Onset of lung edema is usually associated with increase in the pulmonary transvascular flux of water and proteins. Clinical measurement of these parameters may aid in early diagnosis of pulmonary edema, and allow differentiation between "cardiogenic" and "noncardiogenic" types base on the magnitude of the detected changes. We have previously described a noninvasive method for estimating transvascular protein flux in lung (Gorin, A. B., W. J. Weidner, R. H. Demling, and N. C. Staub, 1978. Noninvasive measurement of pulmonary transvascular protein flux in sheep. J. Appl. Physiol. 45: 225-233). Using this method we measured the net transvascular flux of [113mIn]transferrin (mol wt, 76,000 in lungs of nine normal human volunteers. Plasma clearance of [113In]transferrin occurred with a T1/2 = 7.0 +/- 2.6 h (mean +/- SD). The pulmonary transvascular flux coefficient, alpha, was 2.9 +/- 1.4 X 10(-3) ml/s (mean +/- SD) in man, slightly greater than that previously measured in sheep (2.7 +/- 0.7 X 10(-3) ml/s; mean +/- SD). The pulmonary transcapillary escape rate is twofold greater than the transcapillary escape rate for the vascular bed as a whole, indicating a greater "porosity" of exchanging vessels in the lung than exists for the "average" microvessel in the body. Time taken to reach half-equilibrium concentration of tracer protein in the lung interstitium was quite short, 52 +/- 13 min (mean +/- SD). We have shown that measurement of pulmonary transvascular protein flux in man is practical. The coefficient of variation of measurements of alpha (between subjects) was 0.48, and of measurements of pulmonary transcapillary escape rates was 0.39. In animals, endothelial injury commonly results in a two- to threefold increase in transvascular protein flux. Thus, external radioflux detection should be a suitable means of quantitating lung vascular injury in human disease states.
A B Gorin, J Kohler, G DeNardo
gamma-Carboxyglutamic acid-containing protein of bone (BGP) is an abundant noncollagenous protein of mammalian bone. BGP has a molecular weight of 5,800 and contains three residues of the vitamin K-dependent amino acid, gamma-carboxyglutamic acid. We have applied a radioimmunoassay based on calf BGP for the measurement of the protein in the plasma of 109 normal humans and 112 patients with various bone diseases. BGP in human plasma was demonstrated to be indistinguishable from calf BGP by assay dilution studies and gel permeation chromatography. The mean (+/- SE) concentration of BGP in normal subjects was 6.78 (+/- 0.20) ng/ml, 7.89 (+/- 0.32) for males and 4.85 (+/- 0.35) for females. Plasma BGP was increased in patients with Paget's disease of bone, bone metastases, primary hyperparathyroidism, renal osteodystrophy, and osteopenia. Plasma BGP did correlate with plasma alkaline phosphatase (AP) in some instances, but there were dissociations between the two. It was additionally observed that patients with liver disease had normal plasma BGP despite increased plasma AP, a reflection of the lack of specificity of AP measurements for bone disease. Our studies indicate that the radioimmunoassay of plasma BGP can be a useful and specific procedure for evaluating the patient with bone disease.
P A Price, J G Parthemore, L J Deftos
The two pyrazolon derivatives, phenylbutazone and sulfinpyrazone, selectively inhibit chemotactic peptide-induced effects on neutrophils. As they antagonize the induction of acute neutropenia in vivo and of cellular hyperadhesiveness, lysosomal enzyme release, hexose monophosphate shunt activity, and superoxide production in vitro, these effects occur with a specificity not shared with other prostaglandin biosynthesis inhibition by these drugs resembles the competitive type of antagonism and occurs at concentrations attainable in vivo under clinical conditions. The locomotory machinery, the direction-finding mechanisms, and the basic metabolic machinery of the cell are unaffected. These drugs interfere with specific binding of the formylpeptide to its receptor on neutrophils.
C Dahinden, J Fehr
Significant hypertriglyceridemia with a very marked decrease of high density lipoproteins (HDL)-cholesterol levels (7-14 mg/dl) was detected in three members (father, son, and daughter) of an Italian family. The three affected individuals did not show any clinical signs of atherosclerosis, nor was the atherosclerotic disease significantly present in the family. Lipoprotein lipase and lecithin:cholesterol acyltransferase activites were normal or slightly reduced. Morphological and compositional studies of HDL in the subjects showed a significant enlargement of the lipoprotein particles (approximately 120 vs. approximately 94 A for control HDL) and a concomitant increase in the triglyceride content. Analytical isoelectric focusing of HDL apoproteins provided evidence for multiple isoproteins in the apoprotein(apo)-A-I range, with nine different bands being detected instead of the usual four bands observed in normal subjects. Two-dimensional immunoelectrophoresis against apo-A antiserum indicated a clear reduction of apo-A in the alpha electrophoretic region, with splitting of the protein "peak." The observation in otherwise clinically healthy subjects of hypertriglyceridemia, reduced HDL-cholesterol, and marked apoprotein abnormalities, without a significant incidence of atherosclerotic disease in the family suggests this is a new disease entity in the field of lipoprotein pathology, very probably related to an altered amino acid composition of the apo-A-I protein (see Weisgraber et al. 1980. J. Clin. Invest. 66: 901-907).
G Franceschini, C R Sirtori, A Capurso 2nd, K H Weisgraber, R W Mahley
A recently discovered familial lipoprotein disorder is characterized by reduced plasma levels of high density lipoproteins (HDL) and elevated triglyceride levels. The clinical aspects of this disorder are presented in an accompanying article (Franceschini et al. 1980. J. Clin. Invest. 66: 892-900). The apoprotein content of the HDL isolated from these patients differed markedly from that of normal HDL in that three apoprotein bands not previously described in man were present as major protein components. As determined by sodium dodecyl sulfate (SDS) gel electrophoresis, the relative molecular weights (Mr) of these new apoprotein bands were 55,000, 35,000, and 28,000. Although the Mr 28,000 apoprotein coelectrophoresed with authentic A-I on SDS polyacrylamide gels and showed immunochemical identity with the A-I apoprotein when tested with monospecific apo-A-I antiserum, it contained two amino acid residues, cysteine and isoleucine, which were not present in the amino acid sequence of normal human apo-A-I. This variant form of the A-I apoprotein was designated the A-IMilano apoprotein and denoted A-Icys. By virtue of the presence of cysteine (2 mol/mol A-Icys), the A-Icys apoprotein was capable of forming intermolecular disulfide bonds, and dimer formation of A-Icys produced the Mr 55,000 apoprotein. The Mr 35,000 apoprotein was composed of two different subunits, A-Icys and A-II. By analogy to the apo(E--A-II) complex, which also occurs in human HDL, this mixed disulfide complex was designated as the apo(A-Icys--A-II) complex. The A-IMilano (A-Icys) is the first example of a variation in the primary sequence of a protein of plasma lipoproteins.
K H Weisgraber, T P Bersot, R W Mahley, G Franceschini, C R Sirtori
In previous studies, we noted that Candida hyphae and pseudohyphae could be damaged and probably killed by neutrophils, primarily by oxygen-dependent nonphagocytic mechanisms. In extending these studies, amount of damage to hyphae again was measured by inhibition of [14C]cytosine uptake. Neutrophils from only one of four patients with chronic granulomatous disease damaged hyphae at all, and neutrophils from this single patient damaged hyphae far less efficiently than simultaneously tested neutrophils from normal control subjects. Neutrophils from neither of two subjects with hereditary myeloperoxidase deficiency damaged the hyphae. This confirmed the importance of oxidative mechanisms in general and myeloperoxidase-mediated systems in particular in damaging Candida hyphae.
Richard D. Diamond, Robert A. Clark, Christian C. Haudenschild
A technique was developed and evaluated using the exponential infusion of positron-emitting diffusible tracers to quantitate myocardial perfusion. The approach employs a parameter that rapidly reaches a constant value as a function of tracer delivery rate, isotope decay constant, and the monotonically increasing tissue radioactivity. Isolated rabbit hearts with controlled flow were used to evaluate the approach, because tracer kinetics in such preparations mimic those in vivo. Accordingly, exponential infusions of H2 15O and [11C]butanol were administered to 25 isolated rabbit hearts perfused with Krebs-Henseleit solution (KH) alone or KH enriched with erythrocytes (KH-RBC, hematocrit = 40). With flow varied from 1.2 to 5 ml/g per min in eight KH hearts infused with H2 15O, actual and estimated flow correlated closely (r = 0.95, n = 52 determinations). For the KH-RBC hearts, flow was varied from 0.3 to 1.5 ml/g per min. Actual and estimated flow correlated significantly for both the 14 KH-RBC hearts infused with H2 15O (r = 0.90, n = 89 determinations) and the 3 KH-RBC hearts infused with [11C]butanol (r = 0.93, n = 13 determinations). In addition, the required exponentially increasing arterial tracer concentrations were shown to be attainable in vivo in dogs and rhesus monkeys after intravenous exponential administrations of tracer. The results suggest that the approach developed employing exponential tracer infusion permits accurate measurement of myocardial perfusion and that it should prove useful in the noninvasive measurement of regional myocardial perfusion in vivo by positron emission tomography.
S N Hack, J O Eichling, S R Bergmann, M J Welch, B E Sobel
The autologous mixed lymphocyte reaction (AMLR) measures the response of peripheral blood T cells to antigens present on the surface of non-T cells. The AMLR was studied in 25 patients with Sjögren's syndrome (SS). The AMLR was decreased in 15 of 25 (60%) of patients with SS (5,272 +/- 6,738 cpm vs. 14,396 +/- 10,092 cpm for the normal controls, P < 0.001). The AMLR was decreased in 8 of 15 patients with only glandular disease who were not on any systemic medications. Patients with SS and associated disease had lower responses than patients with SS alone. Two patients with pseudolymphoma had absent response. The decreased AMLR correlated with a decreased response to concanavalin A, suggesting a possible abnormality of a T cell subpopulation. There was no correlation between the decreased AMLR and age, focus score, serum immunoglobulin concentration, the titer of antilymphocyte antibody, or phytohemagglutinin response. In allogeneic MLR, SS non-T cells and macrophages stimulated normal allogeneic T cells less well than normal non-T cells and macrophages, suggesting a possible abnormality in the cells that stimulate in the cells that stimulate in the allogeneic MLR.
N Miyasaka, B Sauvezie, D A Pierce, T E Daniels, N Talal
A dysprothrombin designated prothrombin Quick, is isolated from the plasma of an individual with < 2% of normal functional prothrombin activity and 34% of the normal prothrombin level by immunologic assay. With Factor Xa or taipan snake venom as activators, a fragmentation pattern identical to that of normal prothrombin is observed on gel electrophoresis in dodecylsulfate. This evidence combined with the observed barium citrate adsorption of prothrombin Quick and the low activity suggests that the defect in prothrombin Quick is in the thrombin portion of the molecule. Thrombin Quick is isolated and comigrates with thrombin on dodecyl sulfate gel electrophoresis, either reduced or nonreduced. The activity of thrombin Quick on several biological substrates of thrombin is investigated. Relative to normal thrombin, thrombin Quick is 1/200 as active on fibrinogen and 1/20-1/50 as effective in activating Factors V and VIII and aggregating platelets. A complex with antithrombin III is detected by dodecyl sulfate gel electrophoresis. Further investigation with the active site titrant, dansylanginine-N-(3-ethyl-1,5-pentanediyl)amide showed that the thrombin Quick preparation has the same affinity for the titrant as thrombin, but apparently only 40% active sites per mole protein are titrable.
R A Henriksen, W G Owen, M E Nesheim, K G Mann
The sequential deiodination of thyroxine (T4) gives rise to several iodothyronine analogs including 3,3'-diiodothyronine (3,3'-T2) and 3',5'-diiodothyronine (3',5'-T2). In vitro animal studies suggest that the liver and the kidneys are the main sites of both formation and degradation of 3,3'-T2 and 3',5'-T2. To determine the metabolism of 3,3'-T2 and 3',5'-T2 in human liver and kidneys plasma samples were obtained from (a) a brachial artery and a hepatic vein in 20 normal subjects, and from (b) a femoral artery and a renal vein in 11 normal subjects. Further, the hepatic plasma flow (a) and the renal plasma flow (b) were determined. Both plasma 3,3'-T2 and 3',5'-T2 levels were reduced in the hepatic venous blood as compared to arterial values (1.09 +/- 0.40 vs. 1.75 +/- 0.74 ng/dl (P < 0.02)) (mean +/- 1 SD). This resulted in a hepatic extraction of both, 3,3'-T2 and 3',5'-T2, which averaged 8.2 and 5.2 microgram/d, respectively. Plasma 3,3'-T2 as well as 3'5'-T2 levels were higher in the renal vein as compared to arterial values, 1.49 +/- 0.42 vs. 1.39 +/- 0.45 ng/dl (P < 0.05) and 2.35 +/- 0.83 vs. 2.09 +/- 0.81 ng/dl (P < 0.05), respectively. This positive venoarterial difference implies a net production of 3,3'-T2 and 3',5'-T2 in the kidneys of 1.2 and 3.0 microgram/d, respectively. It is concluded that the liver is an important site of 3,3'-T2 and 3',5'-T2 extraction in normal man. In contrast, the renal production of 3,3'-T2 as well as 3'5'-T2 exceeds the degradation and urinary excretion.
J Faber, O K Faber, B Lund, C Kirkegaard, J Wahren
The main objective of this study was to determine whether the principal abnormality of thyroid function observed in patients with chronic renal failure, low serum triiodothyronine (T3) concentration, causes hypothyroidism at the tissue level. A partially nephrectomized (Nx) uremic rat model was developed and the following parameters of thyroid function were assessed: serum total thyroxine (TT4), total T3 (TT3), and thyrotropin and liver T3 content, and activity of two thyroid hormone-dependent enzymes, mitochondrial α-glycerophosphate dehydrogenase (α-GPD) and cytosol malate dehydrogenase (MDH). The results were compared to those of intact control (C), thyroidectomized (Tx), and nephrectomized-thyroidectomized (NxTx) littermates.
Victoria S. Lim, Carlos Henriquez, Hisao Seo, Samuel Refetoff, Enio Martino
Erythrocytes from patients with chronic hemolytic variants of glucose-6-phosphate dehydrogenase (G-6-PD) deficiency have structural membrane protein abnormalities accompanied by decreased cell membrane deformability which we postulate represent the consequences of oxidant-induced membrane injury. To evaluate the pathophysiologic significance of oxidant-induced membrane injury, we studied the in vitro and in vivo effects of the thiol-oxidizing agent, diamide, on dog erythrocytes. In vitro incubation of dog erythrocytes with 0.4 mM diamide in Tris-buffered saline for 90 min at 37 degrees C resulted in depletion of GSH, formation of membrane polypeptide aggregates (440,000 and > 50,000,000 daltons) and decreased cell micropipette deformability, abnormalities similar to those observed in the erythrocytes of patients with chronic hemolytic variants of G-6-PD deficiency. In addition, diamide-incubated cells had increased viscosity and increased membrane specific gravity, but no change in ATP. Reinjection of 51Cr-labeled, diamide-incubated cells was followed by markedly shortened in vivo survival and splenic sequestration. Further incubation of diamide-incubated cells in 4 mM dithiothreitol reversed the membrane polypeptide aggregates, normalized micropipette deformability, decreased cell viscosity, prolonged in vivi survival, and decreased splenic sequestration. These studied demonstrate that diamide induces a partially reversible erythrocyte lesion which is a useful model of oxidant-induced membrane injury. They suggest that oxidant-induced erythrocyte membrane injury plays an important role in the pathophysiology of chronic hemolysis which accompanies some G-6-PD variants.
G J Johnson, D W Allen, T P Flynn, B Finkel, J G White
To characterize the outcome of lobectomy in infancy and the low expiratory flows which persist after lobectomy for congenital lobar emphysema, 15 subjects with this history were studied at age 8-30 yr. Total lung capacity was normal in all, but higher values (P < 0.05) were observed in nine subjects with upper lobectomy than in five subjects with right middle lobectomy. Ratio of residual volume to total lung capacity was correlated (P < 0.05) with the amount of lung missing as estimated from normal relative weights of the respective lobes. Xe133 radiospirometry in eight subjects showed that the operated and unoperated sides had nearly equal volumes at total lung capacity, but that the operated side was larger than the unoperated side at residual volume. Perfusion was equally distributed between the two sides. Similar findings were detected radiographically in four other subjects. Forced expiratory volume in 1 s and maximal midexpiratory flow rate averaged 72 and 45% of predicted, respectively. Low values of specific airway conductance and normal density dependence of maximal flows in 12 subjects suggested that obstruction was not limited to peripheral airways. Pathologic observations at the time of surgery and morphometry of the resected lobes were not correlated with any test of pulmonary function.
John T. McBride, Mary Ellen B. Wohl, Denise J. Strieder, Andrew C. Jackson, John R. Morton, Robert G. Zwerdling, N. Thorne Griscom, Salvador Treves, Adrian J. Williams, Samuel Schuster
Neurogenic factors and, in particular, enhanced renal sympathetic tone, have been implicated in the pathogenesis of hypertension in the spontaneously hypertensive rat of the Okamoto strain. To examine the hypothesis that the renal sympathetic nerves contribute to the development and maintenance of hypertension by causing urinary sodium retention, 7-wk-old (early hypertensive) and 18-wk-old (established hypertensive) male spontaneously hypertensive rats were subjected to bilateral renal denervation and compared with sham-operated controls. In 7-wk-old animals renal denervation delayed the onset and slowed the rate of development of hypertension. These alterations were associated with a significantly greater fractional excretion of sodium (percentage of sodium intake excreted) during the first 3 wk after denervation. Blood pressure 2 wk after surgery was 169±3.5 (sham) vs. 150±2.4 mm Hg (denervated) (P < 0.001), corresponding to fractional sodium excretions of 65±1.3% (sham) vs. 80±2.3% (denervated) (P < 0.001). By the 5th wk after surgery, at which time an increase in renal norepinephrine content of denervated animals suggested reinnervation, blood pressures in the two groups converged (sham, 199±6.5 mm Hg vs. denervated 180±3.5 mm Hg, NS) and there was no difference in sodium excretion (sham, 77±2.5% vs. denervated 79±2.3%). Plasma and kidney renin activity of denervated animals did not differ significantly from that of sham-operated controls. In 18-wk-old rats renal denervation did not alter blood pressure or urinary sodium excretion. These data indicate that the renal sympathetic nerves contribute to the development of hypertension in the spontaneously hypertensive rat in part by causing enhanced sodium retention. Once hypertension is established the renal nerves do not play a significant role in the maintenance of increased blood pressure.
Sherry R. Winternitz, Richard E. Katholi, Suzanne Oparil
We have previously shown that aspirin-treated endothelial cells synthesize prostacyclin (PGI2) from the purified prostaglandin endoperoxide PGH2 (1978. J. Biol. Chem.253: 7138). To ascertain whether aspirin-treated endothelial cells produce PGI2 from endoperoxides released by stimulated platelets, [3H]arachidonic acid-prelabeled platelets were reacted in aggregometer cuvettes with the calcium ionophore A 23187, thrombin, or collagen in the presence of aspirin-treated endothelial cell suspensions. This procedure permitted thin-layer radiochromatographic quantitation of [3H]PGI2 as [3H]6-keto-PGF1α and [3H]thromboxane A2 (TXA2) as [3H]TXB2, as well as analysis of platelet aggregation responses in the same sample. In the presence of aspirin-treated endothelial cells, platelet aggregation in response to all three agents was inhibited. [3H]6-keto-PGF1α was recovered from the supernates of the combined cell suspensions after stimulation by all three agents. The order of PGI2 production initiated by the stimuli was ionophore > thrombin > collagen. The amounts of platelet [3H]TXB2 recovered were markedly reduced by the addition of aspirin-treated endothelial cells. In separate experiments, 6-keto-PGF1α and TXB2 were quantitated by radioimmunoassay; the results paralleled those obtained with the use of radiolabeling. The quantity of 6-keto-PGF1α measured by radioimmunoassay represented amounts of PGI2 sufficient to inhibit platelet aggregation. These results were obtained when 200,000 platelets/μl were combined with 3,000-6,000 aspirin-treated endothelial cells/μl. At higher platelet levels the proportion of 6-keto-PGF1α to TXB2 decreased and platelet aggregation occurred. Control studies indicated that aspirin-treated endothelial cells could not synthesize PGI2 from exogenous radioactive or endogenous arachidonate when stimulated with thrombin. Therefore the endothelial cell suspensions could only have used endoperoxides from stimulated platelets.
Aaron J. Marcus, Babette B. Weksler, Eric A. Jaffe, M. Johan Broekman
Human polymorphonuclear leukocytes, monocytes, or pulmonary alveolar macrophages, stimulated in vitro by phorbol myristate acetate (PMA), released reactive oxygen species able to suppress the elastase inhibitory capacity (EIC) of human serum. Immunoelectrophoresis using antibodies against α1-proteinase inhibitor (α1-Pi) and elastase showed that inactivation of α1-Pi was responsible for the decreased serum EIC. Treatment of phagocyte-inactivated serum with a reducing agent (dithiothreitol) resulted in significant recovery of EIC, suggesting that α1-Pi had been oxidatively inactivated. Serum EIC was partially protected by superoxide dismutase or catalase. Hydrogen peroxide alone had no effect on serum EIC. Thus, neither H2O2 nor O2− alone, but a product of the two, may have oxidatively inactivated α1-Pi. In support of the foregoing, neutrophils or monocytes from a patient with chronic granulomatous disease failed to produce detectable levels of O2− after incubation with PMA. These cells also failed to suppress serum EIC. In the case of PMA-stimulated polymorphonuclear leukocytes or monocytes, extracellular myeloperoxidase may have also played a role in α1-Pi inactivation since serum EIC was partly protected by azide, cyanide, or the depletion of extracellular chloride. Indeed, in a cell-free system consisting of purified myeloperoxidase, a glucose oxidase-H2O2-generating system, and Cl−, the EIC of human serum or purified α1-Pi could also be suppressed. Omission of any single reactant prevented this effect, as did NaN3 or catalase, suggesting that enzymatically active myeloperoxidase and H2O2 were necessary. Immunoelectrophoresis of myeloperoxidase-inactivated serum showed that, as before, inactivation of α1-Pi was responsible for the decreased EIC. Treating myeloperoxidase-inactivated serum with dithiothreitol led to significant recovery of EIC, again suggesting that oxidative inactivation of α1-Pi had occurred. Oxidative inactivation of α1-Pi in the microenvironment of inflammatory cells, at sites of acute or chronic inflammation, may allow proteases released from these cells to damage adjacent connective tissue components more readily.
Harvey Carp, Aaron Janoff
Glucose-induced inhibition of Ca++ extrusion from the β-cell may contribute to the rise in cytosol Ca++ that leads to insulin release. To study whether interference with Na/Ca exchange is involved in this inhibition the effects of glucose were compared to those of ouabain. This substance inhibits Na/K ATPase, decreases the transmembrane Na+ gradient in islets, and thus interferes with Na/Ca exchange. Collagenase isolated rat islets were maintained for 2 d in tissue culture with a trace amount of 45Ca++. Insulin release and 45Ca++ efflux were then measured during perifusion. In Ca++-deprived medium (to avoid changes in tissue specific radioactivity) 16.7 mM glucose inhibited 45Ca++ efflux. Initially 1 mM ouabain inhibited 45Ca++ efflux in a similar fashion, the onset being even faster than that of glucose. The effects of 16.7 mM glucose and ouabain were not additive, indicating that both substances may interfere with Na/Ca exchange. In the presence of Ca++, 16.7 mM glucose induced biphasic insulin release. Ouabain alone caused a gradual increase of insulin release. Again, the effects of ouabain and 16.7 mM glucose were not additive. In contrast, at a submaximal glucose concentration (7 mM) ouabain enhanced both phases of release. An important role for Na/Ca exchange is suggested from experiments in which Ca++ was removed at the time of glucose-stimulation (16.7 mM). The resulting marked inhibition of insulin release was completely overcome during first phase by ouabain added at the time of Ca++ removal; second phase was restored to 60%. This could be due to the rapid inhibitory action of ouabain on Ca++ efflux thereby preventing loss of cellular calcium critical for glucose to induce insulin release. It appears, therefore, that interference with Na/Ca exchange is an important event in the stimulation of insulin release by glucose.
Eberhard G. Siegel, Claes B. Wollheim, Albert E. Renold, Geoffrey W. G. Sharp
Calcium transport was studied in medullary and cortical segments of the thick ascending limb of Henle perfused in vitro. 45Ca was added to the perfusate for measuring lumen-to-bath flux (JlbCa), to the bath for measuring bath-to-lumen flux (JblCa), or to both perfusate and bath for measuring net flux (JnetCa). In the medullary segment JlbCa exceeding JblCa and the efflux:influx coefficient ratio was not different from the value predicted from the observed potential difference (PD). In the cortical segments, however, efflux:influx coefficient ratio was greater than the value predicted from the PD, suggesting that calcium transport in this segment may be active, while it is passive in the medullary segment. Furosemide, which reversibly decreases PD in both cortical and medullary segments, inhibited JlbCa only in the medullary segment. Parathyroid hormone (PTH), on the other hand, had no effect on JnetCa in the medullary segment, but it significantly augmented JnetCa in the cortical segment. These results indicate that calcium transport in the thick ascending limb is heterogeneous. In the medullary segment it is passive, inhibited by furosemide and not influenced by PTH. In the cortical segment, however, calcium transport appears to be active, not inhibited by furosemide and stimulated by PTH.
W N Suki, D Rouse, R C Ng, J P Kokko
Cultured peripheral blood leukocytes (PBL) from individuals homozygous or heterozygous for the defective gene causing the inherited disease cystic fibrosis (CF) secrete three different ciliary dyskinesia substances (CDS), which can be detected by their activity in vitro in a rabbit mucociliary bioassay. Their PBL also release substances that promote mucus expulsion and destruction of the ciliated epithelium. In the present study the relative numbers of lymphocytes (T, B, and null), monocytes-macrophages (Mφ), and polymorphonuclear neutrophils were found to be normal in subjects with the CF gene, as were the responses of their PBL to phytohemagglutinin and pokeweed mitogen. Using purified subpopulations of leukocytes, we obtained evidence that both monocytes and T lymphocytes can secrete CDS in vitro with no requirement for cooperation with other lymphocyte subsets, whereas B and “null” lymphocytes probably require either differentiation or cellular cooperation for optimal secretion of CDS. Mucus expulsion and tissue destruction were produced by substances released primarily from polymorphonuclear neutrophils and secondarily from Mφ. Using cycloheximide and actinomycin D, we obtained evidence that CDS accumulation requires active protein synthesis and is not dependent on newly synthesized RNA, at least in short-term cultures. Gel filtration chromatography of active culture supernates showed that T lymphocytes synthesized only a CF-specific CDS, whereas Mφ synthesized all three CDS found in PBL cultures. Evidence is presented that one CDS is related structurally to C3a, since it can be removed with rabbit antisera specific for human C3a.
Gregory B. Wilson, Valorie J. Bahm
Although a defect in renal transport of phosphate seems well established as the primary abnormality underlying the pathogenesis of X-linked hypophosphatemic rickets and osteomalacia, several observations indicate that renal phosphate wasting and hypophosphatemia cannot solely account for the spectrum of abnormalities characteristic of this disease. Thus, in the present study, we investigated the potential role of abnormal vitamin D metabolism in the pathogenesis of this disorder and the effect of 1,25-dihydroxyvitamin D3 therapy on both the biochemical abnormalities characteristic of this disease and the osteomalacia. Four untreated patients, ages 14-30 yr, had normocalcemia (9.22±0.06 mg/dl); hypophosphatemia (2.25±0.11 mg/dl); a decreased renal tubular maximum for the reabsorption of phosphate per liter of glomerular filtrate (2.12±0.09 mg/dl); normal serum immunoreactive parathyroid hormone concentration; negative phosphate balance; and bone biopsy evidence of osteomalacia. The serum 25-hydroxyvitamin D3 concentration was 33.9±7.2 ng/ml and, despite hypophosphatemia, the serum level of 1,25-dihydroxyvitamin D3 was not increased, but was normal at 30.3±2.8 pg/ml. These data suggested that abnormal homeostasis of vitamin D metabolism might be a second defect central to the phenotypic expression of X-linked hypophosphatemic rickets/osteomalacia. This hypothesis was supported by evaluation of the long-term response to pharmacological amounts of 1,25-dihydroxyvitamin D3 therapy in three subjects. The treatment regimen resulted in elevation of the serum 1,25-dihydroxyvitamin D levels to values in the supraphysiological range. Moreover, the serum phosphate and renal tubular maximum for the reabsorption of phosphate per liter of glomerular filtrate increased towards normal whereas the phosphate balance became markedly positive. Most importantly, however, repeat bone biopsies revealed that therapy had positively affected the osteomalacic component of the disease, resulting in normalization of the mineralization front activity. Indeed, a central role for 1,25-dihydroxyvitamin D3 in the mineralization of the osteomalacic bone is suggested by the linear relationship between the serum level of this active vitamin D metabolite and the mineralization front activity. We, therefore, suggest that a relative deficiency of 1,25-dihydroxyvitamin D3 is a factor in the pathogenesis of X-linked hypophosphatemic rickets and osteomalacia and may modulate the phenotypic expression of this disease.
Marc K. Drezner, Kenneth W. Lyles, Mark R. Haussler, John M. Harrelson
Crosslinked fibrin was digested by plasmin, and three soluble complexes larger than DD/E were purified and characterized. After gel filtration chromatography, the purified complexes were shown to have molecular weights of 465,000, 703,000, and 850,000, as determined by equilibrium sedimentation. Each of the complexes was dissociated into two or more fragments by SDS-polyacrylamide gel electrophoresis. The structure of these subunit fragments was deduced from determinations of their molecular weights and polypeptide chain composition and from known sites of plasmin cleavage of fibrin. Fragments larger than DD have been identified that contain intact γγ crosslinks as well as fragments resulting from cleavages at or near this site. The former include DY (mol wt 247,000), YY (mol wt 285,000), DXD (mol wt 461,000), and YXD (mol wt 500,000); and the latter include fragments XD (mol wt 334,000) and XY (mol wt 391,000). A schematic model was developed to explain the structure of the large noncovalently bound complexes based on their molecular weight and observed component fragments. Our scheme supports the two-stranded half-staggered overlap model as the basic unit of fibrin structure, in which each complex consists of fragments from two adjacent complementary antiparallel fibrin strands. The smallest derivative, complex 1, is the DD/E complex; complex 2 contains apposed DY and YD fragments, and complex 3 consists of fragments DXD and YY. Complex 4 is less well-characterized, but its intact structure is projected to consist of YXD and DXY fragments from adjacent fibrin strands. Each complex is heterogeneous in subunit composition, reflecting additional plasmin cleavages within and/or adjacent to its theoretical boundaries. Since most of the protein initially released into solution from degrading fibrin is as complexes larger than DD/E, the derivatives described in this report are likely to be major circulating degradation products of crosslinked fibrin in vivo.
Charles W. Francis, Victor J. Marder, Grant H. Barlow
Bile salts disrupt a functional "gastric mucosal barrier" increasing net forward-diffusion (+) of Na+ and back-diffusion (-) of H+. Studying canine Heidenhain pouches, we attempted to distinguish between two possible mechanisms for this effect: (a) mucosal uptake of bile salt with subsequent cellular injury or (b) dissolution of mucosal lipids by intralumenal bile salt. A 10 mM mixture of six conjugated bile salts simulating the proportions found in human bile induced net Na+ flux of 15.5 +/- 3.2 and net H+ flux of -9.9 +/- 3.3 mueq/min. This change was accompanied by an increase in phospholipid efflux out of gastric mucosa from a base-line value of 13.2 +/- 2.7 to 54.8 +/- 2.8 nmol/min (P < 0.001) and an increase in cholesterol efflux from 11.7 +/- 3.8 to 36.3 +/- 3.2 nmol/min (P < 0.001). Saturation with lecithin (25 mM) and cholesterol (50 mM) blocked disruption of the gastric mucosal barrier by bile salt (Na+ flux - 1.2 +/- 0.9, H+ flux 0.6 +/- 1.8 mueq/min). A 10 mM solution of taurodehydrocholate, a bile salt that does not form micelles, induced no net Na+ (-0.3 +/- 0.8) or H+ flux (-0.7 +/- 1.4) and did not increase efflux of phospholipid (11.3 +/- 1.7) or cholesterol (10.4 +/- 2.0) over base line. Bile salt was absorbed from the mixture of six conjugates at 752 +/- 85 nmol/min. Addition of subsaturation amounts of lecithin (4 mM) reduced bile salt absorption three fold to 252 +/- 57 (P < 0.001), but abnormal Na+ flux (14.1 +/- 3.4) and H+ flux (-15.6 +/- 3.5) persisted. Taurodehydrocholate was absorbed to an intermediate extent (467 +/- 116). Dissolution of mucosal lipids is apparently the mechanism by which bile salt disrupts the gastric mucosal barrier, and presumably at least one mechanism by which bile salt can injure the gastric mucosa.
W C Duane, D M Wiegand
We sought to determine whether the third component of complement (C3) is localized in ischemic baboon myocardium after coronary artery ligation. Furthermore, we assessed the effects of prior C3 depletion on myocardial necrosis. We studied seven control baboons (group I) and seven C3-depleted (group II) baboons that were killed 24 h after ligation of the anterior descending coronary artery. Multiple tissue samples were obtained from infarct, intermediate, and normal myocardial sites as defined by serial unipolar epicardial ECG mapping. In group I baboons, myocardial creatine kinase content from infarct sites was reduced as compared with normal sites (12.6±0.92 [SE] vs. 24.4±0.75 IU/mg protein, P < 0.001). The intermediate sites from group I contained more creatine kinase (19.0±1.25 IU/mg protein) than infarct sites (P < 0.001), but less (P < 0.025) than normal sites. In group II, intermediate sites showed no significant reduction in creatine kinase from normal sites and there was significantly less creatine kinase depletion in infarct sites when compared with group I animals (33.7±4.6 and 51.4±1.8% depletion, respectively, P < 0.001). In all seven group I baboons, uniform C3 localization was observed in infarct sites by direct immunofluorescence but appeared in mosaic patterns in intermediate sites. C3 was not demonstrated in any normal sites, nor in any site from group II baboons. Additional studies on baboons killed at earlier times after ligation indicated that C3 was localized focally on swollen myocytes in infarct sites as early as 4 h after coronary ligation. These results strongly implicate the active participation of the complement system of inflammatory proteins in the pathogenesis of myocardial tissue injury following coronary occlusion.
R. Neal Pinckard, Robert A. O'Rourke, Michael H. Crawford, Frederick S. Grover, Linda M. McManus, John J. Ghidoni, S. Brandley Storrs, Merle S. Olson
We have previously reported that in hypothyroid turkeys the number of beta-adrenergic receptors in intact erythrocytes is reduced by ∼50% without any changes in the affinity of the receptor for the agonist, isoproterenol. In view of the physiological action of the catecholamines to stimulate bidirectional ion fluxes in these cells, we have now examined the possibility that the decrease in beta receptor number might be associated with concomitant changes in catecholamine-dependent potassium ion transport. Hypothyroid turkey erythrocytes display decreased sensitivity to isoproterenol-stimulated potassium influx. Half-maximal stimulation of potassium influx occurs at 9.2±1.7 nM in hypothyroid cells as opposed to only 3.8±0.4 nM in normal cells (P < 0.005). A maximal stimulatory concentration of isoproterenol (100 nM) leads to the same increment in ion flux in erythrocytes from hypothyroid and normal turkeys. Analysis of the quantitative relationship between isoproterenol concentration, receptor occupancy, and associated effects upon potassium influx shows that at low levels of isoproterenol, where occupancy is linear with agonist concentration, occupation of a given number of beta receptors leads to a stimulation of potassium transport that is identical in erythrocytes from normal and hypothyroid turkeys. Thus, decreased sensitivity to catecholamine-stimulated potassium transport in hypothyroidism can be attributed to the decrease in receptor number and the resulting two- to threefold higher isoproterenol concentration required for occupancy of the same number of beta receptors. Once a single receptor is occupied, however, the more distal components of the sequence of events mediating the physiological response to beta-adrenergic agonists in the hypothyroid cell function as they do under normal circumstances. It would appear, therefore, that the decrease in sensitivity to isoproterenol-dependent ion flux in the hypothyroid turkey erythrocyte can be accounted for solely by the decrease in receptor number. These changes are shown to occur in the absence of any modifications in the number of Na+-K+ ATPase effector units per cell.
Haruyasu Furukawa, John N. Loeb, John P. Bilezikian
A possible role for cyclic adenosine 3′,5′-monophosphate (cAMP) in islet B cell replication was examined in neonatal rat pancreatic monolayer cultures. Islet cells deteriorated and insulin release decreased during 12 d of culture in medium with 5.6 mM glucose, whereas the cells survived and insulin release increased during culture in medium with 5.6 mM glucose plus the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX, 0.1 mM), or in medium with 16.7 mM glucose with or without IBMX. IBMX also increased the mitotic index and stimulated dose-dependent increases in [3H]thymidine incorporation in nuclei of islet B cells in aldehydethionine stained radioautographs; maximal stimulation of B cell replication occurred with addition of 0.1 mM IBMX to 5.6 mM glucose (+170%, P < 0.001), and this increase was similar to that observed with 16.7 mM glucose (+185%, P < 0.001). Also, 8-bromo-adenosine-3′,5-monophosphate, but not 8-bromo-guanosine-3′,5′-monophosphate produced dose-dependent increases in islet B cell replication in medium with 5.6 mM glucose. Measurement of cAMP levels in the cultures revealed dissociations between effects on B cell replication and insulin release. Thus, addition of 0.1 mM IBMX, or 0.1 nM cholera toxin, to 5.6 mM glucose produced slightly greater increases in cAMP levels and B cell replication than did 16.7 mM glucose, whereas insulin release was increased significantly more with 16.7 mM glucose. Also, addition of 0.1 mM IBMX, or 0.1 nM cholera toxin, to 16.7 mM glucose stimulated further increases in cAMP levels and insulin release in the cultures, but no further increases in B cell replication. We conclude that (a) cAMP stimulates islet B cell replication, (b) cAMP may mediate the effects of glucose on B cell replication, and (c) mechanisms regulating B cell replication may be more sensitive to cAMP and/or different from those regulating insulin secretion.
Alexander Rabinovitch, Benigna Blondel, Thomas Murray, Daniel H. Mintz
In the course of a controlled study to evaluate different forms of immunotherapy for subjects with insect-sting hypersensitivity, we observed 11 subjects who had systemic cutaneous urticarial reactions and 3 subjects who experienced systemic anaphylaxis. With the exception of tachycardia, there were no cardiopulmonary changes in the subjects with urticaria, whereas the major manifestation of anaphylactic shock in the other three subjects was severe hypotension that was probably secondary to peripheral vasodilation. Significant abnormalities in gas exchange developed in two subjects. In one, bronchospasm precipitated a respiratory arrest followed by endotracheal intubation with mechanical ventilation. Although plasma histamine levels were not related to the development of cutaneous reactions, the plasma histamine levels correlated with the severity and duration of the cardiopulmonary changes observed during anaphylactic shock. The two subjects with the most severe shock showed evidence of intravascular coagulation characterized by a diminution of Factor V, Factor VIII, fibrinogen, and high molecular weight kininogen, as well as changes in components of the complement system. Standard therapy with epinephrine and fluids, usually recommended for the treatment of systemic anaphylaxis, did not immediately reverse either the hemodynamic or the respiratory abnormalities in the two subjects with the most severe anaphylactic shock. Hemodynamic recovery was gradual and did not seem directly related to any specific therapeutic intervention.
P L Smith, A Kagey-Sobotka, E R Bleecker, R Traystman, A P Kaplan, H Gralnick, M D Valentine, S Permutt, L M Lichtenstein
When 125I-glucagon is incubated with freshly isolated rat hepatocytes and studied by quantitative electron microscope autoradiography, the labeled material localizes to the plasma membrane of the cell at early times of incubation of 20 degrees C; at later times of incubation at 20 degrees C, there is little further translocation of the labeled ligand. When incubations are carried out at 37 degrees C, the labeled material is progressively internalized by the cell after a brief delay. When the internalized radioactivity is further analyzed, it is found to associate preferentially with lysosome-like structures. When the cell-associated radioactivity is extracted, there is degradation of the ligand in incubations carried out at 37 degrees C. The events involved in the interaction of 125I-glucagon with the hepatocyte are similar to those previously described for labeled insulin in this cell. The process of binding, internalization, and lysosomal association appears to be a general process related to many polypeptide hormones and growth factors, and may represent the mechanism by which the specific binding of the ligand to the cell surface mediates the degradation of the ligand and the loss of its surface receptor.
P Barazzone, P Gorden, J L Carpentier, L Orci, P Freychet, B Canivet
Compactin (ML-236B) and the related compound, mevinolin, are competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase), the rate-controlling enzyme in cholesterol synthesis. Previous studies have shown that administration of compactin to cultured cells elicits a compensatory increase in the amount of HMG CoA reductase in the cells. A similar increase in HMG CoA reductase has been reported in livers of rats and mice that have been treated with compactin. In this study, we explore the mechanism for the mevinolin-mediated increase in hepatic HMG CoA reductase in mice that have been fed a control diet and a 2% cholesterol diet. Administration of mevinolin to mice on a control diet produced a 6- to 10-fold increase in the amount of HMG CoA reductase in liver microsomes. When mice were fed the cholesterol-enriched diet, cholesterol accumulated in the liver and HMG CoA reductase declined by 90%. The administration of mevinolin to cholesterol-fed mice produced a three to eightfold increase in HMG CoA reductase. Despite the abundant amount of cholesterol that was already present in the livers of the mevinolin-treated, cholesterol-fed animals, their elevated HMG CoA reductase could be rapidly suppressed by the subcutaneous injection of small amounts of mevalonate, the product of HMG CoA reductase. These data are compatible with the existence in mouse liver of a multivalent feedback regulatory mechanism for HMG CoA reductase in which suppression of the enzyme requires both a sterol and a nonsterol substance derived from mevalonate. By blocking mevalonate synthesis, mevinolin activates this regulatory mechanism, and this in turn causes an increase in hepatic HMG CoA reductase. The ability to suppress the elevated HMG CoA reductase with mevalonate may prove useful in potentiating the effectiveness of mevinolin as a hypocholesterolemic agent.
Toru Kita, Michael S. Brown, Joseph L. Goldstein
Phorbol esters, including 12-O-tetradecanoylphorbol 13-acetate (TPA), induce terminal macrophagelike differentiation of cells from human acute myelogenous leukemia lines. We report that myelogenous leukemia cells obtained from patients undergo macrophagelike differentiation after exposure to TPA. The myeloid leukemic cell cultured with TPA became adherent to charged surfaces with long filamentous pseudopodia; developed positive staining for alpha-napthyl acetate esterase, increased lysozyme secretion, reduced nitroblue tetrazolium, and acquired the ability to phagocytose candida. Cells from patients with lymphocytic leukemia did not become macrophagelike when cultured with TPA.
H P Koeffler, M Bar-Eli, M Territo
Arthritis can be induced in rats by intradermal injection of oil containing bacterial derivatives (adjuvant-induced arthritis) or cartilage collagen (type II collagen-induced arthritis). It was of interest, therefore, to determine whether collagen functions as an autoantigen in rats with adjuvant arthritis. Blood mononuclear cells from the majority of rats with adjuvant arthritis exhibited enhanced thymidine incorporation to homologous types I and II collagens, as well as to purified protein derivative of tuberculin. In contrast, cells from rats remaining nonarthritic after injection of adjuvant did not respond to collagen, although they did react to tuberculin. Similar results were obtained with a radiometric ear assay used to quantify intradermal delayed-type hypersensitivity in vivo. Using passive hemagglutination, autoantibodies to these collagens and their denatured alpha-chains were frequently detected in the sera of rats late in the course of adjuvant arthritis. Rats with inflammation of a hindlimb induced by turpentine did not acquire sensitivity to collagen. These data indicate that autoimmunity to collagen is a common feature of adjuvant- and collagen-induced arthritis, both of which are considered to be mediated by immunologic mechanisms.
D E Trentham, W J McCune, P Susman, J R David
The decreased absorption of calcium by the small intestine of the adult may reflect changes in vitamin D metabolism with age. The purpose of this study was to compare the capacity of young (1.5 mo of age) and adult (12 mo of age) vitamin D-deficient rats to convert 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D, the physiologically active form of vitamin D. Young rats responded to an oral dose of 25-hydroxyvitamin D3 with significantly increased intestinal absorption of calcium and a three-fold increase in the intestinal content of vitamin D-stimulated calcium-binding protein. Adult rats showed no significant increase in these parameters. The conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 was measured in the whole animal by administering a dose of tritiated 25-hydroxyvitamin D3 and determining the appearance of tritiated metabolites in plasma and small intestine. In the adult rat, only 2.1 +/- 0.6% of the plasma radioactivity was in the form of 1,25-dihydroxyvitamin D3 after 24 h compared with 20.8 +/- 3.0% in the young. The conversion of tritiated 25-hydroxyvitamin D3 to its products was also measured directly in isolated slices of renal cortex. 1,25-Dihydroxyvitamin D3 production by adult renal slices was found to be less than one-tenth that of slices from the young. These results indicate that there is a marked decrease in the capacity of the vitamin D-deficient adult rat to convert 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3. This is probably due to the decreased capacity of the adult kidney to 1-hydroxylate 25-hydroxyvitamin D3. These studies also demonstrate the usefulness of renal slices in measuring changes in the renal conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 in the mammal.
H J Armbrecht, T V Zenser, B B Davis
Antibodies against the insulin receptor (Anti-R), which are found in the serum of type B patients with the syndrome of insulin resistance and acanthosis nigricans, inhibit the binding of insulin to its receptor and mimic the actions of insulin when studied acutely in vitro. After prolonged exposure of 3T3-L1 cells to Anti-R, the insulinomimetic activity is lost, and the cells show a marked decrease in their maximal response to insulin (antibody-induced desensitization), thus providing a model for the insulin resistance seen in vivo. This study explores in detail the mechanism and specificity of desensitization in 3T3-L1 cells.
Carl Grunfeld, Emmanuel Van Obberghen, F. Anders Karlsson, C. Ronald Kahn
Immunohistological studies have indicated that membrane sites binding transferrin are present upon activated human peripheral blood lymphocytes. In this study, we have investigated transferrin uptake in human lymphocytes exposed to phytohemagglutinin (PHA), by quantitative radiobinding and immunofluorescence in parallel. In stimulated lymphocytes, binding was maximal after a 30-min incubation, being greatest at 37°C, and greater at 22°C than at 4°C. Although some shedding and endocytosis of transferrin occurred at 22° and 37°C, these factors, and resulting synthesis of new sites, did not affect measurement of binding which was found to be saturable, reversible, and specific for transferrin (Ka 0.5-2.5 × 108 M−1). Binding was greater after a 48-h exposure to PHA than after 24 h, and was maximal at 66 h. Sequential Scatchard analysis revealed no significant elevation in affinity of interaction. However, although the total number of receptors increased, the proportion of cells in which binding of ligand was detected immunohistologically increased in parallel, and after appropriate correction, the cellular density of receptors remained relatively constant throughout (60,000-80,000 sites/cell). Increments in binding during the culture period were thus due predominantly to expansion of a population of cells bearing receptors. Similar differences in binding were apparent upon comparison of cells cultured in different doses of PHA, and in unstimulated cells binding was negligible. Transferrin receptors appear, therefore, to be readily detectable only upon lymphocytes that have been activated.
Robert M. Galbraith, Phillip Werner, Philippe Arnaud, Gillian M. P. Galbraith
Viral infections may produce abnormalities in carbohydrate metabolism in normal subjects and profound changes in glucose homeostasis in insulin-dependent diabetics. Using an in vitro radio-receptor assay with 125I-labeled insulin and human-amnion (WISH) cells, the effect of viral infections on insulin receptors was examined. Both herpes simplex virus and vesicular stomatitis virus produced a 50% decrease in insulin binding. There was no evidence that this decrease was due to degradation of insulin. On quantitative analysis, this decrease in binding was found to be the result of a decrease in receptor concentration with no change in receptor affinity. The decrease in receptors occurred between 4 and 12 h, at the time viral antigens were being inserted into the plasma membrane of infected cells. Because the t 1/2 of insulin receptors in uninfected cells was between 14 and 24 h, the decrease in insulin receptors cannot be explained solely by virus-induced shut-off of macromolecular synthesis. Moreover, viruses such as encephalomyocarditis that do not insert new antigens into the plasma membrane, did not cause changes in the number of insulin receptors. The most likely explanation is that virus-induced changes in the plasma membrane altered or displaced insulin receptors. It is concluded that the insulin receptor assay is a sensitive and quantitative method for studying the effect of viral infections on cell membranes. These data also suggest that abnormalities in glucose metabolism associated with some viral infections may be due, in part, to changes in the concentration of insulin receptors.
F Shimizu, J J Hooks, C R Kahn, A L Notkins
To study the capacity for moderate endurance exercise and change in metabolic fuel utilization during adaptation to a ketogenic diet, six moderately obese, untrained subjects were fed a eucaloric, balanced diet (base line) for 2 wk, followed by 6 wk of a protein-supplemented fast (PSF), which provided 1.2 g of protein/kg ideal body wt, supplemented with minerals and vitamins. The mean weight loss was 10.6 kg.
Stephen D. Phinney, Edward S. Horton, Ethan A. H. Sims, John S. Hanson, Elliot Danforth Jr., Betty M. Lagrange
The effect of sequential methotrexate and 5-fluorouracil on the clonal growth of the human colon adenocarcinoma cell, HCT-8, and the hormone-dependent human breast carcinoma cell, 47-DN, was examined. In both cell lines, when 5-fluorouracil was given during the last 6 h of a 24 h methotrexate exposure period, there was marked synergistic inhibition of clonal growth. Shorter intervals or the reverse sequence of drugs were either additive or antagonistic. These results indicate the importance of the drug sequence and time interval between drug administration for optimal cytotoxicity in these human cell lines. This information suggests that the administration of methotrexate 18 h before 5-fluorouracil may have potential application in the design of clinical trials for these malignancies.
C Benz, M Schoenberg, M Choti, E Cadman
The predominant lipoxygenase products of arachidonic acid were extracted and purified from synovial fluid and sonicates of synovial tissue of patients with rheumatoid arthritis (RA), spondyloarthritis (SA), or a noninflammatory arthropathy (NIA). The concentration of 5(S),12(R)-dihydroxy-6,8,10-(trans/trans/cis)-14-cis-eicosatetraenoic acid (leukotriene B4) in synovial fluid was elevated significantly in patients with RA and a positive latex test for rheumatoid factor (P < 0.05, n = 14) and in patients with SA (P < 0.05, n = 10), compared with that of subjects with NIA (n = 9). The content of 5(S)-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), but not of leukotriene B4, was elevated significantly in synovial tissue of seven patients with RA in comparison with that of four subjects with NIA (P < 0.05). A single intra-articular injection of corticosteroid significantly lowered the synovial fluid level of leukotriene B4 in six patients with RA. These data suggest an involvement of the potent chemotactic factors 5-HETE and leukotriene B4 in human inflammatory disease.
L B Klickstein, C Shapleigh, E J Goetzl
To determine whether imbalance among subsets of human T cells exists in patients with systemic lupus erythematosus (SLE), we analyzed peripheral blood lymphocytes in SLE patients during active and inactive stages of disease. For this analysis, we used monoclonal antibodies to the surface antigens of inducer (T4) and suppressor (T5/T8) T cell subsets, as well as a common T cell antigen (T3). In contrast to normal and inactive SLE patients, the percentage of T3+ cells was reduced in all active SLE patients. More importantly, there was a selective decrease in T5+/T8+ suppressor T cells in 12 of 14 active patients, including 1 of 2 patients with drug-induced SLE. Serial analysis of three SLE patients showed a significant correlation between the presence of T5+/T8+ subset and clinical disease activity in all patients. We conclude that aberrations in suppressor T cell subsets are an important correlate of disease in patients with SLE.
C Morimoto, E L Reinherz, S F Schlossman, P H Schur, J A Mills, A D Steinberg
Using microscopic immunodiffusion assays and microdensitometric analysis of pericellular immunoprecipitate, the percentage of nucleated erythrocytes containing fetal hemoglobin (FNRBC) and the mean picograms of fetal or adult hemoglobin per nucleated erythrocyte (picograms HbF/NRBC, picograms HbA/NRBC) were assayed in 14-d-old colonies (bursts) derived from peripheral blood erythroid progenitors. In the peripheral blood of 11 normal adults only 2.2±0.5% (mean±SE) erythrocytes contained HbF whereas pooled bursts from the same subjects revealed a 13-fold increase in the percentage of FNRBC (29.6±3.9%). In culture both the picograms HbF/NRBC (5.2±0.4) and the picograms HbA/NRBC (27.7±1.5) are increased ∼20% above the mean in vivo levels in NRBC from normal bone marrow aspirates. Analysis of each of 58 bursts from one subject demonstrated that FNRBC are present in all bursts and range from 5.0 to 95.0% of the total NRBC per burst. The percent FNRBC in each burst was neither correlated with picograms HbF/NRBC per burst nor with picograms HbA/NRBC per burst. Individual subcolonies from one burst in each of two subjects demonstrated between 3 and 81% FNRBC.
George J. Dover, Makio Ogawa
Several of the characteristic complications of diabetes mellitus resemble age-like changes in collagen-rich tissues. It has been reported that increased glucosylation of hemoglobin and serum proteins occurs in diabetes. Glucosylation of insoluble human tendon collagen, a protein with little or no turnover was determined by a thiobarbituric acid method in 23 subjects as a function of age and the presence or absence of diabetes. Amounts of glucose and collagen solubilized by collagenase digestion of the samples were also determined. Glucosylation of collagen was found to increase with age and was markedly increased in juvenile onset diabetes. There appeared to be a limit to the amount of glucosylation that could occur, and older individuals with maturity-onset diabetes demonstrated glucosylation within that limit. The glucose nonenzymatically bound to human collagen may indicate the level of long-term control of the diabetes, and may play a role in the alteration of collagenous tissue properties that occurs in both aging and diabetes.
S L Schnider, R R Kohn
To investigate the origin and metabolism of the intermediates that occur in blood during phototherapy of neonatal jaundice, serum from irradiated homozygous Gunn rats was injected intravenously into other homozygous Gunn rats fitted with bile fistulas, and the excretion of pigment in the bile of the recipient rats was studied. In some experiments the donor rats were labeled with [14C]bilirubin; in others the recipient rats were labeled. Injection of donor serum from irradiated rats caused a transient burst of pigment excretion in the bile of the recipient rats. However, simultaneous bursts of pigment and 14C excretion were observed only when the donor rat was labeled and the recipient rat was not, and not when the donor rat was unlabeled and the recipient rat was labeled. In addition, there was simultaneous transient enhanced excretion of pigment and label when labeled recipient rats were exposed briefly to blue light. We conclude that (a) the phototherapy intermediates previously detected spectroscopically in serum are formed from bilirubin and are excreted in bile independently of bilirubin; (b) the enhanced excretion of pigment in bile during phototherapy is not caused by complex formation between bilirubin and photoproducts, or by liver damage produced by photoproducts or light.
A F McDonagh, L A Palma
Activated protein C is an anticoagulant plasma protease enzyme that inactivates Factors V and VIII in plasma. Normal plasma contains a protein that inhibits activated protein C and that is distinct from previously described plasma protease inhibitors. Protein C inhibitory activity is not detectable in plasmas from four unrelated patients with combined Factor V/VIII deficiency but is present in normal amounts in plasmas from patients with simple factor V deficiency or Factor VIII deficiency. It is suggested that the molecular basis for combined Factor V/VIII deficiency that exhibits simple autosomal recessive inheritance is a deficiency of protein C inhibitor.
R A Marlar, J H Griffin