Tsou et al. identify bradykinin receptor B1 as the G protein–coupled receptor that mediates the proinflammatory effect of soluble CD13 in inflammatory arthritis. The cover image shows rheumatoid arthritis synovial tissue immunostained for bradykinin receptor B1 (green) and the fibroblast marker CD55 (red), with nuclear staining (blue).
Inés Fernández Maestre, Yanyang Chen, Brianna Naizir, Ushma S. Neill
Laurence Zitvogel, Guido Kroemer
The discovery of microRNAs and their role in diseases was a breakthrough that inspired research into microRNAs as drug targets. Cardiovascular diseases are an area in which limitations of conventional pharmacotherapy are highly apparent and where microRNA-based drugs have appreciably progressed into preclinical and clinical testing. In this Review, we summarize the current state of microRNAs as therapeutic targets in the cardiovascular system. We report recent advances in the identification and characterization of microRNAs, their manipulation and clinical translation, and discuss challenges and perspectives toward clinical application.
Bernhard Laggerbauer, Stefan Engelhardt
Hypoxia-inducible factors (HIFs) are master regulators of oxygen homeostasis that match O2 supply and demand for each of the 50 trillion cells in the adult human body. Cancer cells co-opt this homeostatic system to drive cancer progression. HIFs activate the transcription of thousands of genes that mediate angiogenesis, cancer stem cell specification, cell motility, epithelial-mesenchymal transition, extracellular matrix remodeling, glucose and lipid metabolism, immune evasion, invasion, and metastasis. In this Review, the mechanisms and consequences of HIF activation in cancer cells are presented. The current status and future prospects of small-molecule HIF inhibitors for use as cancer therapeutics are discussed.
Elizabeth E. Wicks, Gregg L. Semenza
Nonalcoholic fatty liver disease (NAFLD) is a major health concern that often associates with obesity and diabetes. Fatty liver is usually a benign condition, yet a fraction of individuals progress to severe forms of liver damage, including nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). Elevated sterol regulatory element–binding protein–driven (SREBP-driven) hepatocyte lipid synthesis is associated with NAFLD in humans and mice. In this issue of the JCI, Kawamura, Matsushita, et al. evaluated the role of SREBP-dependent lipid synthesis in the development of NAFLD, NASH, and HCC in the phosphatase and tensin homolog–knockout (PTEN-knockout) NASH model. Deletion of the gene encoding SREBP cleavage–activating protein (SCAP) from the liver resulted in decreased hepatic lipids, as expected. However, SCAP deletion accelerated progression to more severe liver damage, including NASH and HCC. This study provides a note of caution for those pursuing de novo fat biosynthesis as a therapeutic intervention in human NASH.
Timothy F. Osborne, Peter J. Espenshade
HIV infection results in defective CD8+ T cell functions that are incompletely resolved by antiretroviral therapy (ART) except in natural controllers, who have functional CD8+ T cells associated with viral control. In this issue of the JCI, Perdomo-Celis et al. demonstrated that targeting the Wnt/transcription factor T cell factor 1 (Wnt/TCF-1) pathway in dysfunctional CD8+ T cells led to gains in stemness phenotype, metabolic quiescence, survival potential, response to homeostatic γ-chain cytokines, and antiviral capacities, similar to profiles of functional CD8+ T cells in natural controllers. Although reprogramming might not sufficiently reverse the imprinted dysfunction of CD8+ T cells in HIV infection, these findings outline the Wnt/TCF-1 pathway as a potential target to reprogram dysfunctional CD8+ T cells in efforts to achieve HIV remission.
Hiroshi Takata, Lydie Trautmann
Since researchers first began to uncover the mechanisms underlying allogeneic transplantation, the focus has been on T cells. T cells are a major instigator of graft-versus-host disease (GVHD). The clear association between GVHD occurrence and subsequent reduction in relapse supported concentrating on T cells as the masterminds behind graft-versus-tumor (GVT) effects. Recently, an alternative mediator of GVT has taken center stage: natural killer (NK) cells. Part of the appeal of NK cells is their potential to provide antitumor immunity without GVHD. Donor lymphocyte infusion has been the predominant treatment of relapse after allogeneic transplant, but the mix of lymphocytes includes CD8+ T cells and, consequently, a substantial risk for GVHD. In this issue of the JCI, Shapiro and colleagues developed an adoptive NK cell transfer platform to treat relapse after haploidentical allogeneic transplant. The study demonstrated safety, sought to determine resistance mechanisms, and provided avenues for future research.
Shannon R. McCurdy
Although aging and lung injury are linked to the development of idiopathic pulmonary fibrosis (IPF), the underlying pathognomonic processes predisposing to fibrotic lesions remain largely unknown. A deficiency in the ability of type 2 alveolar epithelial cell (AEC2) progenitors to regenerate and repair the epithelia has been proposed as a critical factor. In this issue of the JCI, Liang et al. identify a deficiency in the zinc transporter SLC39A8 (ZIP8) in AEC2s and in the subsequent activation of the sirtuin SIRT1 that predisposes to decreased AEC2 renewal capacity and enhanced lung fibrosis in both IPF and aging lungs. Interestingly, the authors demonstrate the efficacy of modulating dietary zinc levels, suggesting the need for clinical trials to evaluate the therapeutic potential of dietary supplementation and the development of pharmacological modulation of the Zn/ZIP8/SIRT1 axis for treatment.
Paul S. Foster, Hock L. Tay, Brian G. Oliver
Plasmodium falciparum (P. falciparum) induces trained innate immune responses in vitro, where initial stimulation of adherent PBMCs with P. falciparum–infected RBCs (iRBCs) results in hyperresponsiveness to subsequent ligation of TLR2. This response correlates with the presence of T and B lymphocytes in adherent PBMCs, suggesting that innate immune training is partially due to adaptive immunity. We found that T cell–depleted PBMCs and purified monocytes alone did not elicit hyperproduction of IL-6 and TNF-α under training conditions. Analysis of P. falciparum–trained PBMCs showed that DCs did not develop under control conditions, and IL-6 and TNF-α were primarily produced by monocytes and DCs. Transwell experiments isolating purified monocytes from either PBMCs or purified CD4+ T cells, but allowing diffusion of secreted proteins, enabled monocytes trained with iRBCs to hyperproduce IL-6 and TNF-α after TLR restimulation. Purified monocytes stimulated with IFN-γ hyperproduced IL-6 and TNF-α, whereas blockade of IFN-γ in P. falciparum–trained PBMCs inhibited trained responses. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) on monocytes from patients with malaria showed persistently open chromatin at genes that appeared to be trained in vitro. Together, these findings indicate that the trained immune response of monocytes to P. falciparum is not completely cell intrinsic but depends on soluble signals from lymphocytes.
Juliet N. Crabtree, Daniel R. Caffrey, Leandro de Souza Silva, Evelyn A. Kurt-Jones, Katherine Dobbs, Arlene Dent, Katherine A. Fitzgerald, Douglas T. Golenbock
Poly(ADP-ribose) polymerase inhibitors (PARP inhibitors) have had an increasing role in the treatment of ovarian and breast cancers. PARP inhibitors are selectively active in cells with homologous recombination DNA repair deficiency caused by mutations in BRCA1/2 and other DNA repair pathway genes. Cancers with homologous recombination DNA repair proficiency respond poorly to PARP inhibitors. Cancers that initially respond to PARP inhibitors eventually develop drug resistance. We have identified salt-inducible kinase 2 (SIK2) inhibitors, ARN3236 and ARN3261, which decreased DNA double-strand break (DSB) repair functions and produced synthetic lethality with multiple PARP inhibitors in both homologous recombination DNA repair deficiency and proficiency cancer cells. SIK2 is required for centrosome splitting and PI3K activation and regulates cancer cell proliferation, metastasis, and sensitivity to chemotherapy. Here, we showed that SIK2 inhibitors sensitized ovarian and triple-negative breast cancer (TNBC) cells and xenografts to PARP inhibitors. SIK2 inhibitors decreased PARP enzyme activity and phosphorylation of class-IIa histone deacetylases (HDAC4/5/7). Furthermore, SIK2 inhibitors abolished class-IIa HDAC4/5/7–associated transcriptional activity of myocyte enhancer factor-2D (MEF2D), decreasing MEF2D binding to regulatory regions with high chromatin accessibility in FANCD2, EXO1, and XRCC4 genes, resulting in repression of their functions in the DNA DSB repair pathway. The combination of PARP inhibitors and SIK2 inhibitors provides a therapeutic strategy to enhance PARP inhibitor sensitivity for ovarian cancer and TNBC.
Zhen Lu, Weiqun Mao, Hailing Yang, Janice M. Santiago-O’Farrill, Philip J. Rask, Jayanta Mondal, Hu Chen, Cristina Ivan, Xiuping Liu, Chang-Gong Liu, Yuanxin Xi, Kenta Masuda, Eli M. Carrami, Meng Chen, Yitao Tang, Lan Pang, David S. Lakomy, George A. Calin, Han Liang, Ahmed A. Ahmed, Hariprasad Vankayalapati, Robert C. Bast Jr.
Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation with aberrant epigenetic alterations, eventually leading to joint destruction. However, the epigenetic regulatory mechanisms underlying RA pathogenesis remain largely unknown. Here, we showed that ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) is a central epigenetic regulator that orchestrates multiple pathogeneses in RA in a suppressive manner. UHRF1 expression was remarkably upregulated in synovial fibroblasts (SFs) from arthritis model mice and patients with RA. Mice with SF-specific Uhrf1 conditional knockout showed more severe arthritic phenotypes than littermate controls. Uhrf1-deficient SFs also exhibited enhanced apoptosis resistance and upregulated expression of several cytokines, including Ccl20. In patients with RA, DAS28, CRP, and Th17 accumulation and apoptosis resistance were negatively correlated with UHRF1 expression in synovium. Finally, Ryuvidine administration stabilized UHRF1 ameliorated arthritis pathogeneses in a mouse model of RA. This study demonstrated that UHRF1 expressed in RA SFs can contribute to negative feedback mechanisms that suppress multiple pathogenic events in arthritis, suggesting that targeting UHRF1 could be one of the therapeutic strategies for RA.
Noritaka Saeki, Kazuki Inoue, Maky Ideta-Otsuka, Kunihiko Watamori, Shinichi Mizuki, Katsuto Takenaka, Katsuhide Igarashi, Hiromasa Miura, Shu Takeda, Yuuki Imai
CD13, an ectoenzyme on myeloid and stromal cells, also circulates as a shed, soluble protein (sCD13) with powerful chemoattractant, angiogenic, and arthritogenic properties, which require engagement of a G protein–coupled receptor (GPCR). Here we identify the GPCR that mediates sCD13 arthritogenic actions as the bradykinin receptor B1 (B1R). Immunofluorescence and immunoblotting verified high expression of B1R in rheumatoid arthritis (RA) synovial tissue and fibroblast-like synoviocytes (FLSs), and demonstrated binding of sCD13 to B1R. Chemotaxis, and phosphorylation of Erk1/2, induced by sCD13, were inhibited by B1R antagonists. In ex vivo RA synovial tissue organ cultures, a B1R antagonist reduced secretion of inflammatory cytokines. Several mouse arthritis models, including serum transfer, antigen-induced, and local innate immune stimulation arthritis models, were attenuated in Cd13–/– and B1R–/– mice and were alleviated by B1R antagonism. These results establish a CD13/B1R axis in the pathogenesis of inflammatory arthritis and identify B1R as a compelling therapeutic target in RA and potentially other inflammatory diseases.
Pei-Suen Tsou, Chenyang Lu, Mikel Gurrea-Rubio, Sei Muraoka, Phillip L. Campbell, Qi Wu, Ellen N. Model, Matthew E. Lind, Sirapa Vichaikul, Megan N. Mattichak, William D. Brodie, Jonatan L. Hervoso, Sarah Ory, Camila I. Amarista, Rida Pervez, Lucas Junginger, Mustafa Ali, Gal Hodish, Morgan M. O’Mara, Jeffrey H. Ruth, Aaron M. Robida, Andrew J. Alt, Chengxin Zhang, Andrew G. Urquhart, Jeffrey N. Lawton, Kevin C. Chung, Tristan Maerz, Thomas L. Saunders, Vincent E. Groppi, David A. Fox, M. Asif Amin
Enhanced de novo lipogenesis mediated by sterol regulatory element–binding proteins (SREBPs) is thought to be involved in nonalcoholic steatohepatitis (NASH) pathogenesis. In this study, we assessed the impact of SREBP inhibition on NASH and liver cancer development in murine models. Unexpectedly, SREBP inhibition via deletion of the SREBP cleavage–activating protein (SCAP) in the liver exacerbated liver injury, fibrosis, and carcinogenesis despite markedly reduced hepatic steatosis. These phenotypes were ameliorated by restoring SREBP function. Transcriptome and lipidome analyses revealed that SCAP/SREBP pathway inhibition altered the fatty acid (FA) composition of phosphatidylcholines due to both impaired FA synthesis and disorganized FA incorporation into phosphatidylcholine via lysophosphatidylcholine acyltransferase 3 (LPCAT3) downregulation, which led to endoplasmic reticulum (ER) stress and hepatocyte injury. Supplementation with phosphatidylcholines significantly improved liver injury and ER stress induced by SCAP deletion. The activity of the SCAP/SREBP/LPCAT3 axis was found to be inversely associated with liver fibrosis severity in human NASH. SREBP inhibition also cooperated with impaired autophagy to trigger liver injury. Thus, excessively strong and broad lipogenesis inhibition was counterproductive for NASH therapy; this will have important clinical implications in NASH treatment.
Satoshi Kawamura, Yuki Matsushita, Shigeyuki Kurosaki, Mizuki Tange, Naoto Fujiwara, Yuki Hayata, Yoku Hayakawa, Nobumi Suzuki, Masahiro Hata, Mayo Tsuboi, Takahiro Kishikawa, Hiroto Kinoshita, Takuma Nakatsuka, Masaya Sato, Yotaro Kudo, Yujin Hoshida, Atsushi Umemura, Akiko Eguchi, Tsuneo Ikenoue, Yoshihiro Hirata, Motonari Uesugi, Ryosuke Tateishi, Keisuke Tateishi, Mitsuhiro Fujishiro, Kazuhiko Koike, Hayato Nakagawa
Microglia, the parenchymal tissue macrophages in the brain, surround amyloid plaques in brains of individuals with Alzheimer’s disease (AD) but are ineffective at clearing amyloid to mitigate disease progression. Recent studies in mice indicate that microglia are derived exclusively from primitive yolk sac hematopoiesis and self-renew without contribution from ontogenically distinct monocytes/macrophages of definitive adult hematopoietic origin. Using a genetic fate-mapping approach to label cells of definitive hematopoietic origin throughout life span, we discovered that circulating monocytes contribute 6% of plaque-associated macrophages in aged AD mice. Moreover, peripheral monocytes contributed to a higher fraction of macrophages in the choroid plexus, meninges, and perivascular spaces of aged AD mice versus WT control mice, indicating enrichment at potential sites for entry into the brain parenchyma. Splenectomy, which markedly reduced circulating Ly6Chi monocytes, also reduced abundance of plaque-associated macrophages of definitive hematopoietic origin, resulting in increased amyloid plaque load. Together, these results indicate that peripherally derived monocytes invade the brain parenchyma, targeting amyloid plaques to reduce plaque load.
Ping Yan, Ki-Wook Kim, Qingli Xiao, Xiucui Ma, Leah R. Czerniewski, Haiyan Liu, David R. Rawnsley, Yan Yan, Gwendalyn J. Randolph, Slava Epelman, Jin-Moo Lee, Abhinav Diwan
Myeloproliferative neoplasms (MPNs) are associated with significant alterations in the bone marrow microenvironment that include decreased expression of key niche factors and myelofibrosis. Here, we explored the contribution of TGF-β to these alterations by abrogating TGF-β signaling in bone marrow mesenchymal stromal cells. Loss of TGF-β signaling in Osx-Cre–targeted MSCs prevented the development of myelofibrosis in both MPLW515L and Jak2V617F models of MPNs. In contrast, despite the absence of myelofibrosis, loss of TGF-β signaling in mesenchymal stromal cells did not rescue the defective hematopoietic niche induced by MPLW515L, as evidenced by decreased bone marrow cellularity, hematopoietic stem/progenitor cell number, and Cxcl12 and Kitlg expression, and the presence of splenic extramedullary hematopoiesis. Induction of myelofibrosis by MPLW515L was intact in Osx-Cre Smad4fl/fl recipients, demonstrating that SMAD4-independent TGF-β signaling mediates the myelofibrosis phenotype. Indeed, treatment with a c-Jun N-terminal kinase (JNK) inhibitor prevented the development of myelofibrosis induced by MPLW515L. Together, these data show that JNK-dependent TGF-β signaling in mesenchymal stromal cells is responsible for the development of myelofibrosis but not hematopoietic niche disruption in MPNs, suggesting that the signals that regulate niche gene expression in bone marrow mesenchymal stromal cells are distinct from those that induce a fibrogenic program.
Juo-Chin Yao, Karolyn A. Oetjen, Tianjiao Wang, Haoliang Xu, Grazia Abou-Ezzi, Joseph R. Krambs, Salil Uttarwar, Eric J. Duncavage, Daniel C. Link
Background Responses to conventional donor lymphocyte infusion for postallogeneic hematopoietic cell transplantation (HCT) relapse are typically poor. Natural killer (NK) cell–based therapy is a promising modality to treat post-HCT relapse.Methods We initiated this ongoing phase I trial of adoptively transferred cytokine-induced memory-like (CIML) NK cells in patients with myeloid malignancies who relapsed after haploidentical HCT. All patients received a donor-derived NK cell dose of 5 to 10 million cells/kg after lymphodepleting chemotherapy, followed by systemic IL-2 for 7 doses. High-resolution profiling with mass cytometry and single-cell RNA sequencing characterized the expanding and persistent NK cell subpopulations in a longitudinal manner after infusion.Results In the first 6 enrolled patients on the trial, infusion of CIML NK cells led to a rapid 10- to 50-fold in vivo expansion that was sustained over months. The infusion was well tolerated, with fever and pancytopenia as the most common adverse events. Expansion of NK cells was distinct from IL-2 effects on endogenous post-HCT NK cells, and not dependent on CMV viremia. Immunophenotypic and transcriptional profiling revealed a dynamic evolution of the activated CIML NK cell phenotype, superimposed on the natural variation in donor NK cell repertoires.Conclusion Given their rapid expansion and long-term persistence in an immune-compatible environment, CIML NK cells serve as a promising platform for the treatment of posttransplant relapse of myeloid disease. Further characterization of their unique in vivo biology and interaction with both T cells and tumor targets will lead to improvements in cell-based immunotherapies.Trial Registration ClinicalTrials.gov NCT04024761.Funding Dunkin’ Donuts, NIH/National Cancer Institute, and the Leukemia and Lymphoma Society.
Roman M. Shapiro, Grace C. Birch, Guangan Hu, Juliana Vergara Cadavid, Sarah Nikiforow, Joanna Baginska, Alaa K. Ali, Mubin Tarannum, Michal Sheffer, Yasmin Z. Abdulhamid, Benedetta Rambaldi, Yohei Arihara, Carol Reynolds, Max S. Halpern, Scott J. Rodig, Nicole Cullen, Jacquelyn O. Wolff, Kathleen L. Pfaff, Andrew A. Lane, R. Coleman Lindsley, Corey S. Cutler, Joseph H. Antin, Vincent T. Ho, John Koreth, Mahasweta Gooptu, Haesook T. Kim, Karl-Johan Malmberg, Catherine J. Wu, Jianzhu Chen, Robert J. Soiffer, Jerome Ritz, Rizwan Romee
Highly effective modulator therapies dramatically improve the prognosis for those with cystic fibrosis (CF). The triple combination of elexacaftor, tezacaftor, and ivacaftor (ETI) benefits many, but not all, of those with the most common F508del mutation in the CF transmembrane conductance regulator (CFTR). Here, we showed that poor sweat chloride concentration responses and lung function improvements upon initiation of ETI were associated with elevated levels of active TGF-β1 in the upper airway. Furthermore, TGF-β1 impaired the function of ETI-corrected F508del-CFTR, thereby increasing airway surface liquid (ASL) absorption rates and inducing mucus hyperconcentration in primary CF bronchial epithelial cells in vitro. TGF-β1 not only decreased CFTR mRNA, but was also associated with increases in the mRNA expression of TNFA and COX2 and TNF-α protein. Losartan improved TGF-β1–mediated inhibition of ETI-corrected F508del-CFTR function and reduced TNFA and COX2 mRNA and TNF-α protein expression. This likely occurred by improving correction of mutant CFTR rather than increasing its mRNA (without an effect on potentiation), thereby reversing the negative effects of TGF-β1 and improving ASL hydration in the CF airway epithelium in vitro. Importantly, these effects were independent of type 1 angiotensin II receptor inhibition.
Michael D. Kim, Charles D. Bengtson, Makoto Yoshida, Asef J. Niloy, John S. Dennis, Nathalie Baumlin, Matthias Salathe
BACKGROUND Multiple islet autoantibodies (AAbs) predict the development of type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in only approximately 15% of individuals who are positive for single AAbs (generally against glutamic acid decarboxylase [GADA]); hence, the single GADA+ state may represent an early stage of T1D.METHODS Here, we functionally, histologically, and molecularly phenotyped human islets from nondiabetic GADA+ and T1D donors.RESULTS Similar to the few remaining β cells in the T1D islets, GADA+ donor islets demonstrated a preserved insulin secretory response. By contrast, α cell glucagon secretion was dysregulated in both GADA+ and T1D islets, with impaired glucose suppression of glucagon secretion. Single-cell RNA-Seq of GADA+ α cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of cAMP-dependent protein kinase inhibitor β (PKIB), providing a molecular basis for the loss of glucose suppression and the increased effect of 3-isobutyl-1-methylxanthine (IBMX) observed in GADA+ donor islets.CONCLUSION We found that α cell dysfunction was present during the early stages of islet autoimmunity at a time when β cell mass was still normal, raising important questions about the role of early α cell dysfunction in the progression of T1D.FUNDING This work was supported by grants from the NIH (3UC4DK112217-01S1, U01DK123594-02, UC4DK112217, UC4DK112232, U01DK123716, and P30 DK019525) and the Vanderbilt Diabetes Research and Training Center (DK20593).
Nicolai M. Doliba, Andrea V. Rozo, Jeffrey Roman, Wei Qin, Daniel Traum, Long Gao, Jinping Liu, Elisabetta Manduchi, Chengyang Liu, Maria L. Golson, Golnaz Vahedi, Ali Naji, Franz M. Matschinsky, Mark A. Atkinson, Alvin C. Powers, Marcela Brissova, Klaus H. Kaestner, Doris A. Stoffers, for the HPAP Consortium
Type 2 alveolar epithelial cells (AEC2s) function as progenitor cells in the lung. We have shown previously that failure of AEC2 regeneration results in progressive lung fibrosis in mice and is a cardinal feature of idiopathic pulmonary fibrosis (IPF). In this study, we identified deficiency of a specific zinc transporter, SLC39A8 (ZIP8), in AEC2s from both IPF lungs and lungs of old mice. Loss of ZIP8 expression was associated with impaired renewal capacity of AEC2s and enhanced lung fibrosis. ZIP8 regulation of AEC2 progenitor function was dependent on SIRT1. Replenishment with exogenous zinc and SIRT1 activation promoted self-renewal and differentiation of AEC2s from lung tissues of IPF patients and old mice. Deletion of Zip8 in AEC2s in mice resulted in impaired AEC2 renewal, increased susceptibility to bleomycin injury, and development of spontaneous lung fibrosis. Therapeutic strategies to restore zinc metabolism and appropriate SIRT1 signaling could improve AEC2 progenitor function and mitigate ongoing fibrogenesis.
Jiurong Liang, Guanling Huang, Xue Liu, Forough Taghavifar, Ningshan Liu, Yizhou Wang, Nan Deng, Changfu Yao, Ting Xie, Vrishika Kulur, Kristy Dai, Ankita Burman, Simon C. Rowan, S. Samuel Weigt, John Belperio, Barry Stripp, William C. Parks, Dianhua Jiang, Paul W. Noble
BACKGROUND Cytomegalovirus (CMV) is the most common intrauterine infection, leading to infant brain damage. Prognostic assessment of CMV-infected fetuses has remained an ongoing challenge in prenatal care, in the absence of established prenatal biomarkers of congenital CMV (cCMV) infection severity. We aimed to identify prognostic biomarkers of cCMV-related fetal brain injury.METHODS We performed global proteome analysis of mid-gestation amniotic fluid samples, comparing amniotic fluid of fetuses with severe cCMV with that of asymptomatic CMV-infected fetuses. The levels of selected differentially excreted proteins were further determined by specific immunoassays.RESULTS Using unbiased proteome analysis in a discovery cohort, we identified amniotic fluid proteins related to inflammation and neurological disease pathways, which demonstrated distinct abundance in fetuses with severe cCMV. Amniotic fluid levels of 2 of these proteins — the immunomodulatory proteins retinoic acid receptor responder 2 (chemerin) and galectin-3–binding protein (Gal-3BP) — were highly predictive of the severity of cCMV in an independent validation cohort, differentiating between fetuses with severe (n = 17) and asymptomatic (n = 26) cCMV, with 100%–93.8% positive predictive value, and 92.9%–92.6% negative predictive value (for chemerin and Gal-3BP, respectively). CONCLUSION Analysis of chemerin and Gal-3BP levels in mid-gestation amniotic fluids could be used in the clinical setting to profoundly improve the prognostic assessment of CMV-infected fetuses.FUNDING Israel Science Foundation (530/18 and IPMP 3432/19); Research Fund – Hadassah Medical Organization.
Olesya Vorontsov, Lorinne Levitt, Daniele Lilleri, Gilad W. Vainer, Orit Kaplan, Licita Schreiber, Alessia Arossa, Arseno Spinillo, Milena Furione, Or Alfi, Esther Oiknine-Djian, Meital Kupervaser, Yuval Nevo, Sharona Elgavish, Moran Yassour, Maurizio Zavattoni, Tali Bdolah-Abram, Fausto Baldanti, Miriam Geal-Dor, Zichria Zakay-Rones, Nili Yanay, Simcha Yagel, Amos Panet, Dana G. Wolf
Virus-specific CD8+ T cells play a central role in HIV-1 natural controllers to maintain suppressed viremia in the absence of antiretroviral therapy. These cells display a memory program that confers them stemness properties, high survival, polyfunctionality, proliferative capacity, metabolic plasticity, and antiviral potential. The development and maintenance of such qualities by memory CD8+ T cells appear crucial to achieving natural HIV-1 control. Here, we show that targeting the signaling pathways Wnt/transcription factor T cell factor 1 (Wnt/TCF-1) and mTORC through GSK3 inhibition to reprogram HIV-specific CD8+ T cells from noncontrollers promoted functional capacities associated with natural control of infection. Features of such reprogrammed cells included enrichment in TCF-1+ less-differentiated subsets, a superior response to antigen, enhanced survival, polyfunctionality, metabolic plasticity, less mTORC1 dependency, an improved response to γ-chain cytokines, and a stronger HIV-suppressive capacity. Thus, such CD8+ T cell reprogramming, combined with other available immunomodulators, might represent a promising strategy for adoptive cell therapy in the search for an HIV-1 cure.
Federico Perdomo-Celis, Caroline Passaes, Valérie Monceaux, Stevenn Volant, Faroudy Boufassa, Pierre de Truchis, Morgane Marcou, Katia Bourdic, Laurence Weiss, Corinne Jung, Christine Bourgeois, Cécile Goujard, Laurence Meyer, Michaela Müller-Trutwin, Olivier Lambotte, Asier Sáez-Cirión
Background Deep learning has been widely used for glaucoma diagnosis. However, there is no clinically validated algorithm for glaucoma incidence and progression prediction. This study aims to develop a clinically feasible deep-learning system for predicting and stratifying the risk of glaucoma onset and progression based on color fundus photographs (CFPs), with clinical validation of performance in external population cohorts.Methods We established data sets of CFPs and visual fields collected from longitudinal cohorts. The mean follow-up duration was 3 to 5 years across the data sets. Artificial intelligence (AI) models were developed to predict future glaucoma incidence and progression based on the CFPs of 17,497 eyes in 9346 patients. The area under the receiver operating characteristic (AUROC) curve, sensitivity, and specificity of the AI models were calculated with reference to the labels provided by experienced ophthalmologists. Incidence and progression of glaucoma were determined based on longitudinal CFP images or visual fields, respectively.Results The AI model to predict glaucoma incidence achieved an AUROC of 0.90 (0.81–0.99) in the validation set and demonstrated good generalizability, with AUROCs of 0.89 (0.83–0.95) and 0.88 (0.79–0.97) in external test sets 1 and 2, respectively. The AI model to predict glaucoma progression achieved an AUROC of 0.91 (0.88–0.94) in the validation set, and also demonstrated outstanding predictive performance with AUROCs of 0.87 (0.81–0.92) and 0.88 (0.83–0.94) in external test sets 1 and 2, respectively.Conclusion Our study demonstrates the feasibility of deep-learning algorithms in the early detection and prediction of glaucoma progression.FUNDING National Natural Science Foundation of China (NSFC); the High-level Hospital Construction Project, Zhongshan Ophthalmic Center, Sun Yat-sen University; the Science and Technology Program of Guangzhou, China (2021), the Science and Technology Development Fund (FDCT) of Macau, and FDCT-NSFC.
Fei Li, Yuandong Su, Fengbin Lin, Zhihuan Li, Yunhe Song, Sheng Nie, Jie Xu, Linjiang Chen, Shiyan Chen, Hao Li, Kanmin Xue, Huixin Che, Zhengui Chen, Bin Yang, Huiying Zhang, Ming Ge, Weihui Zhong, Chunman Yang, Lina Chen, Fanyin Wang, Yunqin Jia, Wanlin Li, Yuqing Wu, Yingjie Li, Yuanxu Gao, Yong Zhou, Kang Zhang, Xiulan Zhang
Skeletal muscle fibers contain hundreds of nuclei, which increase the overall transcriptional activity of the tissue and perform specialized functions. Multinucleation occurs through myoblast fusion, mediated by the muscle fusogens Myomaker (MYMK) and Myomixer (MYMX). We describe a human pedigree harboring a recessive truncating variant of the MYMX gene that eliminates an evolutionarily conserved extracellular hydrophobic domain of MYMX, thereby impairing fusogenic activity. Homozygosity of this human variant resulted in a spectrum of abnormalities that mimicked the clinical presentation of Carey-Fineman-Ziter syndrome (CFZS), caused by hypomorphic MYMK variants. Myoblasts generated from patient-derived induced pluripotent stem cells displayed defective fusion, and mice bearing the human MYMX variant died perinatally due to muscle abnormalities. In vitro assays showed that the human MYMX variant conferred minimal cell-cell fusogenicity, which could be restored with CRISPR/Cas9–mediated base editing, thus providing therapeutic potential for this disorder. Our findings identify MYMX as a recessive, monogenic human disease gene involved in CFZS, and provide new insights into the contribution of myoblast fusion to neuromuscular diseases.
Andres Ramirez-Martinez, Yichi Zhang, Marie-Jose van den Boogaard, John R. McAnally, Cristina Rodriguez-Caycedo, Andreas C. Chai, Francesco Chemello, Maarten P.G. Massink, Inge Cuppen, Martin G. Elferink, Robert J.J. van Es, Nard G. Janssen, Linda P.A.M. Walraven-van Oijen, Ning Liu, Rhonda Bassel-Duby, Richard H. van Jaarsveld, Eric N. Olson
The protective human antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) focuses on the spike (S) protein, which decorates the virion surface and mediates cell binding and entry. Most SARS-CoV-2 protective antibodies target the receptor-binding domain or a single dominant epitope (“supersite”) on the N-terminal domain (NTD). Using the single B cell technology called linking B cell receptor to antigen specificity through sequencing (LIBRA-Seq), we isolated a large panel of NTD-reactive and SARS-CoV-2–neutralizing antibodies from an individual who had recovered from COVID-19. We found that neutralizing antibodies against the NTD supersite were commonly encoded by the IGHV1-24 gene, forming a genetic cluster representing a public B cell clonotype. However, we also discovered a rare human antibody, COV2-3434, that recognizes a site of vulnerability on the SARS-CoV-2 S protein in the trimer interface (TI) and possesses a distinct class of functional activity. COV2-3434 disrupted the integrity of S protein trimers, inhibited the cell-to-cell spread of the virus in culture, and conferred protection in human angiotensin-converting enzyme 2–transgenic (ACE2-transgenic) mice against the SARS-CoV-2 challenge. This study provides insight into antibody targeting of the S protein TI region, suggesting this region may be a site of virus vulnerability.
Naveenchandra Suryadevara, Andrea R. Shiakolas, Laura A. VanBlargan, Elad Binshtein, Rita E. Chen, James Brett Case, Kevin J. Kramer, Erica C. Armstrong, Luke Myers, Andrew Trivette, Christopher Gainza, Rachel S. Nargi, Christopher N. Selverian, Edgar Davidson, Benjamin J. Doranz, Summer M. Diaz, Laura S. Handal, Robert H. Carnahan, Michael S. Diamond, Ivelin S. Georgiev, James E. Crowe Jr.
Simon P. Jochems, Karin de Ruiter, Carla Solórzano, Astrid Voskamp, Elena Mitsi, Elissavet Nikolaou, Beatriz F. Carniel, Sherin Pojar, Esther L. German, Jesús Reiné, Alessandra Soares-Schanoski, Helen Hill, Rachel Robinson, Angela D. Hyder-Wright, Caroline M. Weight, Pascal F. Durrenberger, Robert S. Heyderman, Stephen B. Gordon, Hermelijn H. Smits, Britta C. Urban, Jamie Rylance, Andrea M. Collins, Mark D. Wilkie, Lepa Lazarova, Samuel C. Leong, Maria Yazdanbakhsh, Daniela M. Ferreira
Mathilda Bedin, Olivia Boyer, Aude Servais, Yong Li, Laure Villoing-Gaudé, Marie-Josephe Tête, Alexandra Cambier, Julien Hogan, Veronique Baudouin, Saoussen Krid, Albert Bensman, Florie Lammens, Ferielle Louillet, Bruno Ranchin, Cecile Vigneau, Iseline Bouteau, Corinne Isnard-Bagnis, Christoph J. Mache, Tobias Schäfer, Lars Pape, Markus Gödel, Tobias B. Huber, Marcus Benz, Günter Klaus, Matthias Hansen, Kay Latta, Olivier Gribouval, Vincent Morinière, Carole Tournant, Maik Grohmann, Elisa Kuhn, Timo Wagner, Christine Bole-Feysot, Fabienne Jabot-Hanin, Patrick Nitschké, Tarunveer S. Ahluwalia, Anna Köttgen, Christian Brix Folsted Andersen, Carsten Bergmann, Corinne Antignac, Matias Simons