Although viral upper respiratory infections (URIs) provoke wheezing in many asthma patients, the effect of these illnesses on the airway response to inhaled antigen is not established. The following study evaluated the effect of an experimental rhinovirus (RV) illness on airway reactivity and response to antigen in 10 adult ragweed allergic rhinitis patients. Preinfection studies included measurements of airway reactivity to histamine and ragweed antigen. Furthermore, the patients were also evaluated for late asthmatic reactions (LARs) to antigen (a 15% decrease in forced expiratory volume of the first second approximately 6 h after antigen challenge). 1 mo after baseline studies, the patients were intranasally inoculated with live RV16. All 10 patients were infected as evidenced by rhinovirus recovery in nasal washings and respiratory symptoms. Baseline FEV1 values were stable throughout the study. During the acute RV illness, there was a significant increase in airway reactivity to both histamine and ragweed antigen (P = 0.019 and 0.014, respectively). Before RV inoculation, only 1 of the 10 subjects had an LAR after antigen challenge. However, during the acute RV illness, 8 of 10 patients had an LAR (P less than 0.0085 compared with baseline); the development of LARs was independent of changes in airway reactivity and the intensity of the immediate response to antigen. Therefore, we found that not only does a RV respiratory tract illness enhance airway reactivity, but it also predisposes the allergic patient to develop LARs, which may be an important factor in virus-induced bronchial hyperresponsiveness.
R F Lemanske Jr, E C Dick, C A Swenson, R F Vrtis, W W Busse
Complete deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) causes the Lesch-Nyhan syndrome. Previous characterization of a mutant form of HPRT, HPRTYale, from a subject with the Lesch-Nyhan syndrome revealed normal mRNA and protein concentrations, no residual catalytic activity, and cathodal migration upon PAGE. We have cloned and sequenced HPRTYale cDNA. The nucleotide sequence of full-length HPRTYale cDNA revealed a single nucleotide substitution compared with normal HPRT cDNA: G----C at nucleotide position 211. This transversion predicts substitution of arginine for glycine at amino acid position 71, explaining the cathodal migration of HPRTYale. Chou-Fasman secondary structure analysis predicts a change in the probability of beta-turn formation in the region containing the mutation. Inclusion of the bulky arginine side chain in place of glycine probably disrupts protein folding as well. Cloning mutant forms of cDNA allows identification of specific mutations, provides insight into mutational mechanisms, and facilitates structure-function analysis of mutant proteins.
S Fujimori, B L Davidson, W N Kelley, T D Palella
There is little information about naturally occurring protective immunity in individuals living in areas endemic for lymphatic filariasis, though an immunologically hyperresponsive, uninfected group of "endemic normal" individuals that may be immune has been previously recognized. To analyze the nature of the hyperresponsiveness and its potential relation to a state of protective immunity in such individuals, strict clinical, parasitological, and serological criteria were applied to select seven "infection-free" endemic normal individuals (ENs) from a population of 459 persons resident in an area heavily endemic for bancroftian filariasis. Immunoblot analysis was used to compare the qualitative antigen recognition patterns of these endemic normal individuals to those of a group of 12 clearly infected microfilaremic individuals (MFs) from the same endemic area. Though immunoblot analysis using microfilarial and adult stage filarial antigens revealed no distinct differences in antigen recognition patterns between the two groups, when responses to infective larval stage antigens were assessed, 7/7 (100%) of the ENs were found to recognize a 43-kD antigen that was recognized by only 1/12 (8%) of the MFs. These findings are consistent with the concept that recognition of unique larval antigens may induce protective immunity to human filarial parasites and they identify a candidate immunogen for further functional assessment.
D O Freedman, T B Nutman, E A Ottesen
We have investigated the hypothesis that hyperinsulinemia may cause the polycystic ovary syndrome (PCO) by directly stimulating gonadal steroidogenesis and/or gonadotropin secretion. 10 insulin-resistant women with PCO and 5 age- and weight-matched ovulatory normal women had pulsatile gonadotropin release, gonadotrope sensitivity to gonadotropin-releasing hormone, and sex hormone levels studied on two consecutive study days, basally and during the infusion of insulin (mean +/- SEM steady state insulin levels, 1,254 +/- 63 microU/ml PCO vs. 907 +/- 92 microU/ml normal, P less than or equal to 0.01). Insulin acutely increased mean delta (6 h minus prestudy) levels of androstenedione (A) (P less than or equal to 0.001) and estradiol (E2) (P less than or equal to 0.05) and decreased mean plasma pool (0-6 h) levels of testosterone (T) (P less than 0.05), nonsex hormone binding globulin-bound T (P less than 0.05), and dihydrotestosterone (P less than or equal to 0.01) in the PCO women. Insulin also decreased mean plasma 6 h A to estrone (E1) ratios and increased 6 h E1 levels (both P less than or equal to 0.05) in the PCO women. There were significant sequence effects (insulin + day) in the PCO women on T/E2 ratios, indicating a carryover action of insulin. Insulin had no effects on gonadotropin release in the PCO women. In the normal women, the only significant change was an insulin or study day effect that increased mean 6 h E2 levels (P less than or equal to 0.01). There were significant spontaneous decreases in mean luteinizing hormone (p less than 0.05) and follicle-stimulating hormone levels (p less than or equal to 0.01) in the PCO but not the normal women on the second day of study. This study indicates that insulin can directly alter peripheral sex hormone levels independent of changes in gonadotropin release in insulin-resistent PCO women. Insulin decreased the levels of potent androgens in PCO women and did not increase androgen levels in normal women, arguing against a simple, direct causal relationship between hyperinsulinemia and hyperandrogenism in PCO.
A Dunaif, M Graf
We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload.
J B Gross Jr, B M Myers, L J Kost, S M Kuntz, N F LaRusso
Treatment of postmenopausal women with low doses of estradiol-17 beta (1 mg/d) and dl-norgestrel (0.075 [corrected] mg/d) significantly reduced fasting serum levels of low density lipoprotein (LDL) cholesterol and lowered very low density lipoprotein (VLDL) triglycerides in four of five subjects. To explain these results, the kinetics of VLDL and LDL apolipoprotein (apo) B turnover were studied by injecting autologous 125I-labeled VLDL and 131I-labeled LDL into subjects before discontinuing long-term (4-yr) treatment with the estradiol-17 beta and dl-norgestrel and again 7 wk after stopping treatment. The 24% mean decrease in VLDL apo B pool size during treatment was associated with a significant increase in VLDL apo B fractional catabolic rate (15 +/- 1 vs. 11 +/- 1 pools/d), whereas production rate was similar to control (24 +/- 3 vs. 21 +/- 2 mg/kg per d). There was a significant 25% mean decrease in LDL apo B pool size (27 +/- 2 vs. 36 +/- 3 mg/kg) due to a significant decrease in total (8.3 +/- 0.3 vs. 11 +/- 1 mg/kg per d) and independent (3.3 +/- 0.5 vs. 6.6 +/- 0.8 mg/kg per d, P less than 0.05) LDL apo B production. Estradiol-17 beta together with dl-norgestrel lowered plasma VLDL by enhancing their clearance and LDL by reducing their production.
B M Wolfe, M W Huff
To examine whether atrial natriuretic polypeptide (ANP) is released from the left ventricle in patients with dilated cardiomyopathy (DCM) we measured plasma ANP level in the aortic root (Ao), the anterior interventricular vein (AIV), the great cardiac vein (GCV), and the coronary sinus (CS) in 11 patients with DCM and 18 control subjects. Plasma ANP levels in Ao, AIV, GCV, and CS were 454 +/- 360, 915 +/- 584, 1,308 +/- 926, and 1,884 +/- 1,194 pg/ml, respectively, in the patients with DCM and 108 +/- 42, 127 +/- 55, 461 +/- 224, and 682 +/- 341 pg/ml, respectively, in the control subjects. There was no significant difference in the plasma ANP levels between Ao and AIV in the control subjects. On the contrary, there was a significant (P less than 0.001) step-up in plasma ANP levels between Ao and AIV in patients with DCM. Thus, the difference in ANP levels between Ao and AIV was significantly increased in patients with DCM as compared with the control subjects (461 +/- 248 vs. 19 +/- 59 pg/ml, P less than 0.001). The difference in ANP levels between Ao and CS was also significantly increased in patients with DCM as compared with the control subjects (1,429 +/- 890 vs. 577 +/- 318 pg/ml, P less than 0.001). We conclude that ANP is released in increased amounts into the circulation from the left ventricle as well as from the heart as a whole in patients with DCM.
H Yasue, K Obata, K Okumura, M Kurose, H Ogawa, K Matsuyama, M Jougasaki, Y Saito, K Nakao, H Imura
Fructose raises blood glucose and lactate levels in normal as well as diabetic man, but the tissue origin (liver and/or kidney) of these responses and the role of insulin in determining the end products of fructose metabolism have not been fully established. Splanchnic and renal substrate exchange was therefore examined during intravenous infusion of fructose or saline in six insulin-deficient type I diabetics who fasted overnight and in five healthy controls. Fructose infusion resulted in similar arterial concentrations and regional uptake of fructose in the two groups. Splanchnic glucose output increased threefold in the diabetics but remained unchanged in controls in response to fructose infusion, and the arterial glucose concentration rose more in diabetics (+5.5 mmol/liter) than in controls (+0.5 mmol/liter). Splanchnic uptake of both lactate and pyruvate increased twofold in response to fructose infusion in the diabetics. In contrast, a consistent splanchnic release of both lactate and pyruvate was seen during fructose infusion in controls. In diabetics fructose-induced hyperglycemia was associated with no net renal glucose exchange, while there was a significant renal glucose production during fructose infusion in the controls. In both groups fructose infusion resulted in renal output of lactate and pyruvate. In the diabetics this release corresponded to the augmented uptake by splanchnic tissues. In two diabetic patients given insulin infusion, all responses to fructose infusion were normalized. Fructose infusion in diabetics did not influence either splanchnic ketone body production or its relationship to splanchnic FFA inflow. We conclude that in insulin-deficient, mildly ketotic type I diabetes, (a) both the liver, by virtue of lactate, pyruvate, and fructose-derived gluconeogenesis, and the kidneys , by virtue of fructose-derived lactate and pyruvate production, contribute to fructose-induced hyperglycemia; (b) outcome of hepatic fructose metabolism; and (c) fructose does not exert an antiketogenic effect. These data suggest that while total fructose metabolism is not altered in diabetics, intermediary hepatic fructose metabolism is dependent on the presence of insulin.
O Björkman, R Gunnarsson, E Hagström, P Felig, J Wahren
PTH was studied for its effects on bone formation in cultured rat calvariae. 0.01-10 nM PTH stimulated [3H]thymidine incorporation into DNA by up to 4.8-fold. Although continuous treatment with PTH for 24-72 h inhibited [3H]proline incorporation into collagen, transient (24 h) treatment enhanced [3H]proline incorporation into collagen 24-48 h after the hormone was removed. The collagen stimulated by PTH was type I and the effect was observed in the periosteum-free bone and was not blocked by hydroxyurea. Furthermore, treatment with 1-100 nM PTH for 24 h increased insulin-like growth factor (IGF) I concentrations by two to fourfold, and an IGF I antibody prevented the PTH stimulation of collagen synthesis, but not its mitogenic effect. In conclusion, continuous treatment with PTH inhibits calvarial collagen, whereas transient treatment stimulates collagen synthesis, and the stimulatory effect is mediated by local production of IGF I.
E Canalis, M Centrella, W Burch, T L McCarthy
Antacids used to decrease phosphorus absorption in patients with renal failure may be toxic. To find more efficient or less toxic binders, a three-part study was conducted. First, theoretical calculations showed that phosphorus binding occurs in the following order of avidity: Al3+ greater than H+ greater than Ca2+ greater than Mg2+. In the presence of acid (as in the stomach), aluminum can therefore bind phosphorus better than calcium or magnesium. Second, in vitro studies showed that the time required to reach equilibrium varied from 10 min to 3 wk among different compounds, depending upon solubility in acid and neutral solutions. Third, the relative order of effectiveness of binders in vivo was accurately predicted from theoretical and in vitro results; specifically, calcium acetate and aluminum carbonate gel were superior to calcium carbonate or calcium citrate in inhibiting dietary phosphorus absorption in normal subjects. We concluded that: (a) inhibition of phosphorus absorption by binders involves a complex interplay between chemical reactions and ion transport processes in the stomach and small intestine; (b) theoretical and in vitro studies can identify potentially better in vivo phosphorus binders; and (c) calcium acetate, not previously used for medical purposes, is approximately as efficient as aluminum carbonate gel and more efficient as a phosphorus binder than other currently used calcium salts.
M S Sheikh, J A Maguire, M Emmett, C A Santa Ana, M J Nicar, L R Schiller, J S Fordtran
Lipopolysaccharide (LPS) pretreatment "primes" neutrophils to release increased amounts of superoxide anion (O2-) when stimulated. We investigated the molecular basis of this enhanced activity. Comparison of kinetic parameters of the respiratory burst NADPH oxidase in unstimulated LPS-primed and control neutrophils disclosed a similar Km for NADPH and no difference was seen in the content of cytochrome b. Pertussis toxin, which inhibits some G proteins, did not prevent priming. Change in membrane potential (delta psi) was five-fold greater in LPS-primed cells and paralleled the increased O2- release. Cytofluorographic analysis indicated that the increased change in delta psi was due to the creation of a new population of active cells. Changes in the concentration of intracellular free Ca2+ ([Ca2+]i) are believed to antecede changes in delta psi. There was a consistent increment (67 +/- 8%, n = 12) in resting [Ca2+]i in cells preincubated with LPS compared with control. When stimulated, the peak [Ca2+]i was significantly higher in LPS-primed cells. Ca2+-dependent protein kinase C activity was unaltered in resting and FMLP-stimulated neutrophils preexposed to LPS. Addition to cells of the intracellular Ca2+ chelator MAPTAM before preincubation with LPS blocked the changes in [Ca2+]i and the enhanced respiratory burst that characterize LPS priming. The increased resting [Ca2+]i in LPS-primed cells may enhance stimulus-induced cellular activity by modifying a Ca2+-dependent step in signal transduction.
J R Forehand, M J Pabst, W A Phillips, R B Johnston Jr
The effects of arginine vasopressin (AVP) on the cytosolic free calcium concentration ([Ca2+]f) were examined in freshly immunodissected rabbit cortical collecting tubule cells using fluorescent Ca2+ indicators fura-2 and indo-1. The addition of AVP to a cell suspension resulted in a rapid and transient increase in the [Ca2+]f. The 1-deamino-8-D-AVP (dDVP), a V2 receptor agonist of AVP that stimulated adenosine 3',5' cAMP production in these cells, had no effect on [Ca2+]f and did not affect AVP-induced increase in [Ca2+]f. The AVP-induced increase in [Ca2+]f but not cAMP production was blocked by the V1 receptor antagonist, [1-(beta-mercapto-beta-beta-cyclopentamethylene propionic acid), 2-(O-methyl)tyrosine] Arg8-vasopressin. The AVP-stimulated increase in [Ca2+]f appeared to be largely due to Ca2+ release from intracellular stores as reduction of extracellular Ca2+ with EGTA had little if any effect on the AVP-induced increase in [Ca2+]f. This AVP-induced increase in [Ca2+]f was associated with an increase in inositol-1,4,5-trisphosphate production and appeared to involve a guanine nucleotide-binding protein (G), since the pretreatment of cells with pertussis toxin for 4-6 h inhibited this effect. Finally, measurements of [Ca2+]f in single cells suggest that only the principal cells of the collecting tubules respond to AVP with an increase in [Ca2+]f. In summary, these results demonstrate that the principal cells of the cortical collecting tubule possess two distinct receptor systems for vasopressin, the well-known V2 receptor coupled to adenylate cyclase, and a V1 receptor system that leads to the mobilization of cytosolic calcium, coupled through a pertussis toxin substrate (G protein) to a production of inositol phosphates.
M A Burnatowska-Hledin, W S Spielman
T S Lee, L C MacGregor, S J Fluharty, G L King
Genomic DNA from a patient with dystrophic myopathy, glycerol kinase deficiency, and congenital adrenal hypoplasia was investigated using cDNA probes for the Duchenne muscular dystrophy (DMD) locus. Genomic probes had not detected a deletion in this patient. Southern analysis of Hind III-digested genomic DNA from this patient identified a deletion when the three distal Hinc II DMD cDNA fragments were used as probes. The deletion began in the genomic region corresponding to the 1.05-kb Hinc II cDNA fragment and extended through the 3' end of the DMD gene. This represents a centromeric breakpoint that corresponds to a position approximately 10.2-10.6 kb from the 5' end of the 14-kb DMD cDNA. These investigations demonstrate the value of the DMD cDNA probes for improved diagnoses in patients with molecular lesions involving the DMD locus. Furthermore, this novel deletion involving the coding portion of the 3' end of the DMD gene assists in the ordering of exons in this region and will provide insight into the functional role of the carboxy terminus of the DMD gene product, dystrophin.
E R McCabe, J Towbin, J Chamberlain, L Baumbach, J Witkowski, G J van Ommen, M Koenig, L M Kunkel, W K Seltzer
The effect of tumor-promoting phorbol esters on the in vitro proliferation of mouse pluripotent hematopoietic stem cells (CFU-S) was examined using a short-term in vitro culture system and an 11-d spleen colony assay. Phorbol myristate acetate (PMA, 10(-7) M), but not the inert compound phorbol, supported the in vitro survival of day 11 CFU-S for 72 h in a manner similar to IL 3. PMA also enhanced the effect of IL 3 on the in vitro survival of day 11 CFU-S and as little as 1 h of exposure to PMA was sufficient for this purpose. The effect of PMA on CFU-S survival in vitro was not mediated by prostaglandins, did not require an established adherent cell population, and was observed at a concentration of 10(-9) M. PMA alone did not enhance the in vitro survival of day 11 CFU-S at very low concentrations of FCS but was still able to potentiate the effect of IL 3 on these cells. PMA also enhanced the in vitro survival of day 11 CFU-S from mice treated with 5-fluorouracil or from marrow cells exposed to merocyanine 540 and light. The interaction of PMA with day 11 CFU-S was not inhibited by a neutralizing antiserum to IL 3 but was inhibited by the protein kinase inhibitor H-7. Together, the data indicate that tumor-promoting phorbol esters interact with pluripotent hematopoietic stem cells. Like IL 3, their effect appears to be permissive and involves stem cells with marrow repopulating ability.
J L Spivak, B B Hogans, R K Stuart
Patients with essential hypertension show an increase in vascular resistance. It is unclear whether this is caused by structural changes in the arterial wall or by hyperresponsiveness of vascular smooth muscle to endogenous alpha adrenergic agonists. Using the dorsal hand vein compliance technique we compared the changes in diameter of superficial veins in response to phenylephrine, an alpha 1 adrenergic receptor agonist, and to nitroglycerin, a venorelaxant, in patients with essential hypertension and in normotensive subjects. The dose of phenylephrine that produced 50% of maximal venoconstriction (ED50) in the hypertensive subjects was 257 ng/min (geometric mean; log mean +/- SD was 2.41 +/- 0.54). In the control subjects the ED50 was 269 ng/min (geometric mean; log mean was 2.43 +/- 0.43). Maximal response (Emax) for phenylephrine was 84 +/- 13% in the hypertensive subjects and 90 +/- 6% in the control subjects. Differences in the group means of the ED50 (P = 0.92) or the Emax (P = 0.27) were not significant. There were no significant differences in the ED50 (P = 0.54) or the Emax (P = 0.08) for nitroglycerin between the two groups. These results show no evidence for a generalized change in alpha adrenergic responsiveness in hypertension and support the concept that increased blood pressure responses to alpha adrenergic stimulation in hypertensives are due to structural and geometric changes in the arterial wall rather than to an increased responsiveness of postsynaptic alpha adrenergic receptors. The phenylephrine studies were repeated in seven hypertensive patients during treatment with prazosin, an alpha 1 adrenergic antagonist. The mean dose ratio of the shift in phenylephrine ED50 (ED50 during prazosin therapy/ED50 before prazosin therapy) was 6.1. This indicates that small doses of prazosin (1-2 mg) cause significant in vivo shifts in the dose-response relationship of alpha adrenergic agonists. The dorsal hand vein compliance technique is useful in detecting systemic effects of alpha adrenergic antagonists.
H G Eichler, G A Ford, T F Blaschke, A Swislocki, B B Hoffman
We studied the effects of dietary NaCl intake on the renal distal tubule by feeding rats high or low NaCl chow or by chronically infusing furosemide. Furosemide-treated animals were offered saline as drinking fluid to replace urinary losses. Effects of naCl intake were evaluated using free-flow micropuncture, in vivo microperfusion, and morphometric techniques. Dietary NaCl restriction did not affect NaCl delivery to the early distal tubule but markedly increased the capacity of the distal convoluted tubule to transport Na and Cl. Chronic furosemide infusion increased NaCl delivery to the early distal tubule and also increased the rates of Na and Cl transport above the rates observed in low NaCl diet rats. When compared with high NaCl intake alone, chronic furosemide infusion with saline ingestion increased the fractional volume of distal convoluted tubule cells by nearly 100%, whereas dietary NaCl restriction had no effect. The results are consistent with the hypotheses that (a) chronic NaCl restriction increases the transport ability of the distal convoluted tubule independent of changes in tubule structure, (b) high rates of ion delivery to the distal nephron cause tubule hypertrophy, and (c) tubule hypertrophy is associated with increases in ion transport capacity. They indicate that the distal tubule adapts functionally and structurally to perturbations in dietary Na and Cl intake.
D H Ellison, H Velázquez, F S Wright
Insulin actions and receptors were studied in capillary endothelial cells cultured from diabetic BB rats and their nondiabetic colony mates. The endothelial cells from diabetic rats of 2 mo duration had persistent biological and biochemical defects in culture. Compared with normal rats, endothelial cells from diabetic rats grew 44% more slowly. Binding studies of insulin and insulin-like growth factor I (IGF-I) showed that cells from diabetic rats had 50% decrease of insulin receptor binding (nondiabetic: 4.6 +/- 0.7; diabetic: 2.6 +/- 0.4% per milligram protein, P less than 0.01), which was caused by a 50% decrease in the number of binding sites per milligram protein, whereas IGF-I binding was not changed. Insulin stimulation of 2-deoxy-glucose uptake and alpha-aminoisobutyric acid uptake were also severely impaired with a 80-90% decrease in maximal stimulation, in parallel with a 62% decrease in insulin-stimulated autophosphorylation (P less than 0.05). 125I-insulin cross-linking revealed an 140-kD alpha subunit of the insulin receptor similar to that in cells from nondiabetic rats, although bands at greater than 200 kD were also detected. The molecular weight of the insulin receptor beta subunit (by SDS-PAGE) was smaller in cells from diabetic than from normal rats (88-90 vs. 95 kD). Neuraminadase treatment of the partially purified insulin receptors decreased the molecular weight of the insulin receptors from nondiabetic rats to a greater degree than its diabetic counterpart. In contrast, Northern blot analysis of insulin receptor mRNAs using human cDNA probes revealed two species of 9.4 and 7.2 kb with no difference in mRNA abundance between cells from diabetic and nondiabetic rats. We conclude that the exposure of capillary endothelial cells to a diabetic milieu in vivo can cause specific and persistent changes in the insulin receptor and insulin action.
C F Kwok, B J Goldstein, D Muller-Wieland, T S Lee, C R Kahn, G L King
Liver transplantation provides a unique opportunity to investigate the contribution in vivo of the liver to the synthesis and degradation of genetically polymorphic plasma proteins. We have determined the genetic polymorphisms plasma proteins. We have determined the genetic polymorphisms of apo A-IV, apo E, and of the Lp(a) glycoprotein (apo (a] in the plasma of subjects undergoing liver transplantation and in respective organ donors. The results show that in humans, greater than 90% of the plasma apo E and virtually all apo (a) are liver derived, whereas this organ does not significantly contribute to plasma apo A-IV levels.
H G Kraft, H J Menzel, F Hoppichler, W Vogel, G Utermann
The postulate that thyroxine (T4) in plasma enters tissues by protein-mediated transport or enhanced dissociation from plasma-binding proteins leads to the conclusion that almost all T4 uptake by tissues in the rat occurs via the pool of albumin-bound T4 (Pardridge, W. M., B. N. Premachandra, and G. Fierer. 1985. Am. J. Physiol. 248:G545-G550). To directly test this postulate, and to test more generally whether albumin might play a special role in T4 transport in the rat, we performed in vivo kinetics studies in six Nagase analbuminemic rats and in six control rats, all of whom had similar serum T4 concentrations and percent free T4 values. Evaluation of the plasma disappearance curves of simultaneously injected 125I-T4 and 131I-albumin indicated that the flux of T4 from the extracellular compartment into the rapidly exchangeable intracellular compartment was similar in the analbuminemic rats (51 +/- 21 ng/min, mean +/- SD) and in the control rats (54 +/- 15 ng/min), as was the size of the rapidly exchangeable intracellular pool of T4 (1.13 +/- 0.53 vs. 1.22 +/- 0.36 micrograms). This latter finding was confirmed by direct analysis of tissue samples (liver, kidney, and brain). We also performed in vitro kinetics studies using the isolated perfused rat liver. The single-pass fractional extraction by normal rat liver of T4 in pooled analbuminemic rat serum was indistinguishable from that of T4 in pooled control rat serum (10.9 +/- 3.3%, n = 3, vs. 11.4 +/- 3.4%). When greater than 98% of the albumin was removed from normal rat serum by chromatography with Affi-Gel blue, the single-pass fractional extraction of T4 (measured by a bolus injection method) did not change (16.3 +/- 2.1%, n = 5, vs. 15.2 +/- 2.5%). These data provide the first valid experimental test of the enhanced dissociation hypothesis and indicate that there is no special, substantive role for albumin in T4 transport in the rat.
C M Mendel, R R Cavalieri, L A Gavin, T Pettersson, M Inoue
Osteoblasts are the cells responsible for the secretion of collagen and ultimately the formation of new bone. These cells have also been shown to regulate osteoclast activity by the secretion of cytokines, which remain to be defined. In an attempt to identify these unknown cytokines, we have induced primary murine osteoblasts with two bone active agents, parathyroid hormone (PTH) and lipopolysaccharide (LPS) and analyzed the conditioned media (CM) for the presence of specific cytokines. Analysis of the CM was accomplished by functional, biochemical, and serological techniques. The data indicate that both PTH and LPS are capable of inducing the osteoblasts to secrete a cytokine, which by all of the techniques used, is indistinguishable from granulocyte-macrophage colony-stimulating factor (GM-CSF). Secretion of GM-CSF is not constitutive and requires active induction. Production of the cytokine is dependent on the dose of PTH or LPS added. It has been demonstrated that the addition of GM-CSF to bone marrow cultures results in the formation of increased numbers of osteoclasts. Therefore, these data suggest that osteoblasts not only participate in bone remodeling by formation of new matrix but may regulate osteoclast activity indirectly by their ability to regulate hematopoiesis.
M C Horowitz, D L Coleman, P M Flood, T S Kupper, R L Jilka
To investigate the effects of D-penicillamine (D-Pen) on angiogenesis, we have studied the effects of this drug on in vitro proliferation of human endothelial cells (EC) and in vivo corneal neovascularization. D-Pen, in the presence of copper sulfate, suppressed tritiated thymidine ([3H]TdR) incorporation into EC in a dose-dependent manner. Significant inhibition was observed with D-Pen concentrations attainable in the serum and tissues of treated patients. Neither D-Pen nor copper ion alone significantly affected [3H]TdR incorporation into EC. The inhibition by D-Pen and copper was blocked by catalase (CAT) or horseradish peroxidase but not by boiled CAT or SOD. When rabbits were daily injected intravenously with D-Pen at the per kilogram dosage administered to rheumatoid patients, neovascularization as quantitated by the proliferation of corneal new blood vessels was significantly inhibited. These results suggest that hydrogen peroxide generated by D-Pen and copper exerts a pronounced antiangiogenic effect through inhibition of EC proliferation. It is, therefore, considered that D-Pen may suppress rheumatoid synovitis by reducing the number of small blood vessels available for the emigration of chronic inflammatory cells, and the proliferation of the synovial tissue.
T Matsubara, R Saura, K Hirohata, M Ziff
We measured bone mineral density (BMD) at the lumbar spine (LS-BMD) and ultradistal radius (UDR-BMD) in 42 postmenopausal normal women and in 108 postmenopausal osteoporotic women (55 with vertebral fracture, 34 with Colles' fracture, and 19 with both fractures). By receiver operating characteristic analysis, LS-BMD was better than UDR-BMD (P less than 0.01) as an indicator of vertebral fracture; the converse was true for Colles' fracture (P less than 0.01). Although UDR-BMD and LS-BMD were lower in each of the three fracture groups than in controls (P less than 0.01), the pattern of bone loss differed (P less than 0.001, analysis of variance): with vertebral fracture, LS-BMD decreased relatively more than UDR-BMD; with Colles' fracture, UDR-BMD decreased relatively more than LS-BMD; and with both fractures, decreases in LS-BMD and UDR-BMD were similar. We conclude that both types of fracture are caused by excessive bone loss but the difference in bone loss at the two sites is a major factor in determining which will fracture.
R Eastell, H W Wahner, W M O'Fallon, P C Amadio, L J Melton 3rd, B L Riggs
Supernatants obtained by degranulation of dog mastocytoma cells greatly increased the sensitivity and the magnitude of the contractile response of isolated dog bronchial smooth muscle to histamine. The enhanced contractile response was reversed completely by H1-receptor antagonists and was prevented by an inhibitor of tryptase (a major protease released with histamine from secretory granules of mast cells). The potentiation of histamine-induced contractions was reproduced by active tryptase in pure form. The contractions due to the combination of histamine and purified tryptase were abolished by the Ca2+ channel blockers nifedipine and verapamil. The bronchoconstricting effects of KCl and serotonin, which, like histamine, contract airway smooth muscle by a mechanism predominantly involving membrane potential-dependent Ca2+ transport, were also potentiated by tryptase. However, the contractile effects of acetylcholine, which contracts dog airway smooth muscle by a mechanism independent of Ca2+ channels, were unaffected by tryptase. These findings show a striking promotion of agonist-induced bronchial smooth muscle contraction by mast cell tryptase, via direct or indirect effects on Ca2+ channels, and the findings therefore suggest a novel potential mechanism of hyperresponsiveness in dog bronchi.
K Sekizawa, G H Caughey, S C Lazarus, W M Gold, J A Nadel
The factors responsible for the production of autoantibodies against self-components are not well understood. We have identified monospecific human autoantibodies to poly(ADP-ribose) polymerase (ADPRP) in the sera of rheumatic patients. Since this nuclear enzyme has been extensively characterized, and its entire structure is known, we could investigate in detail the epitope specificity of the human autoantibodies, and their effects on the biological functions of the enzyme. All sera with autoantibodies to ADPRP recognized the NAD-binding domain of the enzyme, as demonstrated by either immunoblotting or immunoprecipitation of partially proteolyzed ADPRP. The autoantibodies also inhibited the catalytic activity of the purified enzyme, as measured by the transfer of ADP-ribose from [32P]NAD to either histones or to ADPRP itself. Because comparative structural analyses have shown that the active sites of enzymes are often conserved during evolution, we tested the ability of the autoantibodies to react with ADPRP from lower eukaryotes. The human autoantibodies reacted with ADPRP in cellular extracts from mammalian, avian, amphibian, arthropod, and protozoan cells, and also inhibited the catalytic activity of the various enzymes. Collectively, these experiments indicate that the human autoantibodies to ADPRP recognize a distinct group of evolutionarily conserved antigenic determinants that are closely related to the catalytic site of the enzyme. The results are consistent with the hypothesis that the epitope selectivity of human autoantibodies to ADPRP is influenced by cross-reactive antigens in the external environment.
H Yamanaka, E H Willis, D A Carson
It is thought that the Rh antigens may be important in maintaining normal erythrocyte membrane integrity. Despite their name, Rh antigens are serologically present only on human erythrocytes. Rh structural polymorphisms are known to reside within a family of nonglycosylated Mr 32,000 integral membrane proteins that can be purified by hydroxylapatite chromatography. Mr 32,000 integral membrane proteins were purified similarly from erythrocyte membrane vesicles prepared from rhesus monkeys, cows, cats, and rats, but could not be purified from human Rhmod erythrocytes, a rare syndrome lacking Rh antigens. The purified Mr 32,000 polypeptides were labeled with 125I, digested with chymotrypsin, and found to be 30-60% identical to human Rh polypeptides when compared by two-dimensional iodopeptide mapping. The physiologic function of the Rh polypeptides remains to be identified; however, the existence of related proteins in nonhuman erythrocytes supports the concept that the Rh polypeptides are erythrocyte membrane components of fundamental significance.
A M Saboori, B M Denker, P Agre
Muscle is a major tissue for insulin action. To study the effect of muscle differentiation on insulin receptors, we employed cultured mouse muscle BC3H-1 and C2 cells. In both cell lines differentiation from myoblasts to myocytes was associated with a 5-10-fold increase in specific 125I-insulin binding to intact cells. When 125I-insulin binding was carried out on solubilized myocytes and myoblasts, 125I-insulin binding to myoblasts was low. After differentiation the number of insulin receptors increased 5-10-fold. In contrast to insulin binding, insulin growth factor I receptor binding was elevated in myoblasts and was decreased by 50% in myocytes. Specific radioimmunoassay of the insulin receptor indicated that the increase in insulin binding to myocytes was due to an increase in insulin receptor content. Studies employing [35S]methionine indicated that this increase in insulin-binding sites reflected an increase in insulin receptor biosynthesis. To study insulin receptor gene expression, myoblast and myocyte mRNA was isolated and analyzed on Northern and slot blots. Differentiation from myoblasts to myocytes was accompanied by a 5-10-fold increase in insulin receptor mRNA. These studies demonstrate, therefore that differentiation in muscle cells is accompanied by increased insulin receptor biosynthesis and gene expression.
A Brunetti, B A Maddux, K Y Wong, I D Goldfine
Fasting in the rat is associated with a rapid and progressive decrease in insulin-stimulated glucose transport activity in adipose cells, which is not only restored to normal, but increased transiently to supranormal levels by refeeding. The mechanisms for these changes in glucose transport activity appear to involve alterations in both glucose transporter number and intrinsic activity (glucose turnover number). In this study, we use the human hepatoma Hep G2 glucose transporter complementary DNA clone to examine the molecular basis for these alterations. Extractable RNA per adipose cell is decreased 35% with 3 d of fasting and increased to 182% of control with 6 d of refeeding after 2 d of fasting. This parallels changes in adipose cell intracellular water, so that total RNA/water space remains relatively constant. When the changes in total RNA/cell are taken into account, Northern and slot blot analyses with quantitative densitometry reveal a 36% decrease in specific glucose transporter mRNA level in cells from the fasted rats. The mRNA level in cells from the fasted/refed rats is restored to normal. These observations correlate closely with previous measurements of glucose transporter number in adipose cell membrane fractions using cytochalasin B binding and Western blotting. The levels of specific mRNAs for tubulin and actin on a per cell basis show similar but more dramatic changes and mRNAs encoding several differentiation-dependent adipose cell proteins are also significantly affected. Thus, the levels of mRNA for multiple adipose cell genes are affected by fasting and refeeding. In particular, this demonstrates that in vivo metabolic alterations can influence the level of a glucose transporter mRNA in adipose cells. This may have implications for the regulation of glucose transporter number and glucose transport activity.
B B Kahn, S W Cushman, J S Flier
The isolated perfused hearts of rabbits previously subjected to in vivo left ventricular myocardial infarction (LVMI) show a 5-10-fold increase in f-Met-Leu-Phe (FMLP) and bradykinin (BK)-stimulated eicosanoid metabolite production relative to noninfarcted hearts. This exaggerated arachidonate metabolism has been shown to occur primarily in the cardiac atria, a site remote from the zone of injury and to be associated with a 10-15-fold increase in atrial FMLP receptor number in the absence of atrial inflammation. All of these changes were temporally related to leukocyte infiltration into the infarct zone. To determine whether invading leukocytes mediate these responses, acute inflammatory cell influx was suppressed either by inducing leukopenia with nitrogen mustard or by administration of BW-755C, a mixed cyclooxygenase-lipoxygenase inhibitor. Both pharmacological manipulations resulted in a decrease in inflammatory cells in the infarct zone and a marked suppression (50-70%) of ex vivo agonist-stimulated eicosanoid metabolite production from perfused hearts and isolated atria. These manipulations also resulted in reversal of ex vivo FMLP-induced coronary vasoconstriction as well as augmentation of BK-induced coronary vasodilation. Further studies in nitrogen mustard-treated animals revealed a suppression of the LVMI-stimulated increase in atrial FMLP receptor number. These data show that suppression of leukocyte invasion after LVMI attenuates enhanced cardiac and atrial eicosanoid metabolite production, and results in marked changes in coronary vascular reactivity. An additional finding was that basal and stimulated LTB4 production was markedly increased in infarcted hearts. In vivo suppression of the increase in LTB4 production by BW-755C was associated with inhibition of inflammatory cell influx into the infarct zone. It therefore appears that LTB4 may be an important proinflammatory mediator of leukocyte invasion after LVMI.
M S Freed, P Needleman, C G Dunkel, J E Saffitz, A S Evers
The effects of IFN-alpha, IFN-beta, and IFN-gamma on the differentiation of murine melanoma cells has been studied, in the presence and absence of melanocyte-stimulating hormone (MSH); the cells were highly responsive to treatment with MSH, which increased the rate of melanin production 25-fold and tyrosinase activity 6-fold within 4 d. Treatment of melanoma cells with IFN-alpha, IFN-beta, or IFN-gamma alone had no stimulatory effect on melanin production, but when the cells were cultured with IFN in the presence of MSH, pigment production was significantly and synergistically increased relative to cells cultured with MSH only. Flow cytometric analysis revealed that levels of tyrosinase in the cells were not affected by MSH or by IFN, which suggests that stimulation of melanogenic activity occurred by activation of a preexisting cellular enzyme. Scatchard analyses showed that the number of MSH receptors on IFN-treated cells was significantly increased (approximately 2.5-fold) relative to untreated cells (approximately 61,000/cell). These findings demonstrate that IFN stimulate differentiation (that is, pigmentation) of melanocytes by increasing the expression of surface MSH receptors; this in turn suggests that such a mechanism may in part be responsible for postinflammatory skin pigmentation, and provides an additional basis for action in the clinical responses of melanoma to IFN treatment.
K Kameyama, S Tanaka, Y Ishida, V J Hearing
Activated protein C (APC), an anticoagulant that acts by inactivating Factors Va and VIIIa, is dependent on a suitable surface for its action. In this study we examined the ability of human platelets to provide this surface and support APC-mediated anticoagulant effects. The activity of APC was examined in three systems: the Factor Xa recalcification time of Al(OH)3 adsorbed plasma, studies of thrombin generation in recalcified plasma, and assessment of the rate of inactivation of purified Factor Va. In comparison with phospholipid, intact platelets required significantly greater concentrations of APC to achieve a similar degree of anticoagulation. When washed platelet membranes were substituted for intact platelets, adequate support of APC was observed and the anticoagulant effect was similar to that obtained with phospholipid. Platelet releasate obtained by stimulation of platelets with thrombin and epinephrine contained an inhibitor that interfered with the ability of phospholipid and washed platelet membranes to catalyze the anticoagulant effects of APC. A noncompetitive inhibition was suggested by Dixon plot analysis of the interaction between platelet releasate and APC. The activity of the platelet APC inhibitor was immediate and was not enhanced by heparin, distinguishing it from the circulating protein C inhibitor. The presence of this inhibitor in the platelet and its release with platelet stimulation emphasizes the procoagulant role of this cell.
S M Jane, C A Mitchell, L Hau, H H Salem
Osteoclasts resorb bone by first attaching to the bone surface and then secreting protons into an isolated extracellular compartment formed at the cell-bone attachment site. This secretion of protons (local acidification) is required to solubilize bone hydroxyapatite crystals and for activity of bone collagen-degrading acid proteases. However, the large quantity of protons required, 2 mol/mol of calcium, would result in an equal accumulation of cytosolic base equivalents. This alkaline load must be corrected to maintain cytosolic pH within physiologic limits. In this study, we have measured cytoplasmic pH with pH-sensitive fluorescent compounds, while varying the extracellular ionic composition of the medium, to determine the nature of the compensatory mechanism used by osteoclasts during bone resorption. Our data show that osteoclasts possess a chloride/bicarbonate exchanger that enables them to maintain normal intracellular pH in the face of a significant proton efflux. This conclusion follows from the demonstration of a dramatic cytoplasmic acidification when osteoclasts that have been incubated in bicarbonate-containing medium are transferred into bicarbonate-free medium. This acidification is absolutely dependent on and proportional to medium [Cl-]. Furthermore, acidification is inhibited by the classic inhibitor of red cell anion exchange, 4,4'-diisothiocyanatostilbene-2,2'-disulfonate, and by diphenylamine-2-carboxylate, an inhibitor of chloride specific channels. However, the acidification process is neither energy nor sodium dependent. The physiologic importance of chloride/bicarbonate exchange is demonstrated by the chloride dependence of recovery from an endogenous or exogenous alkaline load in osteoclasts. We conclude that chloride/bicarbonate exchange is in large part responsible for cytoplasmic pH homeostasis of active osteoclasts, showing that these cells are similar to renal tubular epithelial cells in their regulation of intracellular pH.
A Teti, H C Blair, S L Teitelbaum, A J Kahn, C Koziol, J Konsek, A Zambonin-Zallone, P H Schlesinger
The effects of pertussis toxin and cholera toxin on early events of T lymphocyte activation were examined in the T lymphocyte cell line, Jurkat. Pertussis toxin treatment of these T cells increased inositol phosphates production and led to increases in intracellular free calcium concentration. These effects were produced by the isolated B (binding) subunit of pertussis toxin, alone. Inositol phosphates production resulting from perturbation of the T cell antigen receptor-CD3 complex by MAb was not affected by pertussis toxin treatment but was markedly inhibited by cholera toxin. This effect of cholera toxin paralleled elevations in cAMP content. However, forskolin, in concentrations equipotent for cAMP production, was a weaker inhibitor of inositol phosphates production. Cholera toxin inhibition of inositol phosphates production did not result from inhibition of baseline incorporation of inositol into phosphoinositide substrates of phospholipase C. These studies underline the complexity of toxin effects on cellular systems and suggest that other approaches will be required to implicate guanine nucleotide-binding regulatory proteins in control of the early events of T lymphocyte activation. However, the data presented here provide a molecular basis for the clinical observations of lymphocytosis and the in vitro observations of lymphocyte mitogenesis after pertussis toxin stimulation.
S J Stewart, V Prpic, J A Johns, F S Powers, S E Graber, J T Forbes, J H Exton
Using different types of bacteria and a canine model simulating human septic shock, we investigated the role of endotoxin in cardiovascular dysfunction and mortality. Either Escherichia coli (a microorganism with endotoxin) or Staphylococcus aureus (a microorganism without endotoxin) were placed in an intraperitoneal clot in doses of viable or formalin-killed bacteria. Cardiovascular function of conscious animals was studied using simultaneous radionuclide heart scans and thermodilution cardiac outputs. Serial plasma endotoxin levels were measured. S. aureus produced a pattern of reversible cardiovascular dysfunction over 7-10 d that was concordant (P less than 0.01) with that of E. coli. Although this cardiovascular pattern was not altered by formalin killing (S. aureus and E. coli), formalin-killed organisms produced a lower mortality and less myocardial depression (P less than 0.01). S. aureus, compared to E. coli, produced higher postmortem concentrations of microorganisms and higher mortality (P less than 0.025). E. coli produced significant endotoxemia (P less than 0.01), though viable organisms (versus nonviable) resulted in higher endotoxin blood concentrations (P less than 0.05). Significant endotoxemia did not occur with S. aureus. Thus, in the absence of endotoxemia, S. aureus induced the same cardiovascular abnormalities of septic shock as E. coli. These findings indicate that structurally and functionally distinct microorganisms, with or without endotoxin, can activate a common pathway resulting in similar cardiovascular injury and mortality.
C Natanson, R L Danner, R J Elin, J M Hosseini, K W Peart, S M Banks, T J MacVittie, R I Walker, J E Parrillo
Polymorphonuclear leukocytes (PMN) and monocytes from 20 patients with acute bacterial infections were examined for phagocytic function. PMN of patients expressed markedly enhanced phagocytosis as measured by the ingestion of erythrocyte (E)IgG and IgG/C3b-coated E. Phagocytosis of E coated with C3b alone was not seen, while low levels of ingestion of iC3b-E by patients' PMNs was noted. Monocytes from patients and controls expressed similar phagocytic activity in a fixed endpoint assay; however, the kinetics of phagocytosis by patients' monocytes was strikingly faster. Superoxide anion (O2.) and myeloperoxidase activities were similar to controls in PMN of four patients studied on day 1 of admission. PMN from two of three patients studied longitudinally showed an initial elevation in EIgG phagocytosis, which fell to normal levels by day 4, concomitantly with increased O2. generation and clinical improvement. Phagocytosis remained elevated in the third patient who did not clear his septicemia. Surface membrane FcRII, FcRIII, CR1, and CR3 were similar on patient and control PMN. In contrast, FcRI was increased on PMN of five of seven patients by monomeric IgG binding, and on two of two patients by monoclonal anti-FcRI binding. Thus, PMN and monocytes of patients with acute bacterial infections are either upregulated with regard to phagocytic function or are less susceptible to downregulation than are normal cells. This presumably would have a beneficial effect on host defenses during infection.
H H Simms, M M Frank, T C Quinn, S Holland, T A Gaither
This study was undertaken to assess the relationship between iron absorption and the concentration of duodenal iron proteins in normal subjects and patients with idiopathic hemochromatosis (IH). Biopsies were obtained endoscopically from the duodenum in 17 normal subjects, 3 of whom were mildly iron deficient, and 7 patients with untreated IH. The absorption of both heme and nonheme iron was increased in IH despite a 20-fold elevation in serum ferritin. Immunoassays using MAb were used to measure transferrin, H-rich ferritin, and L-rich ferritin in mucosal samples. Mucosal transferrin concentrations in normal subjects did not correlate with either iron status or iron absorption, indicating that mucosal transferrin plays no physiological role in iron absorption. Mucosal transferrin was significantly lower in IH, presumably because of a decrease in mucosal transferrin receptors. Mucosal H and L ferritin concentrations were directly related to body iron stores and inversely related to iron absorption in normal subjects. In IH, mucosal H and L ferritin failed to increase in parallel with the serum ferritin, but were appropriate for the level of iron absorption. The relationship of mucosal H/L ferritin in IH did not differ from that observed in normal subjects. Our findings indicate that the major abnormality in duodenal iron proteins in IH is a parallel decrease in the concentration of H- and L-rich ferritin. It is not evident whether this is the result or the cause of the absorptive abnormality.
P Whittaker, B S Skikne, A M Covell, C Flowers, A Cooke, S R Lynch, J D Cook
Parathyroid hormone (PTH)-stimulated Na+/Ca2+ exchange activity, but not forskolin-sensitive Na+-dependent Ca2+ efflux, was blunted in renal cortical cells from aged rats. PTH-sensitive adenylate cyclase activity in renal membranes from senescent rats also declined, but forskolin-stimulated activity did not change. In addition, cholera toxin- and pertussis toxin-stimulated Na+-dependent Ca2+ efflux and cAMP formation were blunted in cells from aged animals. Further, cells from aged rats had decreased Gs-alpha and Gi-alpha proteins, as detected by ADP-ribosylation. These findings would be consistent with the proposal of an age-associated heterologous desensitization that involved the G-proteins. Serum concentrations of iPTH were increased in the old rat, suggesting that the desensitization to PTH in the aging rat represented an adaptive response to prolonged stimulation by the hormone. This hypothesis was supported by the findings that the attenuated PTH-sensitive Na+/Ca2+ exchange activity, cAMP formation, and adenylate cyclase activity in cells from old rats could be reversed by parathyroidectomy. The decreased label in cholera toxin-catalyzed ADP-ribosylated Gs-alpha and pertussis toxin catalyzed ADP-ribosylated Gi-alpha found in cells from aged rats was also largely negated by the surgery. In conclusion, the results suggest that the age-related blunting in the responses of renal cells to PTH was associated with a deficit in G-protein function and that this alteration could be reversed by removal of the parathyroid gland. Images
H Hanai, C T Liang, L Cheng, B Sacktor
The role of major histocompatibility gene products (i.e., HLA molecules) in rendering tumor cells resistant to natural killer (NK) cell-mediated lysis was investigated by using mouse monoclonal antibodies to bind and mask HLA or non-HLA gene products on the cell membrane of human allogeneic tumor targets. Enhanced lysis of resistant lymphoid and certain other solid tumor cell lines was observed only when monoclonals used reacted to class I and II HLA molecules but not non-HLA molecules on tumor targets. Enhanced lysis was not due to antibody dependent cellular cytotoxicity or due to an effect of antibody on NK effectors. Of importance, normal autologous and allogeneic human lymphocytes could not be lysed by NK cells despite blast transformation with mitogens or masking of HLA membrane determinants on blasts with monoclonal antibodies. Enhanced lysis, in the presence of antibody to HLA antigens, was not due to increased NK cell binding to tumor targets, but a consequence of enhanced postbinding lysis. Studies using granules obtained from NK cells indicated that masking of HLA antigens did not enhance the susceptibility of tumor targets to cytolysins. Such observations would suggest that HLA antigens on tumor targets inhibit the triggering of effector cells (and release of cytolysins) after recognition and binding of NK cells to target cells.
P I Lobo, C E Spencer
Platelet adhesion and thrombus formation on subendothelium, studied at a shear rate of 2,600 s-1, were inhibited by two synthetic peptides known to interact with GPIIb-IIIa. One peptide (HHLGGAKQAGDV) corresponds to the carboxyl terminal segment of the fibrinogen gamma-chain (gamma 400-411) and the other (RGDS) contains the amino acid sequence Arg-Gly-Asp (RGD) common to fibronectin, von Willebrand factor, vitronectin and the alpha-chain of fibrinogen. Neither platelet adhesion nor thrombus formation were decreased in a patient with severe congenital fibrinogen deficiency and this was equally true when his blood was further depleted of the small amounts of fibrinogen present utilizing an anti-fibrinogen antibody. In normal subjects, adhesion and thrombus formation were inhibited by the Fab' fragments of a monoclonal anti-GPIIb-IIIa antibody (LJ-CP8), which interferes with the interaction of platelets with all four adhesive proteins in both the fluid and solid phase. However, another anti-GPIIb-IIIa antibody (LJ-P5) that had minimal effects on the interaction of platelets with fibrinogen, but inhibited to varying degrees platelet interaction with other adhesive proteins, was equally effective. The findings demonstrate that, at a shear rate of 2,600 s-1, adhesive proteins other than fibrinogen are involved in GPIIb-IIIa-mediated platelet adhesion and thrombus formation on subendothelium. In addition, since LJ-P5 inhibited the binding of soluble von Willebrand factor and vitronectin, these adhesive proteins may be involved in platelet thrombus formation. In contrast to the results obtained at a shear rate of 2,600 s-1, fibrinogen could play a role in mediating platelet-platelet interactions with weak agonists or lower shear rates.
H J Weiss, J Hawiger, Z M Ruggeri, V T Turitto, P Thiagarajan, T Hoffmann
To elucidate the expression of the atrial natriuretic polypeptide (ANP) gene in the ventricle of the human failing heart, we have measured ANP and ANP messenger RNA (ANPmRNA) levels in left ventricular aneurysm obtained at operation, biopsy specimens of left ventricles from dilated cardiomyopathy (DCM) and autopsy samples of old myocardial infarction (OMI) and DCM hearts, and compared the levels with those in the normal ventricle. The ANP level (mean +/- SE) was 17.5 +/- 6.9 ng/g in the normal ventricle, and increased to 660.3 +/- 122.2 ng/g in the left ventricular aneurysm tissues and to 3,138.6 +/- 1,642.1 ng/g in the biopsy specimens of the DCM ventricle. These levels were approximately 40 and 200 times higher than in the normal ventricle. The increase of ANP levels was observed in both infarcted and noninfarcted regions of the OMI heart, and in the entire ventricle of the DCM heart. A significant positive correlation was found between the ANP level in aneurysm tissues and pulmonary capillary wedge pressure (r = 0.85). The ANPmRNA level in the left ventricular aneurysm showed about a 10-fold increase compared with that in the normal heart and reached 23% of that in the atrium of the same heart. A similar increase in the ANPmRNA level was observed in the entire ventricle of DCM. These data clearly indicate that the expression of the ANP gene in the ventricle is augmented in the failing heart in accordance with the severity of heart failure. In the atrium of the failing heart, ANP and ANPmRNA levels were only two times higher than those in the normal atrium. Thus, the augmentation in the expression of the ANP gene was more prominent in the ventricle than in the atrium. Taking tissue weight into account, the total content of ANPmRNA in the ventricle of the failing heart is much the same as that in the normal atrium. The ratio of the ANP level to the ANPmRNA level in the ventricle is much smaller than that in the atrium. These results suggest more rapid secretion of ANP after synthesis in the ventricle. These findings demonstrate that the expression of the ANP gene is augmented in the human ventricle of the failing heart and suggest that the ventricle becomes a substantial source of circulating ANP in congestive heart failure.
Y Saito, K Nakao, H Arai, K Nishimura, K Okumura, K Obata, G Takemura, H Fujiwara, A Sugawara, T Yamada
A thyroid hormone antagonist has not been previously described. A number of thyroid hormone analogues have been shown to compete with [125I]triiodothyronine ([125I]T3) for binding to the intranuclear thyroid hormone receptor and to have agonist activity proportional to their affinities for the receptors. We report that the benzofuran amiodarone acts as a competitive antagonist to thyroid hormone action as defined by its dose-dependent ability to (a) bind to the thyroid hormone receptor and (b) inhibit T3-induced increases in growth hormone mRNA levels in a cultured rat pituitary cell line, GC cells. Like T3 itself, amiodarone also decreases transport of [125I]T3 across GC cell membranes. An analysis of the amiodarone structure suggests that this compound has certain similarities to T3. These findings hold promise for the development of other thyroid hormone antagonists for clinical use and for understanding thyroid hormone action.
M F Norman, T N Lavin
Many Orientals lack the mitochondrial aldehyde dehydrogenase (ALDH2) activity responsible for the oxidation of acetaldehyde produced during ethanol metabolism. These individuals suffer the alcohol-flush reaction when they drink alcoholic beverages. The alcohol-flush reaction is the result of excessive acetaldehyde accumulation, and the unpleasant symptoms tend to reduce alcohol consumption. The subunit of this homotetrameric enzyme was sequenced and the abnormality in the inactive enzyme shown to be a substitution of lysine for glutamate at position 487. We have used the polymerase chain reaction to determine the genotypes of 24 livers from Japanese individuals. Correlating genotype with phenotype leads to the conclusion that the allele (ALDH2(2)) encoding the abnormal subunit is dominant.
D W Crabb, H J Edenberg, W F Bosron, T K Li
Endothelin, a newly discovered endothelial-derived peptide, has been demonstrated in vitro to have potent vasocontractile properties and has been speculated to play a role in vivo in arterial pressure-volume homeostasis. The present studies in anesthetized dogs were designed to determine the action of endothelin on cardiovascular-renal and endocrine function in vivo as in acute arterial pressure-volume regulation. Intravenous infusion of endothelin (50 ng/kg per min) increases arterial pressure by increasing peripheral vascular resistance but in association with an increase in coronary vascular resistance and decreases in cardiac output. Renal blood flow and glomerular filtration rate were markedly reduced in association with a sustained reduction in sodium excretion and an increase in plasma renin activity. Atrial natriuretic factor, vasopressin, and aldosterone were also elevated. These results indicate that endothelin is a potent vasoconstrictor that elevates systemic blood pressure in association with marked decreases in cardiovascular and renal function. This peptide may function as a counterregulatory hormone to the effects of endothelial-derived vasodilator agent(s).
W L Miller, M M Redfield, J C Burnett Jr
The molecular events that mediate cholecystokinin (CCK)-stimulated pancreatic secretion are not well defined because of the complex receptor-binding and concentration-response characteristics of this hormone. Functional models of receptor occupancy initiating the cascade leading to secretion have been complicated by the inhibition of secretion effected by supramaximal concentrations of CCK. Recent report of a CCK analogue that does not exhibit supramaximal inhibition led us to synthesize a similar analogue that could also be radiolabeled for studies of receptor binding and affinity labeling, and for studies of second messenger activity. This probe, D-Tyr-Gly-[(Nle28,31)CCK-26-32]-phenethyl ester, was a fully efficacious secretagogue with no supramaximal inhibition, and, unlike native hormone, bound to a single class of sites present on both acini and membranes. Occupation of this site correlated well with stimulation of secretion. Evidence that this was indeed a CCK-binding site were the abilities of CCK and the antagonist L-364, 718 to inhibit binding of this analogue. Affinity labeling confirmed the identity of the site mediating secretory stimulation as a Mr = 85,000-95,000 protein. Whereas the nonhydrolyzable guanosine triphosphate analogue, 5'-guanylyl-imidodiphosphate, was a potent inhibitor of CCK binding, it had no effect on binding of this secretagogue, suggesting that a novel cascade not involving a guanine nucleotide-binding protein mediates CCK stimulation of pancreatic secretion.
H Y Gaisano, U G Klueppelberg, D I Pinon, M A Pfenning, S P Powers, L J Miller
The mechanisms whereby growth hormone may increase renal plasma flow (RPF) and GFR are not known, but circumstantial evidence has implicated insulin-like growth factor I (IGF-I) as a mediator of this effect. This study examined whether an infusion of IGF-I will increase RPF and GFR, whether this effect occurs quickly, and if this effect is dependent on eicosanoids or peptide hormones known to affect renal function. Rats fasted for 3 d to reduce IGF-I and IGF-I plasma binding proteins were anesthetized; then the rats received an intravenous injection of 25 micrograms/kg IGF-I, and an infusion of 25 micrograms/kg IGF-I within 20 min. Controls received infusion of the vehicle. RPF (para-aminohippurate clearances), GFR (inulin clearances), renal vascular resistance (RVR), mean arterial blood pressure (MABP), plasma IGF-I, and glucose concentrations were measured repeatedly. At the end of the 20-min infusion, plasma IGF-I tended to be increased in the animals that received IGF-I (P = 0.069), but did not increase in the control rats. IGF-I induced a significant and sustained fall in RVR and rise in RPF and GFR without any change in MABP. A small, transient, but significant decrease in plasma glucose concentrations was observed during IGF-I but not during vehicle infusion. Indomethacin, but not somatostatin, blocked the renal response to IGF-I infusion. Thus, IGF-I infusion increases RPF and GFR and reduces RVR in fasted rats. This effect requires the presence of eicosanoids but does not seem to require other peptide hormones suppressed by somatostatin.
R Hirschberg, J D Kopple
Interleukin 1 has been implicated as a mediator of both systemic and local responses to infection and injury. Since systemic and local vasodilatation are hallmarks of sepsis and infection, we studied the direct effect of IL-1 on vascular contractility. We report here that human recombinant IL-1-beta potently inhibits the response of rat thoracic aorta to vasoconstrictor agents. Exposure of isolated rat aortic rings to IL-1 (20 ng/ml) for 1 h did not affect phenylephrine-induced contractions during the exposure period. However, when rings were retested 150-200 min after initiation of IL-1 exposure, contractions were markedly decreased. The cytokine had a similar effect in rings from which the endothelium was removed. Contractions caused by potassium depolarization also were depressed, indicating the effect of IL-1 is not specific to the alpha-adrenoceptor agonist. The inhibitory effect of IL-1 was concentration-dependent (0.2 to 20 ng/ml), and eliminated by pretreatment with cycloheximide (20 micrograms/ml). Indomethacin (10(-5) M) did not prevent the inhibition caused by IL-1. These studies identify IL-1 as a potent inhibitor of vascular contraction, via an endothelium-independent mechanism. Studies with inhibitors suggest that the action of IL-1 is independent of prostanoid synthesis, and may involve synthesis of protein.
D Beasley, R A Cohen, N G Levinsky
We investigated the actions of endothelin in anesthetized rats and cultured mesangial cells. Intravenous infusion of endothelin (10 pmol/min) decreased renal blood flow by 44% at 20 min without changing arterial pressure, which subsequently rose significantly from 124 +/- 3 to 133 +/- 4 mmHg over 60 min. Micropuncture during the nonhypertensive period revealed increases in afferent (65%) and efferent (82%) arteriolar resistances, thereby reducing nephron plasma flow rate. The glomerular ultrafiltration coefficient (Kf) fell from 0.097 +/- 0.035 to 0.031 +/- 0.011 nl/(s.mmHg) as did single nephron filtration rate (41 +/- 3 to 19 +/- 3 nl/min). Addition of 5 nM endothelin to mesangial cells plated on a silicone rubber substrate increased the intensity and number of tension-generated wrinkles, and caused their reappearance in forskolin prerelaxed cells. 20-30 s following exposure of fura-2 loaded mesangial cells to 10 nM endothelin, single cell intracellular calcium concentration ([Ca]i) increased from a mean baseline value of 66 +/- 11 (SE) to a peak of 684 +/- 250 nM (P less than 0.05) followed by a sustained elevation at 145 +/- 42 nM. Anion exchange HPLC revealed rapid (15 s) and dose-dependent stimulation of inositol 1,4,5-trisphosphate (IP3) generation following exposure of [3H]myoinositol preloaded mesangial cells to 10-100 nM endothelin. Endothelin also led to intracellular alkalinization of 2'7'-bis(2-carboxy-ethyl)-5(and-6)carboxyfluorescein (BCECF)-loaded mesangial cells and its addition was associated with dramatic augmentation of mitogenic activity. Thus, endothelin exerts potent constrictor effects on renal arterioles which precede its systemic hypertensive action. It lowers Kf and contracts mesangial cells, likely through stimulation of IP3 generation and elevation of [Ca]i. It is a potent mesangial cell mitogen. These studies define functional responses and signal transduction pathways for endothelin in the rat kidney and propose a potential role for this peptide in the control of mesangial cell function, glomerular filtration rate, and renal vascular tone.
K F Badr, J J Murray, M D Breyer, K Takahashi, T Inagami, R C Harris
Different forms of glucose-6-phosphate dehydrogenase (G-6-PD) have been described in different tissues. Moreover, the directly determined amino acid sequence amino end of the red cell enzyme does not exactly match the sequence deduced from cDNA isolated from HeLa cells or lymphoblasts. We have therefore investigated the sequence of cDNA from sperm, granulocytes, reticulocytes, brain, placenta, liver, lymphoblastoid cells, and cultured fibroblasts. A novel human cDNA, which has extra 138 bases coding 46 amino acids, was isolated from a lymphoblastoid cell library. Sequencing of genomic DNA amplified by the polymerase chain reaction (PCR) revealed that the extra sequence was derived from the 3'-end of intron 7 by alternative splicing. This longer form of mRNA was also detected in sperm and granulocytes. Sequence analysis using PCR-amplified cDNA revealed that the 5'-end of the coding sequence of G6PD mRNA in reticulocytes is identical to those in other tissues.
A Hirono, E Beutler