrinopeptide A (FPA) and fibrinopeptide B (FPB) and with reptilase or Agkistrodon contortrix procoagulant to selectively remove FPA or FPB, respectively. vWf release was found to require FPB cleavage, whereas removal of FPA and Factor XIIIa cross-linking of fibrin were without effect. The dependence of release on FPB cleavage suggested that a site involving the NH2 terminus of the beta chain could mediate vWf secretion. To test this hypothesis, B beta chain derivatives were prepared and examined for their capacity to induce release. Purified B beta chain had no effect on release at a concentration of 20 nM but stimulated release from 26 +/- 6% of cells at 200 nM, the maximum solubility. However, after thrombin cleavage of FPB, release occurred from 36 +/- 9% of cells at 20 nM and from 60 +/- 7% at 200 nM, both significantly greater than before cleavage. FPB and B beta 1-42 showed no activity, whereas beta 15-42, representing the NH2 terminus of the thrombin cleaved beta chain, stimulated significant release at concentrations of 0.1 and 1 mM. We conclude that FPB cleavage from fibrin is required for stimulation of vWf release from EC and that this is mediated by a site that includes the NH2 terminus of the beta chain.
J A Ribes, F Ni, D D Wagner, C W Francis
Activation of both the complement system and the contact system of intrinsic coagulation is implicated in the pathophysiology of sepsis. Because C1 inhibitor (C1-Inh) regulates the activation of both cascade systems, we studied the characteristics of plasma C1-Inh in 48 patients with severe sepsis on admission to the Intensive Care Unit at the Free University of Amsterdam. The ratio between the level of functional and antigenic C1-Inh (functional index) was significantly reduced in the patients with sepsis compared with healthy volunteers (P = 0.004). The assessment of modified (cleaved), inactive C1-Inh (iC1-Inh), and complexed forms of C1-Inh (nonfunctional C1-Inh species) revealed that the reduced functional index was mainly due to the presence of iC1-Inh. On SDS-PAGE, iC1-Inh species migrated with a lower apparent molecular weight (Mr 98,000, 91,000, and 86,000) than native C1-Inh (Mr 110,000). Elevated iC1-Inh levels (greater than or equal to 0.13 microM) were found in 81% of all patients, sometimes up to 1.6 microM. Levels of iC1-Inh on admission appeared to be of prognostic value: iC1-Inh was higher in 27 patients who died than in 21 patients who survived (P = 0.003). The mortality in 15 patients with iC1-Inh levels up to 0.2 microM was 27%, but in 12 patients with plasma iC1-Inh exceeding 0.44 microM, the mortality was 83%. The overall mortality in the patients with sepsis was 56%. We propose that the cleavage of C1-Inh in patients with sepsis reflects processes that play a major role in the development of fatal complications during sepsis.
J H Nuijens, A J Eerenberg-Belmer, C C Huijbregts, W O Schreuder, R J Felt-Bersma, J J Abbink, L G Thijs, C E Hack
Autonomous in vitro growth of myeloid leukemic colony-forming cells may in part result from autocrine production of colony-stimulating factors (CSF). Some acute myeloid leukemia (AML) samples, however, fail to synthesize CSF despite growing autonomously in agar, and are therefore believed to bypass CSF requirements. Cytokines such as IL-6, tumor necrosis factor (TNF)-alpha, and IL-1, products of cells of the myeloid lineage, are known to be involved in growth control of myeloid progenitor cells. Since these molecules may also contribute to autocrine and paracrine growth regulation of myeloid leukemias, we screened a series of AML for cytokine production. In addition, possible roles of IL-6, TNF-alpha, and IL-1 in growth control of AML were investigated in vitro. We show that a substantial proportion of AML cells produce IL-6, TNF-alpha, and IL-1-beta and use these mediators to stimulate their growth by disparate mechanisms: IL-6 acts as a costimulator to enhance CSF-induced clonogenicity of AML blasts. TNF-alpha induces CSF production by endothelial cells and may therefore provide a paracrine loop to support leukemia growth.
W Oster, N A Cicco, H Klein, T Hirano, T Kishimoto, A Lindemann, R H Mertelsmann, F Herrmann
Catecholamine-induced lipolysis was investigated in nonobese females and males. Isolated subcutaneous adipocytes were obtained from the abdominal and gluteal regions. The lipolytic effect of noradrenaline was four to fivefold more marked in abdominal adipocytes than in gluteal fat cells. This regional difference was more apparent in females than in males. No site differences were observed when lipolysis was stimulated with agents acting at different postreceptor levels. The beta-adrenergic lipolytic sensitivity was 10-20 times greater in abdominal adipocytes from both sexes than in gluteal adipocytes. Abdominal adipocytes from females showed a 40 times lower alpha 2-adrenergic antilipolytic sensitivity than did gluteal adipocytes, but the adenosine receptor sensitivity was similar in both sites. Beta-receptor affinity for agonists displayed no site or sex variation. Abdominal adipocytes showed a twofold increased beta-adrenoceptor density than did gluteal cells from both sexes. The alpha 2-adrenoceptor density was similar in all regions, but in females the affinity of clonidine for these sites was 10-15 times lower in the abdominal fat cells compared with gluteal cells. In conclusion, regional differences in catecholamine-induced lipolysis are regulated at the adrenoceptor level, chiefly because of site variations in beta-adrenoceptor density. Further variations in the affinity properties of alpha 2-adrenergic receptor in females may explain why the regional differences in catecholamine-induced lipolysis are more pronounced in women than in men.
H Wahrenberg, F Lönnqvist, P Arner
The CD36 leukocyte differentiation antigen, recognized by MAbs OKM5 and OKM8 and found on human monocytes and endothelial cells, has been implicated as a sequestration receptor for erythrocytes infected with the human malaria parasite Plasmodium falciparum (IRBC). CD36 is also expressed on platelets and appears to be identical to platelet glycoprotein IV. We investigated receptor activation of monocytes and platelets by anti-CD36 MAbs and by IRBC. Incubation of human monocytes with anti-CD36 MAbs or IRBC resulted in stimulation of the respiratory burst as measured by reduction of nitroblue tetrazolium and generation of chemiluminescence. Incubation of human platelets with anti-CD36 MAbs resulted in platelet activation as measured by aggregation or ATP secretion. Activation of monocytes and platelets required appropriate intracellular transmembrane signaling and was inhibited by calcium antagonists or by specific inhibitors of protein kinase C or guanine nucleotide binding proteins. Soluble CD36 inhibited binding of IRBC to both monocytes and platelets, suggesting that these interactions are mediated by the CD36 receptor. Using a cytochemical electron microscopic technique, the presence of reactive oxygen intermediates was identified at the interface between human monocytes and IRBC. These data provide support for the hypothesis that reactive oxygen intermediates produced by monocytes when IRBC ligands interact with cell surface receptors may play a role in the pathophysiology of falciparum malaria.
C F Ockenhouse, C Magowan, J D Chulay
TR- mutant rats have an autosomal recessive mutation that is expressed as a severely impaired hepatobiliary secretion of organic anions like bilirubin-(di)glucuronide and dibromosulphthalein (DBSP). In this paper, the hepatobiliary transport of glutathione and a glutathione conjugate was studied in normal Wistar rats and TR- rats. It was shown that glutathione is virtually absent from the bile of TR- rats. In the isolated, perfused liver the secretion of glutathione and the glutathione conjugate, dinitrophenyl-glutathione (GS-DNP), from hepatocyte to bile is severely impaired, whereas the sinusoidal secretion from liver to blood is not affected. The secretion of GS-DNP was also studied in isolated hepatocytes. The secretion of GS-DNP from cells isolated from TR- rat liver was significantly slower than from normal hepatocytes. Efflux of GS-DNP was a saturable process with respect to intracellular GS-DNP concentration: Vmax and Km for efflux from TR- cells was 498 nmol/min.g dry wt and 3.3 mM, respectively, as compared with 1514 nmol/min.g dry wt and 0.92 mM in normal hepatocytes. These results suggest that the canalicular transport system for glutathione and glutathione conjugates is severely impaired in TR- rats, whereas sinusoidal efflux is unaffected. Because the defect also comes to expression in isolated hepatocytes, efflux of GS-DNP from normal hepatocytes must predominantly be mediated by the canalicular transport mechanism, which is deficient in TR- rats.
R P Elferink, R Ottenhoff, W Liefting, J de Haan, P L Jansen
The binding of specific ligands to neutrophil cell surface receptors and the association of these receptors with the cytoskeleton may represent an essential step in activation. To identify surface proteins that are linked to the cytoskeleton during activation, neutrophil 125I-surface labeled plasma membranes were extracted with Triton X-100, and the soluble and insoluble (cytoskeleton) fractions analyzed by SDS-PAGE and autoradiography. The major cell surface proteins recruited to the cytoskeleton after activation with Con A, FMLP, zymosan-activated serum, or immune complexes possessed a relative molecular mass in the range of 80 to 13 kD. In addition to these proteins, WGA stimulates the recruitment of a 140-kD protein (GP 140) to the cytoskeletal fraction. That GP 140 is a WGA-binding protein was verified by Western blotting and WGA-Sepharose affinity chromatography. The Coomassie blue staining pattern of the WGA cytoskeletal fraction revealed major protein bands at apparent molecular weights of greater than 200 (approximately 250, 240, 235), 200, 115, 82/78 (a doublet), 56, 43, 36, and 18 kD. Labeling cells with 32PO4 before WGA treatment indicated that the cytoskeletal proteins with molecular weights of 115, 82/78, and 72 kD, and a 40-kD detergent soluble protein, are phosphorylated during activation. The 78 kD cytoskeletal phosphoprotein co-migrates with the lower subunit of erythrocyte (RBC) band 4.1 and shows strong cross-reactivity with RBC anti-band 4.1 antibody. Phosphorylation of cytoskeletal proteins like 4.1 may be involved in the regulation of interactions between GP 140 and the actin-containing cytoskeleton. Unlike the C3bi receptor, GP 140 is a major surface component of unactivated PMNs, has no stoichiometrically related 95-kD subunit, and has two isoforms with pIs in the range of 6.4 to 6.6. Under conditions that result in an increased expression of the C3bi receptor (such as treatment with the Ca2+ ionophore A23187), the amount of GP 140 on the PMN cell surface appears to be significantly reduced. The interaction of GP 140 with the cytoskeleton during activation suggests that GP 140 may play an important role in neutrophil functional responses.
S J Suchard, L A Boxer
Effects of peripheral benzodiazepine receptor modulating drugs, Ro 5-4864 and PK 11195, on tension induced by K+ and the calcium agonist SDZ 202 791 (S isomer), were studied in rat caudal arteries. A significant reduction of tonic phase tension occurred with 30 nM PK 11195 or 3 microM Ro 5-4864, but decreases of the initial (first 3 min), phasic contraction were detected only at the highest concentrations of Ro 5-4864 and PK 11195. Protoporphyrin IX, the putative endogenous ligand of the peripheral benzodiazepine receptor, (at 10-100 nM) markedly increased the effectiveness of Ro 5-4864 and PK 11195 in reducing phasic contraction. Intracellular calcium localization and distribution in fura-2 loaded single vascular cells were quantitated using a high sensitivity, two-stage microchannel plate, photon-counting (PMI-VIM) camera. Peripheral benzodiazepines reduced intracellular calcium release from centrally located calcium pools, and this decrease of calcium release was potentiated by protoporphyrin IX. The decrease in intracellular calcium activity, which was more pronounced in the central regions where sarcoplasmic reticular elements are numerous, was probably the major mechanism of these vasodilator properties. Measurements of soluble guanylate cyclase activity also supported the intracellular Ca2+ release mechanism. Under conditions where protoporphyrin IX did not significantly stimulate guanylate cyclase, Ro 5-4864 alone or more effectively in combination with protoporphyrin IX stimulated cGMP production and caused relaxation. Guanylate cyclase forms a possible target for these benzodiazepine modulators, a hypothesis that merits further investigation.
P Erne, M Chiesi, S Longoni, J Fulbright, K Hermsmeyer
A specific type of gene mutation affecting the LDL receptor has been found in many Finnish patients with familial hypercholesterolemia (FH). The mutant allele is characterized by a 9.5-kb deletion extending from intron 15 to exon 18. Molecular cloning and sequencing of a cDNA segment corresponding to the deleted allele indicated that the mutant receptor differs radically from the normal one because of loss of the domains encoded by exons 16, 17, and 18. The carboxy-terminal portion of the normal receptor, comprising the amino acids 750-839, has been replaced by an unrelated stretch of 55 amino acids. The mutant allele was found to occur in 23 (50%) of 46 unrelated FH patients with an established functional defect in the LDL receptor. In cultured fibroblasts from the FH patients with the 9.5-kb deletion, both receptor-mediated binding and internalization of 125I-LDL were lower than normal, the former, on average, by 25%, and the latter, on average, by 50%. This combined functional defect probably results from both impaired attachment and impaired internalization of the mutated receptor. It remains to be investigated whether this Finnish type of LDL receptor gene mutation, here designated FH-Helsinki, occurs in other ethnic groups.
K Aalto-Setälä, E Helve, P T Kovanen, K Kontula
We have studied recombinatorial events of the T cell receptor delta and gamma chain genes in hematopoietic malignancies and related these to normal stages of lymphoid differentiation. T cell receptor delta gene recombinatorial events were found in 91% of acute T cell lymphoblastic leukemia, 68% of non-T, non-B lymphoid precursor acute lymphoblastic leukemia (ALL) and 80% of mixed lineage acute leukemias. Mature B-lineage leukemias and acute nonlymphocytic leukemias retained the T-cell receptor delta gene in the germline configuration. The incidence of T cell receptor gamma and delta was particularly high in CD10+CD19+ non-T, non-B lymphoid precursor ALL. In lymphoid precursor ALL, T cell receptor delta was frequently rearranged while T cell receptor gamma was in the germline configuration. This suggests that TCR delta rearrangements may precede TCR gamma rearrangements in lymphoid ontogeny. In T-ALL, only concordant T cell receptor delta and gamma rearrangements were observed. Several distinct rearrangements were defined using a panel of restriction enzymes. Most of the rearrangements observed in T-ALL represented joining events of J delta 1 to upstream regions. In contrast, the majority of rearrangements in lymphoid precursor ALL most likely represented D-D or V-D rearrangements, which have been found to be early recombinatorial events of the TCR delta locus. We next analyzed TCR delta rearrangements in five CD3+TCR gamma/delta+ ALL and cell lines. One T-ALL, which demonstrated a different staining pattern with monoclonal antibodies against the products of the TCR gamma/delta genes than the PEER cell line, rearranges J delta 1 to a currently unidentified variable region.
F Griesinger, J M Greenberg, J H Kersey
We have previously shown in anesthetized, open-chest dogs with coronary stenosis and endothelial injury that serotonin and/or thromboxane A2 (TXA2) receptor activation play a major role in the mediation of platelet-dependent, intermittent coronary occlusion. Using a similar model in awake, closed-chest dogs, we tested the following hypotheses: (a) treadmill exercise promotes the development of cyclic flow variations in dogs with coronary stenoses and endothelial injury; (b) ventricular pacing does not induce cyclic flow variations in the same dogs; and (c) TXA2 and/or serotonin are important mediators of exercise-induced cyclic flow variations in this model. The surgical preparation consisted of the application of a hard, flow-limiting constrictor and a Doppler ultrasonic flow probe around the left coronary artery of 11 dogs. Treadmill exercise resulted in the prompt development of cyclic flow variations in all 11 dogs. Ventricular pacing at rates as high as 170 beats/min induced cyclic flow variations in only one of five dogs. Exercise-induced cyclic flow variations were abolished by TXA2 and/or serotonin receptor antagonists in all but one dog. Thus, (a) treadmill exercise promotes the development of cyclic flow variations in dogs with coronary stenoses and endothelial injury; (b) ventricular pacing does not induce cyclic flow variations in most dogs in the same model; and (c) TXA2 and/or serotonin are important mediators of cyclic flow variations in this model.
J F Eidt, J Ashton, P Golino, J McNatt, L M Buja, J T Willerson
These studies were undertaken to examine the effect of fish oil, safflower oil, and hydrogenated coconut oil on the major processes that determine the concentration of low density lipoprotein (LDL) in plasma, i.e., the rate of LDL production and the rates of receptor-dependent and receptor-independent LDL uptake in the various organs of the body. When fed at the 20% level, fish oil reduced plasma LDL-cholesterol levels by 38% primarily by increasing LDL receptor activity in the liver. Dietary safflower oil also increased hepatic LDL receptor activity; however, since the rate of LDL production also increased, plasma LDL-cholesterol levels remained essentially unchanged. Hydrogenated coconut oil had no effect on LDL receptor activity but increased the rate of LDL-cholesterol production causing plasma LDL-cholesterol levels to increase 46%. Dietary fish oil had no effect on the receptor-dependent transport of asialofetuin by the liver, suggesting that the effect of fish oil on hepatic LDL receptor activity was specific and not due to a generalized alteration in the physical properties of hepatic membranes. Finally, dietary fish oil increased hepatic cholesteryl ester levels and suppressed hepatic cholesterol synthesis rates, suggesting that the up-regulation of hepatic LDL receptor activity in these animals was not simply a response to diminished cholesterol availability in the liver.
M A Ventura, L A Woollett, D K Spady
Membrane cofactor protein (MCP) of the complement system is a iC3/C3b binding molecule with cofactor activity that has been identified on all human peripheral blood cells except erythrocytes. Human mononuclear and platelet MCP is dimeric with molecular weights of 68,000 and 63,000 and is expressed in three phenotypic patterns. To further determine its tissue distribution, surface-labeled human fibroblast, epithelial, and endothelial cells and cell lines were assessed for the presence of MCP by iC3 affinity chromatography and by immunoprecipitation with a monospecific anti-MCP rabbit polyclonal antibody. All sources of adult and fetal fibroblast and epithelial cells and cell lines examined and umbilical vein endothelial cells expressed MCP. The molecular weight and phenotypic patterns of MCP were similar to those of peripheral blood cells. MCP was synthesized by fibroblast and epithelial cell lines. Solubilized extracts of these cell lines expressed factor I-dependent cofactor activity for the first cleavage of iC3/C3b which was abrogated by removal of MCP. Expression of MCP was modulated by SV40 transformation of two fetal fibroblast lines. There was a 5- to 10-fold increase in expression of MCP and a preferential expression of the lower species such that the phenotypic designation was changed. The wide tissue distribution and activity profile of MCP suggest that it is likely to play an important role in the regulation of the complement cascade.
T McNearney, L Ballard, T Seya, J P Atkinson
An adhesive interaction between activated platelets and mononuclear phagocytes may contribute to the role these cells play in regulating inflammation, thrombosis, and atherosclerosis. We have previously shown that this adhesive interaction is mediated by the expression of the glycoprotein thrombospondin (TSP) on the surface of activated platelets. We now show that TSP-dependent platelet-monocyte interactions are mediated by glycoprotein IV (GPIV), an intrinsic membrane protein recently identified as a cell surface TSP receptor. Monoclonal antibodies to GPIV bound to cells of the human monocytoid line U937 as assessed by flow cytometry and inhibited the binding of 125I-TSP to the cell surface by 83%. U937 cells preincubated with anti-GPIV were not rosetted by thrombin-stimulated platelets (72% inhibition compared with control anti-monocyte antibodies). In addition, when platelets were stimulated in the presence of saturating concentrations of monoclonal antibodies to GPIV, only 18% of U937 cells were rosetted (78% inhibition). Control antibodies including anti-GPIb did not inhibit rosette formation. These data suggest that TSP can cross-link platelets and monocytes via an interaction with GPIV on the surface of both cells. This molecular bridge may mediate platelet-macrophage communication in various pathophysiologic settings.
R L Silverstein, A S Asch, R L Nachman
Defensins are small, cysteine-rich antimicrobial peptides that are abundant in human, rabbit, and guinea pig neutrophils (PMN). Three defensins (human neutrophil peptide defensin [HNP]-1, HNP-2, and HNP-3) constitute between 30 and 50% of the total protein in azurophil granules of human PMN. We examined the mechanism of HNP-mediated bactericidal activity against Escherichia coli ML-35 (i-, y-, z+) and its pBR322-transformed derivative, E. coli ML-35p. Under conditions that supported bactericidal activity, HNP-1 sequentially permeabilized the outer membrane (OM) and inner membrane (IM) of E. coli. Coincident with these events, bacterial synthesis of DNA, RNA, and protein ceased and the colony count fell. Although these events were closely coupled under standard assay conditions, OM permeabilization was partially dissociated from IM permeabilization when experiments were performed with E. coli that had been plasmolyzed by mannitol. Under such conditions, the rate and extent of bacterial death more closely paralled loss of IM integrity than OM permeabilization. Electron microscopy of E. coli that had been killed by defensins revealed the presence of striking electron-dense deposits in the periplasmic space and affixed to the OM. Overall, these studies show that HNP-mediated bactericidal activity against E. coli ML-35 is associated with sequential permeabilization of the OM and IM, and that inner membrane permeabilization appears to be the lethal event.
R I Lehrer, A Barton, K A Daher, S S Harwig, T Ganz, M E Selsted
Levels of anti-Ku (p70/p80) antibodies were measured longitudinally in sera from four individuals with systemic lupus erythematosus or related disorders. Antibodies to the native Ku antigen (p70/p80 complex) varied over a range of up to 577-fold. Large fluctuations were also observed in the levels of autoantibodies to several distinct epitopes of the Ku (p70/p80) antigen. Levels of these individual autoantibody populations generally paralleled one another, suggesting that they are coordinately regulated. A similar pattern of anti-DNA antibody fluctuation was seen in some sera. To examine the possibility that these autoantibodies were generated by polyclonal B cell activation, the levels of anti-Ku (p70/p80) and anti-DNA antibodies were compared to the levels of antibodies to Escherichia coli proteins, tetanus toxoid, and bovine insulin, transferrin, cytochrome c, serum albumin, and thyroglobulin. In sera from the same individual, anti-Ku (p70/p80) antibodies were sometimes produced in the complete absence of polyclonal activation, and at other times were accompanied by increased polyclonal activation. Anti-DNA antibody levels more closely paralleled the level of polyclonal activation than did the anti-Ku (p70/p80) levels. These studies suggest that anti-Ku (p70/p80) antibodies are generated by an antigen-selective mechanism, but that polyclonal activation frequently, although not invariably, accompanies autoantibody production. This observation is consistent with the possibility that polyclonal activation might be secondary to autoantibody production.
W H Reeves, Z M Sthoeger, R G Lahita
The purpose of this study was to see if lung vascular protein permeability is greater in preterm lambs with respiratory distress than it is in lambs without lung disease. We measured pulmonary vascular pressures, lung lymph flow, and concentrations of protein in lymph and plasma of 10 chronically catheterized preterm lambs (gestation 133 +/- 1 d) for 2-4 h before and for 4-8 h after delivery by cesarean section. All lambs were treated with mechanical ventilation after birth and received a constant intravenous infusion of glucose-saline solution at an hourly rate of 10 ml/kg. Respiratory failure developed in six lambs, in which there was a sustained threefold postnatal increase in lung lymph flow and lymph protein flow, with an even greater increase in pleural liquid drainage. Concentrations of protein in lymph and pleural liquid were almost identical, averaging approximately 75% of the plasma protein concentration. In the four preterm lambs without lung disease, lymph flow and lymph protein flow were either near or below fetal values by 6-8 h after birth, and there was little or no pleural liquid drainage. Extravascular lung water averaged 7.3 +/- .8 g/g dry lung in lambs with respiratory failure compared to 4.8 +/- .5 g/g dry lung in lambs without lung disease. Thus, pulmonary edema with abnormal leakage of protein-rich liquid from the lung microcirculation into the interstitium is an important pathological feature of the respiratory disease that often occurs after premature birth.
R D Bland, D P Carlton, R G Scheerer, J J Cummings, D L Chapman
The present study examined the cellular regulation of one of the pharyngeal dilator muscles, the geniohyoid, by assessing its motor unit (MU) behavior in anesthetized cats. During spontaneous breathing, MU that (a) were active during inspiration only (I-MU) and (b) were active during both inspiration and expiration (I/E-MU) were identified. I-MU had a later inspiratory onset time and a shorter duration of inspiratory firing than did I/E-MU (P less than 0.002 and P less than 0.0001, respectively). I-MU were usually quiescent whereas I/E-MU were usually active during the last 20% of inspiration. I/E-MU fired more rapidly (P less than 0.00001) and for relatively longer periods of time (P less than 0.00001) during inspiration than during expiration. End-expiratory airway occlusion (preventing lung expansion during inspiration) augmented the inspiratory activity of both I-MU and I/E-MU. Conversely, end-expiratory airway occlusion reduced the absolute and relative firing durations (P less than 0.002 and P less than 0.00002, respectively) and the firing frequency (P less than 0.001) of I/E-MU activity during expiration. These results indicate that (a) the complex pattern of pharyngeal dilator muscle activity is due to the integrated activity of a heterogeneous group of MU, (b) changes in the degree to which pharyngeal dilator muscles are active result from combinations of MU recruitment/decruitment and modulations of the frequency and duration of MU firing, and (c) gating of lung-volume afferent information occurs during the respiratory cycle.
E van Lunteren, T E Dick
The major side effect of thrombolytic therapy is bleeding; however, the pathogenesis of this potential complication is not well understood. Accordingly, we examined the effects of aspirin and recombinant human tissue-type plasminogen activator (rt-PA) on serial template bleeding times and on hemostasis parameters in rabbits. The administration of intravenous aspirin (15 mg/kg) produced a slight prolongation in bleeding times, from 2.1 +/- 0.5 to 2.6 +/- 0.5 min (mean +/- SD, n = 26, P less than 0.01), whereas rt-PA (1 mg/kg per h for 2 h) lengthened the bleeding time from 2.4 +/- 0.3 to 3.2 +/- 0.6 min (n = 5, P = NS). Combination of aspirin with 0.5 mg/kg per h of rt-PA for 2 h prolonged the bleeding time from 2.5 +/- 0.4 to 6.2 +/- 0.9 min (n = 10, P less than 0.01), with an associated fibrinogen decrease of approximately 15%. The combination of aspirin with 1 mg/kg per h of rt-PA for 2 h prolonged the bleeding time from 3.0 +/- 0.3 to 8.3 +/- 1.4 min (n = 8, P less than 0.01) and simultaneously induced a decrease of plasma fibrinogen by approximately 40%. Virtually all animals treated with rt-PA and aspirin manifested a bleeding tendency, as evidenced by spontaneous rebleeding at sites of previously performed template bleeding times or oozing at the femoral venous catheterization site. Intravenous bolus injection of 1 mg/kg of guanidine hydrochloride-reactivated recombinant human plasminogen activator inhibitor-1 (rPAI-1) at the end of the rt-PA infusion resulted in complete reversal, within 5 min, of the prolongation of the bleeding time, and in a disappearance of the bleeding tendency. Nonreactivated rPAI-1 and tranexamic acid were significantly less potent in reversing the bleeding time prolongation. These findings indicate that aspirin and rt-PA given separately do not markedly affect the template bleeding time, but in combination induce a marked prolongation associated with a significant bleeding tendency. This bleeding time prolongation can be rapidly normalized by the administration of reactivated rPAI-1.
D E Vaughan, P J Declerck, M De Mol, D Collen
Infusion of adenosine (0.022-2.2 mg/min) into the left anterior descending (LAD) coronary artery of 26 patients produced a dose-dependent increase in blood pressure without a change in heart rate. At adenosine 2.2 mg/min, systolic pressure rose by 21.0 +/- 2.2 mmHg from 134 +/- 4.3 mmHg (P less than 0.001) and diastolic pressure increased by 10.4 +/- 1.1 mmHg from 76 +/- 1.9 mmHg (P less than 0.001). The rise in arterial pressure was associated with a 22 +/- 3.4% increase in systemic vascular resistance (P less than 0.01) and no change in cardiac output (-2.8 +/- 4.3%, P = NS). Plasma norepinephrine levels rose by 40 +/- 14% from 105 +/- 9 pg/ml (P less than 0.05) and epinephrine levels by 119 +/- 31% from 37 +/- 9 pg/ml (P less than 0.01). Right atrial infusion of adenosine produced insignificant hemodynamic effects, suggesting that systemic spillover of adenosine was not responsible for the observed effects. In 20 cardiac transplant patients with denervated hearts, LAD infusion of adenosine (2.2 mg/min) produced no change in systolic pressure (-0.1 +/- 1.6 mmHg from 139 +/- 3.4 mmHg, P = NS) and a decrement in diastolic pressure (-4.7 +/- 1.2 mmHg from 98 +/- 2.5 mmHg, P less than 0.01). Thus, infusion of adenosine into the LAD coronary artery causes a reflex increase in arterial pressure due to a rise in systemic vascular resistance, probably as a result of increased sympathetic discharge. This reflex pathway may be of importance in disease states such as myocardial ischemia, in which myocardial adenosine levels are elevated.
D A Cox, J A Vita, C B Treasure, R D Fish, A P Selwyn, P Ganz
Decay-accelerating factor (DAF) is a constitutively expressed plasma membrane glycoprotein on blood cells and endothelium that inhibits cell surface C3/C5 convertase formation, thus inhibiting complement activation and protecting cells from lysis by the terminal complement components. Using monoclonal anti-DAF antibodies in conjunction with anti-smooth muscle cell (SMC)-specific myosin antibodies, it was found by immunohistochemistry that vascular SMC in advanced human carotid atherosclerotic lesions express DAF antigen. The percentage of DAF-positive SMC ranged from 20 to 60% between different patient samples and SMC DAF expression was limited to SMC in the lesion proper. Normal arterial wall SMC exhibited no DAF-specific immunostaining. Essentially 100% of passaged cultured vascular SMC derived from normal human uterine artery, or from umbilical vein, expressed DAF as assessed by immunocytochemistry. A 68-kD band was observed on SDS-PAGE autoradiograms of DAF-immunoprecipitated radiolabeled cultured SMC extracts. Sensitization of rabbit erythrocytes with DAF-containing SMC extracts conferred protection against complement-mediated hemolysis in normal human serum and the protective effect could be reversed by treatment with anti-DAF antibodies. We conclude that DAF is induced on vascular SMC during atherogenesis and in culture.
P S Seifert, G K Hansson
Alveolar macrophages (AMs) recovered from the bronchoalveolar lavage (BAL) of 44 patients with sarcoidosis were evaluated for their ability to release type IV collagenolytic metalloproteinase (IV-Case). This enzyme, which is produced by peripheral blood monocytes (PBMs) but not by tissue macrophages, degrades type IV collagen, the major structural component of vessel wall basement membranes, and helps to promote the migration of PBMs from the blood compartment to peripheral tissues. Our results demonstrated that AMs from patients with active sarcoidosis released significantly increased levels of IV-Case with respect to patients with inactive disease and control subjects. After in vitro culture, sarcoid AMs secreted IV-Case during the first 24 h of collection; after that time, AMs progressively lost their ability to release IV-Case. Exposition of both sarcoid and normal AMs to recombinant IL 2 or gamma IFN did not influence their property to release IV-Case. The immunoblot analysis of IV-Case demonstrated complete identity between IV-Case released by AMs and the degradative enzyme obtained from PBMs. The increased property to release IV-Case was significantly related to the increase of the absolute number of AMs and, in particular, of AMs bearing two determinants that are usually expressed by most PBMs (CD11b and CD14). Selective depletion of CD11b+/CD14+ AMs from the entire macrophagic population was associated with the recovery of the IV-Case activity to normal values. A positive correlation was also found between the increase in the absolute number of lung T cells and the enhanced CD4/CD8 pulmonary ratio. A 6-mo follow-up study indicated a significant association between the positivity for the 67Gallium scan and the increased property of AMs to release IV-Case. Our data are consistent with the hypothesis that a IV-Case mediated influx of peripheral monocytes takes place in the lung of sarcoid patients. Furthermore, the correlation found between the IV-Case release and disease activity suggests that this assay could represent a useful tool in sarcoidosis disease staging.
C Agostini, S Garbisa, L Trentin, R Zambello, G Fastelli, M Onisto, A Cipriani, G Festi, D Casara, G Semenzato
The treatment of choice for certain immunodeficiency syndromes and hematological disorders is bone marrow transplantation (BMT). The success of BMT is influenced by the degree of HLA compatibility between recipient and donor. However, aberrant expression of HLA sometimes makes it difficult, if not impossible, to determine the patient's HLA type by standard serological and cellular techniques. We describe here the application of new molecular biological techniques to perform high resolution HLA typing independent of HLA expression. A patient with HLA-deficient severe combined deficiency was HLA typed using in vitro amplification of the HLA genes and sequence-specific oligonucleotide probe hybridization (SSOPH). Two major advances provided by this technology are:detection of HLA polymorphism at the level of single amino acid differences; and elimination of a requirement for HLA expression. Although the patient's lymphocytes lacked class II HLA proteins, polymorphism associated with DR7,w53;DQw2;DRw11a (a split of DR5), w52b (a split of DRw52);DQw7 were identified. The patient's class I expression was partially defective, and typing was accomplished by a combination of serological (HLA-A and -C) and SSOPH analysis (HLA-B). Complete patient haplotypes were predicted after typing of family members [A2;B35(w6); Cw4; DRw11a(w52b);DQw7 and A2;B13(w4); Cw6;DR7(w53); DQw2]. Potential unrelated donors were typed and a donor was selected for BMT.
L A Baxter-Lowe, J B Hunter, J T Casper, J Gorski
We have examined, in liver and extrahepatic tissues, the effects of fasting on total insulin-like growth factor I (IGF-I) mRNA levels, on levels of different IGF-I mRNAs generated by alternative splicing of the primary IGF-I transcript, and on IGF-I receptor binding and mRNA levels. A 48-h fast decreased total IGF-I mRNA levels by approximately 80% in lung and liver, approximately 60% in kidney and muscle, and only approximately 30-40% in stomach, brain, and testes. In heart, IGF-I mRNA levels did not change. The levels of the different splicing variants, however, were essentially coordinately regulated within a given tissue. Specific 125I-IGF-I binding in lung, testes, stomach, kidney, and heart was increased by fasting by approximately 30-100%, whereas in brain 125I-IGF-I binding did not change in response to fasting. In tissues in which fasting increased IGF-I receptor number, receptor mRNA levels increased approximately 1.6- to 2.5-fold, whereas when IGF-I receptor number was unchanged in response to fasting, receptor mRNA levels did not change. These data demonstrate that the change in IGF-I and IGF-I receptor mRNA levels during fasting is quantitatively different in different tissues and suggest that regulation of IGF-I and IGF-I receptor gene expression by fasting is discoordinate.
W L Lowe Jr, M Adamo, H Werner, C T Roberts Jr, D LeRoith
The molecular basis of autoantibody reactivity with components of the SSA/Ro-SSB/La particle exhibited by sera of mothers of infants with severe and permanent manifestations of neonatal lupus (NLE) was investigated using immunoblotting and immunoprecipitation. The characteristics of NLE that were studied included congenital complete heart block (CCHB), second degree heart block, and hepatic fibrosis. Antibodies specific for one or more components of the SSA/Ro-SSB/La particle were found in sera from all 20 mothers of permanently affected infants. However, no antibody specific for a single peptide of this particle was common to all sera. Using tissue extracts from a human cell substrate, 80% of these sera had antibodies to one or more components of the SSA/Ro particle demonstrable by immunoblotting. The predominant antibody response in the NLE group was to the newly recognized 52-kD SSA/Ro peptide component. In contrast, antibodies to the 60-kD SSA/Ro component although present, were the least represented and not significantly increased in frequency among mothers of these infants, compared with a group of 31 mothers with autoimmune diseases such as systemic lupus erythromatosus (SLE) but who had healthy offspring. Antibodies directed to the 48-kD SSB/La antigen were demonstrated in 90% of the NLE mothers often accompanying antibodies against the 52-kD SSA/Ro component. The combination of antibodies to 48- and 52-kD structures was significantly increased in the NLE group, with an odds ratio of 35. The type of cell or tissue substrate was shown to influence detectability of antibodies. The 52-kD SSA/Ro peptide and the 48-kD SSB/La peptide were abundant in cardiac tissues from fetuses aged 18-24 wk, further supporting the possible relevance of these peptides to heart block.
J P Buyon, E Ben-Chetrit, S Karp, R A Roubey, L Pompeo, W H Reeves, E M Tan, R Winchester
Endothelin is a potent mammalian vasoconstrictive peptide with structural homology to cation channel-binding insect toxins. We tested the proposal that this peptide directly activates dihydropyridine-sensitive Ca2+ channels in cultured vascular smooth muscle (VSM) cells. First, we found that cell Ca2+ can be altered in VSM by activation of voltage-operated Ca2+ channels. KCl-induced depolarization and the dihydropyridine Ca2+ channel agonist (-) Bay K 8644 (10 microM) both raised cell Ca2+ more than twofold; the effect of KCl was blocked by the inhibitory enantiomer, (+) Bay K 8644 (40 microM). Similar responses were observed in Chinese hamster ovary (CHO) cells. Synthetic endothelin (4 x 10(-8) M) raised Ca2+ in VSM but not CHO cells from 100 +/- 17 to 561 +/- 34 nM within 12 s. Ca2+ subsequently fell to basal levels after 30 min. Half maximal Ca2+ response was at 4 x 10(-9) M endothelin. Unlike endothelin, thrombin raised Ca2+ in both VSM and CHO cells. The Ca2+ responses to endothelin and thrombin were not affected by nicardipine (1 microM), (+) Bay K 8644, or Ca2+-free solutions. Lastly, both hormones caused release of inositol phosphates in VSM cells. However, the response to thrombin was more than 10-fold larger and was more rapid than the response to endothelin; the thrombin response was sensitive to pertussis toxin, while the response to endothelin was not. Thus endothelin, like thrombin, raises cell Ca2+ in VSM by mobilization of intracellular stores and not by activation of dihydropyridine-sensitive Ca2+ channels. However, their receptors are distinct and they exhibit important differences in signal transduction.
T Mitsuhashi, R C Morris Jr, H E Ives
Several growth factors are potential mediators of wound healing, although their actual roles, interactions, and therapeutic use are not established. Six well-characterized human growth factors were chosen for detailed investigation by topical application to standardized skin wounds in swine: epidermal growth factor (EGF), transforming growth factors alpha and beta (TGF-alpha and TGF-beta), fibroblast growth factor (FGF), insulin-like growth factor-I (IGF-I), and platelet-derived growth factor (PDGF). When applied singly in doses up to 1,500 ng, only TGF-beta produced a marked tissue response, as demonstrated by an increase in the new connective tissue volume, the collagen content and maturity, and increased angiogenesis. However, TGF-beta enhanced inflammation and caused abnormal epithelial differentiation and decreased epithelial volume, the last reversed by addition of IGF-I. Recombinant PDGF-2 homodimer, if given in combination with recombinant IGF-I, caused a similar increase in the new connective tissue volume and collagen content and maturity, but without increased inflammation. In addition, this combination stimulated increased amounts of epithelium with normal differentiation. The synergy of PDGF-2 and IGF-I was optimal at a ratio of 2:1 by weight. Of the six individual factors and nine combinations tested, the combinations of PDGF-2 and IGF-I or PDGF-2 and TGF-alpha were the most potent stimulators of healing in the absence of increased inflammation.
S E Lynch, R B Colvin, H N Antoniades
Plasminogen activation is catalyzed both by tissue-type-(t-PA) and by urokinase-type plasminogen activator (u-PA). This reaction is controlled by plasminogen activator inhibitor type 1 (PAI-1) that is either present in plasma or bound to fibrin, present in a thrombus. We studied the mechanism of in vitro inhibition of both t-PA and u-PA activity by PAI-1 bound to fibrin. It is shown that activation of latent PAI-1 unmasks a specific fibrin-binding site that is distinct from its reactive site. This reactive site of activated PAI-1 bound to fibrin is fully exposed to form complexes with t-PA and u-PA, that are unable to activate plasminogen. Upon complex formation with either one of the plasminogen activators, PAI-1 apparently undergoes a conformational change and loses its affinity for fibrin. Consequently, complexes of u-PA and PAI-1 dissociate from the fibrin matrix and are encountered in the fluid phase. In contrast, t-PA/PAI-1 complexes remain bound to fibrin. By employing recombinant t-PA deletion-mutant proteins, that precisely lack domains involved in fibrin binding, we demonstrate that binding of t-PA/PAI-1 complexes is mediated by both the "finger" (F) and the "kringle-2" (K2) domain of t-PA. A model is proposed that explains inhibition of the fibrinolytic process, at the level of plasminogen activation by t-PA, directed by PAI-1 bound to fibrin. An implication of the proposed model is that t-PA/PAI-1 complexes and free t-PA compete for the same binding sites on fibrin.
O F Wagner, C de Vries, C Hohmann, H Veerman, H Pannekoek
This paper describes an unusual kindred with familial hypercholesterolemia in which one-third of the relatives with a mutant LDL receptor gene have normal plasma cholesterol concentrations. The proband, a 9-yr-old boy with a plasma cholesterol value greater than 500 mg/dl, is homozygous for a point mutation that changes Ser156 to Leu in the LDL receptor. This substitution in the fourth repeat of the ligand binding domain slows the transport of the protein to the cell surface. The defective receptor cannot bind LDL, which contains apo B-100, but it does bind beta-migrating VLDL, which contains apo E in addition to apo B-100. Although the mother is heterozygous for this mutation, her LDL-cholesterol concentration is consistently in the 28th percentile for the population. Through direct examination of genomic DNA, we identified the mutant gene in heterozygous form in 17 of the mother's relatives, five of whom had normal LDL-cholesterol values. The pedigree was consistent with dominant transmission of a single gene that ameliorates or suppresses the hypercholesterolemic effect of the LDL receptor mutation. Through linkage analysis, we excluded the possibility that this suppressor gene was an allele at the LDL receptor locus. We also excluded the genes for the two ligands for the LDL receptor, apo B-100 and apo E. The existence of this putative suppressor gene may explain the occasional observation of normal LDL-cholesterol concentrations in heterozygotes for LDL receptor mutations.
H H Hobbs, E Leitersdorf, C C Leffert, D R Cryer, M S Brown, J L Goldstein
Myocardial ischemia is characterized by the liberation of adenosine and by complement-mediated inflammation. We have reported that amidated C3, formed when ammonia (NH3) disrupts the thiolester bond of C3, serves as an alternative pathway convertase, generates C5b-9, and stimulates phagocytic oxidative metabolism. We investigated whether the deamination of adenosine by adenosine deaminase in hematopoietic cells might liberate sufficient ammonia to form amidated C3 and thereby trigger complement-mediated inflammation at ischemic sites. In the presence of 4 mM adenosine, NH3 production per erythrocyte (RBC) was equal to that per neutrophil (PMN) (3.3 X 10(-15) mol/cell per h). Because RBC outnumber PMN in normal blood by a thousandfold, RBC are the major source of NH3 production in the presence of adenosine. NH3 production derived only from the deamination of adenosine by the enzyme adenosine deaminase and was abolished by 0.4 microM 2'-deoxycoformycin, a specific inhibitor of adenosine deaminase. When purified human C3 was incubated with 5 X 10(8) human RBC in the presence of adenosine, disruption of the C3 thiolester increased more than twofold over that measured in C3 incubated with buffer, or in C3 incubated with RBC (P less than 0.05). The formation of amidated C3 was abolished by the preincubation of RBC with 2'-deoxycoformycin (P less than 0.001). Amidated C3 elicited statistically significant release of superoxide, myeloperoxidase, and lactoferrin from PMN. Thus, the formation of amidated C3 by RBC deamination of adenosine triggers a cascade of complement-mediated inflammatory reactions.
M K Hostetter, G M Johnson
Complex interrelationships exist between the four pancreatic islet cell types and their respective secretory products, insulin, glucagon, somatostatin, and pancreatic polypeptide. These hormones are known to interact with the different islet cells and modulate their functions. Insulin inhibits glucagon secretion from the A cell both in vivo and in vitro and, in states of insulin deficiency, high glucagon levels are observed that are normalized by insulin replacement. To determine if insulin also regulates glucagon biosynthesis, we studied its effects on glucagon gene expression. Our studies indicate that insulin, in a dose-dependent fashion decreases steady-state glucagon mRNA levels in a clonal hamster islet cell line, In-R1-G9; this decrease is secondary to an inhibition of glucagon gene transcription as assessed by transcriptional run-on assays and does not involve detectable changes in mRNA stability. Inhibition of glucagon gene transcription is accompanied by corresponding decreases in glucagon immunoreactivity in both cell extracts and medium. We conclude that insulin may not only regulate glucagon secretion but also glucagon gene expression.
J Philippe
Cartilage specimens from tibial plateaus, obtained from 13 osteoarthritic (OA) patients and seven controls, were selected from three regions: zone A, center of fibrillated area; zone B, area adjacent to fibrillation, and zone C, remote region of plateau. Acid and neutral metalloproteinases and tissue inhibitor of metalloproteinase (TIMP) were extracted with 2 M guanidine. Methods were developed to selectively destroy either proteinases or TIMP to prevent cross-reaction during assay. Acid and neutral proteinases were elevated approximately 150% in OA; TIMP was elevated approximately 50%. A positive correlation (r = 0.50) was found between acid and neutral proteinase activities in OA, but not in controls. Both proteinases were elevated two-to threefold in zones A, B, and C. However, the self-active form of the acid metalloproteinase was elevated only in zones A and B (200%); it correlated well with the Mankin scores, whereas the total activities did not. TIMP was elevated (50%) only in zones A and B. Both the proteinase levels and the Mankin score were elevated to a greater extent in the medial, than in the lateral, compartment. Titration of TIMP against the two metalloproteinases indicates that there is a small excess of inhibitor over enzymes in normal cartilage. In OA, TIMP does not increase to the same extent as the proteinases; the resultant excess of proteinases over TIMP may contribute to cartilage breakdown.
D D Dean, J Martel-Pelletier, J P Pelletier, D S Howell, J F Woessner Jr
Human osteoblast cultures (hOB) were examined for the production of interstitial collagenase, tissue inhibitor of metalloproteinases (TIMP), and gelatinolytic enzymes. Cells were isolated by bacterial collagenase digestion of trabecular bone (vertebra, rib, tibia, and femur) from 11 subjects (neonatal to adult). Confluent cultures were exposed to phorbol 12-myristate 13-acetate, PTH, PGE2, epidermal growth factor, 1,25(OH)2 vitamin D3, recombinant human IL-1 beta, and dexamethasone. Collagenase and TIMP were assayed immunologically and also by measurements of functional activity. Collagenase was not secreted in significant quantities by human bone cells under any tested condition. Furthermore, collagenase mRNA could not be detected in hOB. However, hOB spontaneously secreted large amounts of TIMP for at least 72 h in culture. hOB TIMP was found to be identical to human fibroblast TIMP by double immunodiffusion, metabolic labeling and immunoprecipitation, Northern blot analysis, and stoichiometry of collagenase inhibition. SDS-substrate gel electrophoresis of hOB-conditioned media revealed a prominent band of gelatinolytic activity at 68 kD, and specific polyclonal antisera established its identity with the major gelatinolytic protease of human fibroblasts. Abundant secretion of gelatinolytic, but not collagenolytic, enzymes by hOB may indicate that human osteoblasts do not initiate and direct the cleavage of osteoid collagen on the bone surface, but may participate in the preparation of the bone surface for osteoclast attachment by removal of denatured collagen peptides. The constitutive secretion of TIMP may function to regulate metalloproteinase activity.
L Rifas, L R Halstead, W A Peck, L V Avioli, H G Welgus
To determine the possible mechanism(s) promoting alveolar fibrin deposition in the adult respiratory distress syndrome (ARDS), we investigated the initiation and regulation of both fibrinolysis and coagulation from patients with ARDS (n = 14), at risk for ARDS (n = 5), and with interstitial lung diseases (ILD) (n = 8), and normal healthy individuals (n = 13). Bronchoalveolar lavage (BAL) extrinsic pathway inhibitor activity was increased in ARDS BAL compared with patients at risk for ARDS (P = 0.0146) or normal controls (P = 0.0013) but tissue factor-factor VII procoagulant activity was significantly increased in ARDS BAL compared with all other groups (P less than 0.001). Fibrinolytic activity was not detectable in BAL of 10 of the 14 patients with ARDS and low levels of activity were found in BAL of the other four ARDS patients. Depressed fibrinolysis in ARDS BAL was not due to local insufficiency of plasminogen; rather, there was inhibition of both plasmin and plasminogen activator. Plasminogen activator inhibitor 1 was variably detected and low levels of plasminogen activator inhibitor 2 were found in two ARDS BAL samples, but plasminogen activator inhibitor 2 was otherwise undetectable. ARDS BAL antiplasmin activity was, in part, due to alpha 2-antiplasmin. We conclude that abnormalities that result in enhanced coagulation and depressed fibrinolysis, thereby predisposing to alveolar fibrin deposition, occur in the alveolar lining fluids from patients with ARDS.
S Idell, K K James, E G Levin, B S Schwartz, N Manchanda, R J Maunder, T R Martin, J McLarty, D S Fair
Efforts to determine the role of specific Ig variable region (V) genes in human autoimmune responses have been hampered by the lack of suitably polymorphic probes. Recently we isolated a heavy chain V (Vh) gene, designated Humhv3005, that is 99% homologous to the 1.9III Vh gene and can encode an anti-DNA antibody. To study the relation between these two genes, different DNA fragments from the isolated Humhv3005 clone were used to probe Southern blots of human genomic DNA. A 1.6-kb Eco RI fragment (designated hv3005/E1.6) was found to hybridize with only one band in Eco RI-digested DNA, and with two major bands in Bam HI-digested DNA. Importantly, the sizes of the latter two bands were indistinguishable from the corresponding Bam HI fragment sizes of the isolated hv3005 clone and the isolated 1.9III clone, respectively. Population and family studies with the hv3005/E1.6 probe revealed five different hybridization patterns of these two characteristic bands, which defined nine possible genotypes for two human Ig Vh gene loci. Together the data demonstrate that hv3005/E1.6 is a highly informative probe for an autoantibody-associated Vh gene(s), and should prove useful in elucidating the role of Ig Vh genes in autoimmune diseases.
P P Chen, K A Siminovitch, N J Olsen, R A Erger, D A Carson
In situ hybridization of proinsulin and proglucagon mRNA was performed in rat pancreas to assess prohormone gene expression during various glucopenic conditions. During a 4-d fast mean blood glucose declined by 48 mg/dl; proinsulin mRNA signal density remained normal while proglucagon mRNA signal density more than doubled. At the end of a continuous 12-d insulin infusion blood glucose averaged 53 +/- 12 mg/dl; proinsulin mRNA signal density declined to 30% of controls while proglucagon mRNA signal density more than doubled. In insulinoma-bearing NEDH rats blood glucose averaged 34 +/- 3.5 mg/dl; the proinsulin mRNA signal was virtually undetectable and proglucagon mRNA signal density was more than twice the controls. There was no detectable change in either beta-cell area or islet number in rats subjected to fasting or insulin infusion, but in insulinoma-bearing rats beta cell area was markedly reduced. Thus compensation during 4 d of starvation involves an increase in glucagon gene expression without change in insulin gene expression or beta cell mass. In moderate insulin-induced hypoglycemia glucagon gene expression is increased and insulin gene expression decreased. In more profound insulinoma-induced hypoglycemia, in addition to the foregoing changes in hormone gene expression, there is a profound reduction in the number of insulin-expressing cells.
L Chen, I Komiya, L Inman, J O'Neil, M Appel, T Alam, R H Unger
Membrane bound and soluble forms of a high-affinity folate binding protein have been found in kidney, placenta, serum, milk, and in several cell lines. The two forms have similar binding characteristics for folates, are immunologically cross-reactive and based upon limited amino acid sequence data, are nearly identical. Based upon pulse-chase experiments, a precursor-product relationship has been suggested. The membrane form has been shown to mediate the transport of folate in cells grown in physiological concentrations of folate. A function for the soluble form has not yet been identified. We constructed a cDNA library from a human carcinoma cell line, Caco-2, which expresses the membrane form abundantly. The library was screened and a near full-length cDNA for the folate binder was isolated. Transfection of COS cells with the cDNA inserted in an expression vector resulted in marked overexpression of a membrane-associated folate binder as assessed by direct binding of radiolabeled folate and by indirect immunofluorescence. The deduced amino acid sequence is not consistent with a typical membrane spanning domain but rather with a signal for anchoring via a glycosyl-phosphatidylinositol linkage. Release of the binder with a phosphatidylinositol-specific phospholipase C strongly supports this hypothesis.
S W Lacey, J M Sanders, K G Rothberg, R G Anderson, B A Kamen