In this issue of the JCI, Vuckovic et al. reveal that myeloma-experienced T cells facilitate myeloma control following bone marrow transfer. Graft-derived cytokines also influenced posttransplant myeloma progression and control. These insights into the cellular and molecular immune mediators of autologous SCT’s effects provide avenues to improve therapeutic outcomes in multiple myeloma. The cover image illustrates the interaction of T cells with myeloma in the bone marrow environment. Image credit: Madeleine Kersting Flynn, QIMR Berghofer.
Neeha Zaidi, Elizabeth M. Jaffee
Donor age and recipient age are factors that influence transplantation outcomes. Aside from age-associated differences in intrinsic graft function and alloimmune responses, the ability of young and old cells to exert either rejuvenating or aging effects extrinsically may also apply to the transplantation of hematopoietic stem cells or solid organ transplants. While the potential for rejuvenation mediated by the transfer of youthful cells is currently being explored for therapeutic applications, aspects that relate to accelerating aging are no less clinically significant. Those effects may be particularly relevant in transplantation with an age discrepancy between donor and recipient. Here, we review recent advances in understanding the mechanisms by which young and old cells modify their environments to promote rejuvenation- or aging-associated phenotypes. We discuss their relevance to clinical transplantation and highlight potential opportunities for therapeutic intervention.
Ashley Lau, Brian K. Kennedy, James L. Kirkland, Stefan G. Tullius
Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine–based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.
Julie Rayes, Steve P. Watson, Bernhard Nieswandt
Fibrosis, the progressive accumulation of connective tissue that occurs in response to injury, causes irreparable organ damage and may result in organ failure. The few available antifibrotic treatments modify the rate of fibrosis progression, but there are no available treatments to reverse established fibrosis. Thus, more effective therapies are urgently needed. Molecular imaging is a promising biomedical methodology that enables noninvasive visualization of cellular and subcellular processes. It provides a unique means to monitor and quantify dysregulated molecular fibrotic pathways in a noninvasive manner. Molecular imaging could be used for early detection, disease staging, and prognostication, as well as for assessing disease activity and treatment response. As fibrotic diseases are often molecularly heterogeneous, molecular imaging of a specific pathway could be used for patient stratification and cohort enrichment with the goal of improving clinical trial design and feasibility and increasing the ability to detect a definitive outcome for new therapies. Here we review currently available molecular imaging probes for detecting fibrosis and fibrogenesis, the active formation of new fibrous tissue, and their application to models of fibrosis across organ systems and fibrotic processes. We provide our opinion as to the potential roles of molecular imaging in human fibrotic diseases.
Sydney B. Montesi, Pauline Désogère, Bryan C. Fuchs, Peter Caravan
Mitochondrial respiratory deficiencies have been observed in numerous neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases. For decades, these reductions in oxidative phosphorylation (OxPhos) have been presumed to trigger an overall bioenergetic crisis in the neuron, resulting in cell death. While the connection between respiratory defects and neuronal death has never been proven, this hypothesis has been supported by the detection of nonspecific mitochondrial DNA mutations in these disorders. These findings led to the notion that mitochondrial respiratory defects could be initiators of these common neurodegenerative disorders, instead of being consequences of a prior insult, a theory we believe to be misconstrued. Herein, we review the roots of this mitochondrial hypothesis and offer a new perspective wherein mitochondria are analyzed not only from the OxPhos point of view, but also as a complex organelle residing at the epicenter of many metabolic pathways.
Estela Area-Gomez, Cristina Guardia-Laguarta, Eric A. Schon, Serge Przedborski
Graft-versus-tumor (GVT) effects have been thought to mostly result from allogeneic transplants; however, there is a growing body of research that supports a possible autologous GVT effect. In early clinical studies, a positive correlation between lymphocyte count recovery after autologous transplantation and overall survival has been observed. However, mechanistic studies to identify the mediators of autologous GVT responses have been lacking. In this issue of the JCI, Vuckovic et al. observed a T cell–dependent autologous GVT effect in the Vk*MYC myeloma model. Moreover, the authors showed that CD8+ T cells mediate myeloma control through IFN-γ secretion, which could be further augmented with a CD137 agonist, suggesting a therapeutic approach for enhancing autologous GVT.
Shuai Dong, Irene M. Ghobrial
Insulin-secreting β cell loss or dysfunction is a feature of both type 1 and type 2 diabetes. Strategies to restore β cell mass are limited, as sources of healthy islets are scarce and mature β cells are not readily expanded in vitro. In this issue of the JCI, Ou et al. report that mature β cell expansion can be induced in situ through epigenetic editing of regulatory elements in pancreatic tissue. Specifically, hypomethylation at imprinting control region 2 (ICR2) in human islets promoted β cell expansion. Importantly, transplantation of these epigenetically edited islets into diabetic mice reduced blood glucose levels. Together, these results support further evaluation of this strategy for restoring β cell mass in patients with diabetes.
Tao Wang, Duanqing Pei
Interactions between IgG Fc and its receptors (FcγRs) have been shown to augment broadly neutralizing Ab–mediated (BnAb-mediated) protection from simian-human immunodeficiency virus (SHIV) challenge. In the current issue of the JCI, Parsons and collaborators compared the BnAb PGT121 with a version engineered to have impaired FcγR binding for their ability to protect macaques from an intravenous challenge with SHIV-infected cells as well as to treat already infected animals. Unexpectedly, and in contrast to previous studies, both versions of the Ab were equally able to prevent infection and decrease viral loads in infected animals. Thus, FcγR engagement does not always improve the in vivo antiviral activity of BnAbs.
Donald Forthal, Andrés Finzi
Treatment of hypothyroidism involves the endogenous conversion of thyroxine (T4) to 3,5,3′-triiodothyronine (T3) and may not be optimal in some cases when based on T4 alone. In the current issue of the JCI, Jo et al. present results that explain the reduced enzymatic activity of a common genetic variant of the enzyme responsible for this conversion, type 2 deiodinase (DIO2). The authors further explore the functional consequences of this variant on brain T3 activity, endoplasmic reticulum stress in glial cells, and cognitive function. These findings have important implications for the clinical treatment of hypothyroidism and for susceptibility to other neurological and metabolic diseases.
Arturo Hernandez
Lipins play important roles in adipogenesis, insulin sensitivity, and gene regulation, and mutations in these genes cause lipodystrophy, myoglobinuria, and inflammatory disorders. While all lipins (lipin 1, 2, and 3) act as phosphatidic acid phosphatase (PAP) enzymes, which are required for triacylglycerol (TAG) synthesis from glycerol 3-phosphate, lipin 1 has been the focus of most of the lipin-related research. In the current issue of the JCI, Zhang et al. show that while lipin 2 and 3 are expendable for the incorporation of dietary fatty acids into triglycerides, lipin 2/3 PAP activity has a critical role in phospholipid homeostasis and chylomicron assembly in enterocytes.
Ira J. Goldberg, M. Mahmood Hussain
The development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality. The pathogenesis of AKI in sepsis is incompletely understood. In this issue of the JCI, Hato et al. investigate the renal translatome during bacterial sepsis and identify the global shutdown of renal protein translation mediated by the eukaryotic translation initiation factor 2-α kinase 2/eukaryotic translation initiation factor 2α (EIF2AK2/eIF2α) axis as a major pathway in mediating septic AKI. The results of this study suggest that inhibiting this pathway could be a potential therapeutic strategy for preventing septic AKI.
Sarah C. Huen
Individuals with the rs671 SNP in the gene encoding aldehyde dehydrogenase 2 (ALDH2) are at increased risk of cardiovascular disease (CVD); however, it has been unclear if this mutation contributes to CVD development. In this issue of the JCI, Zhong et al. perform an elegant set of experiments that reveal a pathway wherein the ALDH2 rs671 mutant is phosphorylated by AMPK and translocates to the nucleus where it represses the transcription of a lysosomal H+ pump subunit that is critical for lipid degradation and foam cell formation, as occurs in atherosclerosis. The discovery of this pathway may explain how subjects harboring ALDH2 rs671 are at a greater risk for numerous other disease states and thereby provide new targets for therapeutic intervention.
Andrew A. Gibb, John W. Elrod
Hereditary angioedema (HAE) is a rare genetic disorder primarily caused by mutations in the SERPING1 gene encoding the C1 inhibitor (C1INH) that leads to plasma deficiency, resulting in recurrent attacks of severe swelling. In the current issue of the JCI, Haslund et al. show that in a subset of patients with type I HAE, mutated C1INH encoded by HAE-causing SERPING1 acts upon wildtype (WT) C1INH in a dominant-negative manner and forms intracellular C1INH aggregates. These aggregates lead to a reduction in the levels of secreted functional C1INH, thereby manifesting in the condition that allows the disease state. Interestingly, administration of WT SERPING1 gene is able to restore the levels of secreted C1INH, thereby opening up a novel mechanism justifying gene therapy for HAE.
Alvin H. Schmaier
Adoptive cell transfer (ACT) of engineered T cell receptors (TCRs) for cancer immunotherapy has evolved from simple gene transfer of isolated TCRs to various affinity enhancement techniques that overcome limitations imposed by central and peripheral tolerance on TCR affinity. In the current issue of the JCI, Poncette et al. used mice with human TCRαβ and HLA gene loci to discover CD4+ TCRs of optimal affinity for cancer testis antigen (CTA) NY-ESO-1. They combined this TCR with a previously discovered NY-ESO-1–specific CD8+ TCR in an ACT fibrosarcoma tumor model to demonstrate the importance of T cell help in mediating antitumor responses.
Ariel Isser, Jonathan P. Schneck
Hepcidin is the master regulator of iron metabolism. It plays a key role in the regulation of iron transport across the duodenal epithelium, which in turn is dependent on the oxygen-regulated transcription factor hypoxia-inducible factor 2α (HIF-2α). In this issue of the JCI, Schwartz and colleagues show that duodenal HIF-2α is itself regulated by hepcidin, thereby indicating that this transcription factor is not only regulated by oxygen, but also by iron. This work indicates that the crosstalk between liver hepcidin and intestinal HIF-2α plays an important role during iron overload, systemic iron deficiency, and anemia.
Frank S. Lee
Antibodies that target immune checkpoint molecules, such as CTLA4, provide robust antitumor effects in a subset of patients. Unfortunately, not all patients respond to immune checkpoint inhibition, and some develop life-threatening immune-related adverse events (irAEs). The mechanisms that underlie irAEs from immune checkpoint inhibition are not fully understood, and treatment strategies are currently limited to targeting inflammatory mediators. In this issue of the JCI, Pai et al. report on their development of a modified CTLA4 antibody that shields the inner CTLA4-binding domain until the antibody is within the protease-rich tumor microenvironment. In a lymphopenic murine model reconstituted with naive CD4+ T cells, adapted anti-CTLA4 reduced the occurrence of irAEs and enhanced antitumor effects. This thought-provoking study lays the groundwork for further exploration of this adapted antibody in immunocompetent hosts and introduction of this adaptation to other immune checkpoint molecules. It also suggests that this approach may reduce the incidence of irAEs.
Jarushka Naidoo, Arbor Dykema, Franco D’Alessio
Mutations in CDCA7 and HELLS that respectively encode a CXXC-type zinc finger protein and an SNF2 family chromatin remodeler cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome types 3 and 4. Here, we demonstrate that the classical nonhomologous end joining (C-NHEJ) proteins Ku80 and Ku70, as well as HELLS, coimmunoprecipitated with CDCA7. The coimmunoprecipitation of the repair proteins was sensitive to nuclease treatment and an ICF3 mutation in CDCA7 that impairs its chromatin binding. The functional importance of these interactions was strongly suggested by the compromised C-NHEJ activity and significant delay in Ku80 accumulation at DNA damage sites in CDCA7- and HELLS-deficient HEK293 cells. Consistent with the repair defect, these cells displayed increased apoptosis, abnormal chromosome segregation, aneuploidy, centrosome amplification, and significant accumulation of γH2AX signals. Although less prominent, cells with mutations in the other ICF genes DNMT3B and ZBTB24 (responsible for ICF types 1 and 2, respectively) showed similar defects. Importantly, lymphoblastoid cells from ICF patients shared the same changes detected in the mutant HEK293 cells to varying degrees. Although the C-NHEJ defect alone did not cause CG hypomethylation, CDCA7 and HELLS are involved in maintaining CG methylation at centromeric and pericentromeric repeats. The defect in C-NHEJ may account for some common features of ICF cells, including centromeric instability, abnormal chromosome segregation, and apoptosis.
Motoko Unoki, Hironori Funabiki, Guillaume Velasco, Claire Francastel, Hiroyuki Sasaki
Vaccines are among the most effective public health tools for combating certain infectious diseases such as influenza. The role of the humoral immune system in vaccine-induced protection is widely appreciated; however, our understanding of how antibody specificities relate to B cell function remains limited due to the complexity of polyclonal antibody responses. To address this, we developed the Spec-seq framework, which allows for simultaneous monoclonal antibody (mAb) characterization and transcriptional profiling from the same single cell. Here, we present the first application of the Spec-seq framework, which we applied to human plasmablasts after influenza vaccination in order to characterize transcriptional differences governed by B cell receptor (BCR) isotype and vaccine reactivity. Our analysis did not find evidence of long-term transcriptional specialization between plasmablasts of different isotypes. However, we did find enhanced transcriptional similarity between clonally related B cells, as well as distinct transcriptional signatures ascribed by BCR vaccine recognition. These data suggest IgG and IgA vaccine–positive plasmablasts are largely similar, whereas IgA vaccine–negative cells appear to be transcriptionally distinct from conventional, terminally differentiated, antigen-induced peripheral blood plasmablasts.
Karlynn E. Neu, Jenna J. Guthmiller, Min Huang, Jennifer La, Marcos C. Vieira, Kangchon Kim, Nai-Ying Zheng, Mario Cortese, Micah E. Tepora, Natalie J. Hamel, Karla Thatcher Rojas, Carole Henry, Dustin Shaw, Charles L. Dulberger, Bali Pulendran, Sarah Cobey, Aly A. Khan, Patrick C. Wilson
Transplantation with autologous hematopoietic progenitors remains an important consolidation treatment for patients with multiple myeloma (MM) and is thought to prolong the disease plateau phase by providing intensive cytoreduction. However, transplantation induces inflammation in the context of profound lymphodepletion that may cause hitherto unexpected immunological effects. We developed preclinical models of bone marrow transplantation (BMT) for MM using Vk*MYC myeloma–bearing recipient mice and donor mice that were myeloma naive or myeloma experienced to simulate autologous transplantation. Surprisingly, we demonstrated broad induction of T cell–dependent myeloma control, most efficiently from memory T cells within myeloma-experienced grafts, but also through priming of naive T cells after BMT. CD8+ T cells from mice with controlled myeloma had a distinct T cell receptor (TCR) repertoire and higher clonotype overlap relative to myeloma-free BMT recipients. Furthermore, T cell–dependent myeloma control could be adoptively transferred to secondary recipients and was myeloma cell clone specific. Interestingly, donor-derived IL-17A acted directly on myeloma cells expressing the IL-17 receptor to induce a transcriptional landscape that promoted tumor growth and immune escape. Conversely, donor IFN-γ secretion and signaling were critical to protective immunity and were profoundly augmented by CD137 agonists. These data provide new insights into the mechanisms of action of transplantation in myeloma and provide rational approaches to improving clinical outcomes.
Slavica Vuckovic, Simone A. Minnie, David Smith, Kate H. Gartlan, Thomas S. Watkins, Kate A. Markey, Pamela Mukhopadhyay, Camille Guillerey, Rachel D. Kuns, Kelly R. Locke, Antonia L. Pritchard, Peter A. Johansson, Antiopi Varelias, Ping Zhang, Nicholas D. Huntington, Nicola Waddell, Marta Chesi, John J. Miles, Mark J. Smyth, Geoffrey R. Hill
Targeted therapy with small molecules directed at essential survival pathways in leukemia represents a major advance, including the phosphatidylinositol-3′-kinase (PI3K) p110δ inhibitor idelalisib. Here, we found that genetic inactivation of p110δ (p110δD910A/D910A) in the Eμ-TCL1 murine chronic lymphocytic leukemia (CLL) model impaired B cell receptor signaling and B cell migration, and significantly delayed leukemia pathogenesis. Regardless of TCL1 expression, p110δ inactivation led to rectal prolapse in mice resembling autoimmune colitis in patients receiving idelalisib. Moreover, we showed that p110δ inactivation in the microenvironment protected against CLL and acute myeloid leukemia. After receiving higher numbers of TCL1 leukemia cells, half of p110δD910A/D910A mice spontaneously recovered from high disease burden and resisted leukemia rechallenge. Despite disease resistance, p110δD910A/D910A mice exhibited compromised CD4+ and CD8+ T cell response, and depletion of CD4+ or CD8+ T cells restored leukemia. Interestingly, p110δD910A/D910A mice showed significantly impaired Treg expansion that associated with disease clearance. Reconstitution of p110δD910A/D910A mice with p110δWT/WT Tregs reversed leukemia resistance. Our findings suggest that p110δ inhibitors may have direct antileukemic and indirect immune-activating effects, further supporting that p110δ blockade may have a broader immune-modulatory role in types of leukemia that are not sensitive to p110δ inhibition.
Shuai Dong, Bonnie K. Harrington, Eileen Y. Hu, Joseph T. Greene, Amy M. Lehman, Minh Tran, Ronni L. Wasmuth, Meixiao Long, Natarajan Muthusamy, Jennifer R. Brown, Amy J. Johnson, John C. Byrd
Glioblastoma is highly enriched with macrophages, and osteopontin (OPN) expression levels correlate with glioma grade and the degree of macrophage infiltration; thus, we studied whether OPN plays a crucial role in immune modulation. Quantitative PCR, immunoblotting, and ELISA were used to determine OPN expression. Knockdown of OPN was achieved using complementary siRNA, shRNA, and CRISPR/Cas9 techniques, followed by a series of in vitro functional migration and immunological assays. OPN gene–deficient mice were used to examine the roles of non-tumor-derived OPN on survival of mice harboring intracranial gliomas. Patients with mesenchymal glioblastoma multiforme (GBM) show high OPN expression, a negative survival prognosticator. OPN is a potent chemokine for macrophages, and its blockade significantly impaired the ability of glioma cells to recruit macrophages. Integrin αvβ5 (ITGαvβ5) is highly expressed on glioblastoma-infiltrating macrophages and constitutes a major OPN receptor. OPN maintains the M2 macrophage gene signature and phenotype. Both tumor-derived and host-derived OPN were critical for glioma development. OPN deficiency in either innate immune or glioma cells resulted in a marked reduction in M2 macrophages and elevated T cell effector activity infiltrating the glioma. Furthermore, OPN deficiency in the glioma cells sensitized them to direct CD8+ T cell cytotoxicity. Systemic administration in mice of 4-1BB–OPN bispecific aptamers was efficacious, increasing median survival time by 68% (P < 0.05). OPN is thus an important chemokine for recruiting macrophages to glioblastoma, mediates crosstalk between tumor cells and the innate immune system, and has the potential to be exploited as a therapeutic target.
Jun Wei, Anantha Marisetty, Brett Schrand, Konrad Gabrusiewicz, Yuuri Hashimoto, Martina Ott, Zacharia Grami, Ling-Yuan Kong, Xiaoyang Ling, Hillary Caruso, Shouhao Zhou, Y. Alan Wang, Gregory N. Fuller, Jason Huse, Eli Gilboa, Nannan Kang, Xingxu Huang, Roel Verhaak, Shulin Li, Amy B. Heimberger
Pyrin is an inflammasome sensor that promotes caspase-1–mediated pyroptotic cell death and maturation of proinflammatory cytokines IL-1β and IL-18. Familial Mediterranean fever (FMF), an autoinflammatory disorder, is associated with mutations in the gene encoding pyrin (MEFV). FMF-knockin (FMF-KI) mice that express chimeric pyrin protein with FMF mutation (MefvV726A/V726A) exhibit an autoinflammatory disorder mediated by autoactivation of the pyrin inflammasome. Increase in the levels of TNF are observed in FMF-KI mice, and many features of FMF overlap with the autoinflammatory disorder associated with TNF receptor signaling. In this study, we assessed the contribution of TNF signaling to pyrin inflammasome activation and its consequent role in distinct FMF pathologies. TNF signaling promoted the expression of pyrin in response to multiple stimuli and was required for inflammasome activation in response to canonical pyrin stimuli and in myeloid cells from FMF-KI mice. TNF signaling promoted systemic wasting, anemia, and neutrophilia in the FMF-KI mice. Further, TNF-induced pathology was induced specifically through the TNFR1 receptor, while TNFR2-mediated signaling was distinctly protective in colitis and ankle joint inflammation. Overall, our data show that TNF is a critical modulator of pyrin expression, inflammasome activation, and pyrin-inflammasomopathy. Further, specific blockade of TNFR1 or activation of TNFR2 could provide substantial protection against FMF pathologies.
Deepika Sharma, Ankit Malik, Clifford Guy, Peter Vogel, Thirumala-Devi Kanneganti
Angelman syndrome (AS) is a neurodevelopmental disorder in which epilepsy is common (~90%) and often refractory to antiepileptics. AS is caused by mutation of the maternal allele encoding the ubiquitin protein ligase E3A (UBE3A), but it is unclear how this genetic insult confers vulnerability to seizure development and progression (i.e., epileptogenesis). Here, we implemented the flurothyl kindling and retest paradigm in AS model mice to assess epileptogenesis and to gain mechanistic insights owed to loss of maternal Ube3a. AS model mice kindled similarly to wild-type mice, but they displayed a markedly increased sensitivity to flurothyl-, kainic acid–, and hyperthermia-induced seizures measured a month later during retest. Pathological characterization revealed enhanced deposition of perineuronal nets in the dentate gyrus of the hippocampus of AS mice in the absence of overt neuronal loss or mossy fiber sprouting. This pro-epileptogenic phenotype resulted from Ube3a deletion in GABAergic but not glutamatergic neurons, and it was rescued by pancellular reinstatement of Ube3a at postnatal day 21 (P21), but not during adulthood. Our results suggest that epileptogenic susceptibility in AS patients is a consequence of the dysfunctional development of GABAergic circuits, which may be amenable to therapies leveraging juvenile reinstatement of UBE3A.
Bin Gu, Kelly E. Carstens, Matthew C. Judson, Katherine A. Dalton, Marie Rougié, Ellen P. Clark, Serena M. Dudek, Benjamin D. Philpot
BACKGROUND. Chronic obstructive pulmonary disease (COPD) is a heterogeneous smoking-related disease characterized by airway obstruction and inflammation. This inflammation may persist even after smoking cessation and responds variably to corticosteroids. Personalizing treatment to biologically similar “molecular phenotypes” may improve therapeutic efficacy in COPD. IL-17A is involved in neutrophilic inflammation and corticosteroid resistance, and thus may be particularly important in a COPD molecular phenotype. METHODS. We generated a gene expression signature of IL-17A response in bronchial airway epithelial brushings from smokers with and without COPD (n = 238), and validated it using data from 2 randomized trials of IL-17 blockade in psoriasis. This IL-17 signature was related to clinical and pathologic characteristics in 2 additional human studies of COPD: (a) SPIROMICS (n = 47), which included former and current smokers with COPD, and (b) GLUCOLD (n = 79), in which COPD participants were randomized to placebo or corticosteroids. RESULTS. The IL-17 signature was associated with an inflammatory profile characteristic of an IL-17 response, including increased airway neutrophils and macrophages. In SPIROMICS the signature was associated with increased airway obstruction and functional small airways disease on quantitative chest CT. In GLUCOLD the signature was associated with decreased response to corticosteroids, irrespective of airway eosinophilic or type 2 inflammation. CONCLUSION. These data suggest that a gene signature of IL-17 airway epithelial response distinguishes a biologically, radiographically, and clinically distinct COPD subgroup that may benefit from personalized therapy. TRIAL REGISTRATION. ClinicalTrials.gov NCT01969344. FUNDING. Primary support from the NIH, grants K23HL123778, K12HL11999, U19AI077439, DK072517, U01HL137880, K24HL137013 and R01HL121774 and contracts HHSN268200900013C, HHSN268200900014C, HHSN268200900015C, HHSN268200900016C, HHSN268200900017C, HHSN268200900018C, HHSN268200900019C and HHSN268200900020C.
Stephanie A. Christenson, Maarten van den Berge, Alen Faiz, Kai Inkamp, Nirav Bhakta, Luke R. Bonser, Lorna T. Zlock, Igor Z. Barjaktarevic, R. Graham Barr, Eugene R. Bleecker, Richard C. Boucher, Russell P. Bowler, Alejandro P. Comellas, Jeffrey L. Curtis, MeiLan K. Han, Nadia N. Hansel, Pieter S. Hiemstra, Robert J. Kaner, Jerry A. Krishnanm, Fernando J. Martinez, Wanda K. O’Neal, Robert Paine III, Wim Timens, J. Michael Wells, Avrum Spira, David J. Erle, Prescott G. Woodruff
A considerable body of evidence suggests that Fc-dependent functions improve the capacity of broadly neutralizing antibodies (BnAbs) to protect against and control HIV-1 infection. This phenomenon, however, has not been formally tested in robust cell-associated macaque simian-human immunodeficiency virus (SHIV) models with newer-generation BnAbs. We studied both the WT BnAb PGT121 and a LALA mutant of PGT121 (which has impaired Fc-dependent functions) for their ability to protect pigtail macaques from an i.v. high-dose cell-associated SHIVSF162P3 challenge. We found that both WT and LALA PGT121 completely protected all 12 macaques studied. Further, partial depletion of NK cells, key mediators of Fc-dependent functions, did not abrogate the protective efficacy of PGT121 in 6 macaques. Additionally, in animals with established SHIVSF162P3 infection, SHIV viremia levels were equally rapidly reduced by LALA and WT PGT121. Our studies suggest that the potent neutralizing capacity of PGT121 renders the Fc-dependent functions of the Ab at least partially redundant. These findings have implications for Ab-mediated protection from and control of HIV-1 infection.
Matthew S. Parsons, Wen Shi Lee, Anne B. Kristensen, Thakshila Amarasena, Georges Khoury, Adam K. Wheatley, Arnold Reynaldi, Bruce D. Wines, P. Mark Hogarth, Miles P. Davenport, Stephen J. Kent
BACKGROUND. Liquid biopsies have demonstrated that the constitutively active androgen receptor splice variant-7 (AR-V7) associates with reduced response and overall survival from endocrine therapies in castration-resistant prostate cancer (CRPC). However, these studies provide little information pertaining to AR-V7 expression in prostate cancer (PC) tissue. METHODS. Following generation and validation of a potentially novel AR-V7 antibody for IHC, AR-V7 protein expression was determined for 358 primary prostate samples and 293 metastatic biopsies. Associations with disease progression, full-length androgen receptor (AR-FL) expression, response to therapy, and gene expression were determined. RESULTS. We demonstrated that AR-V7 protein is rarely expressed (<1%) in primary PC but is frequently detected (75% of cases) following androgen deprivation therapy, with further significant (P = 0.020) increase in expression following abiraterone acetate or enzalutamide therapy. In CRPC, AR-V7 expression is predominantly (94% of cases) nuclear and correlates with AR-FL expression (P ≤ 0.001) and AR copy number (P = 0.026). However, dissociation of expression was observed, suggesting that mRNA splicing remains crucial for AR-V7 generation. AR-V7 expression was heterogeneous between different metastases from a patient, although AR-V7 expression was similar within a metastasis. Moreover, AR-V7 expression correlated with a unique 59-gene signature in CRPC, including HOXB13, a critical coregulator of AR-V7 function. Finally, AR-V7–negative disease associated with better prostate-specific antigen (PSA) responses (100% vs. 54%, P = 0.03) and overall survival (74.3 vs. 25.2 months, hazard ratio 0.23 [0.07–0.79], P = 0.02) from endocrine therapies (pre-chemotherapy). CONCLUSION. This study provides impetus to develop therapies that abrogate AR-V7 signaling to improve our understanding of AR-V7 biology and to confirm the clinical significance of AR-V7. FUNDING. Work at the University of Washington and in the Plymate and Nelson laboratories is supported by the Department of Defense Prostate Cancer Research Program (W81XWH-14-2-0183, W81XWH-12-PCRP-TIA, W81XWH-15-1-0430, and W81XWH-13-2-0070), the Pacific Northwest Prostate Cancer SPORE (P50CA97186), the Institute for Prostate Cancer Research, the Veterans Affairs Research Program, the NIH/National Cancer Institute (P01CA163227), and the Prostate Cancer Foundation. Work in the de Bono laboratory was supported by funding from the Movember Foundation/Prostate Cancer UK (CEO13-2-002), the US Department of Defense (W81XWH-13-2-0093), the Prostate Cancer Foundation (20131017 and 20131017-1), Stand Up To Cancer (SU2C-AACR-DT0712), Cancer Research UK (CRM108X-A25144), and the UK Department of Health through an Experimental Cancer Medicine Centre grant (ECMC-CRM064X).
Adam Sharp, Ilsa Coleman, Wei Yuan, Cynthia Sprenger, David Dolling, Daniel Nava Rodrigues, Joshua W. Russo, Ines Figueiredo, Claudia Bertan, George Seed, Ruth Riisnaes, Takuma Uo, Antje Neeb, Jonathan Welti, Colm Morrissey, Suzanne Carreira, Jun Luo, Peter S. Nelson, Steven P. Balk, Lawrence D. True, Johann S. de Bono, Stephen R. Plymate
The loss of insulin-secreting β cells is characteristic among type I and type II diabetes. Stimulating proliferation to expand sources of β cells for transplantation remains a challenge because adult β cells do not proliferate readily. The cell cycle inhibitor p57 has been shown to control cell division in human β cells. Expression of p57 is regulated by the DNA methylation status of the imprinting control region 2 (ICR2), which is commonly hypomethylated in Beckwith-Wiedemann syndrome patients who exhibit massive β cell proliferation. We hypothesized that targeted demethylation of the ICR2 using a transcription activator–like effector protein fused to the catalytic domain of TET1 (ICR2-TET1) would repress p57 expression and promote cell proliferation. We report here that overexpression of ICR2-TET1 in human fibroblasts reduces p57 expression levels and increases proliferation. Furthermore, human islets overexpressing ICR2-TET1 exhibit repression of p57 with concomitant upregulation of Ki-67 while maintaining glucose-sensing functionality. When transplanted into diabetic, immunodeficient mice, the epigenetically edited islets show increased β cell replication compared with control islets. These findings demonstrate that epigenetic editing is a promising tool for inducing β cell proliferation, which may one day alleviate the scarcity of transplantable β cells for the treatment of diabetes.
Kristy Ou, Ming Yu, Nicholas G. Moss, Yue J. Wang, Amber W. Wang, Son C. Nguyen, Connie Jiang, Eseye Feleke, Vasumathi Kameswaran, Eric F. Joyce, Ali Naji, Benjamin Glaser, Dana Avrahami, Klaus H. Kaestner
Recurrent broad-scale heterozygous deletions are frequently observed in human cancer. Here we tested the hypothesis that compound haploinsufficiency of neighboring genes at chromosome 8p promotes tumorigenesis. By targeting the mouse orthologs of human DOK2 and DUSP4 genes, which were co-deleted in approximately half of human lung adenocarcinomas, we found that compound-heterozygous deletion of Dok2 and Dusp4 in mice resulted in lung tumorigenesis with short latency and high incidence, and that their co-deletion synergistically activated MAPK signaling and promoted cell proliferation. Conversely, restoration of DOK2 and DUSP4 in lung cancer cells suppressed MAPK activation and cell proliferation. Importantly, in contrast to downregulation of DOK2 or DUSP4 alone, concomitant downregulation of DOK2 and DUSP4 was associated with poor survival in human lung adenocarcinoma. Therefore, our findings lend in vivo experimental support to the notion that compound haploinsufficiency, due to broad-scale chromosome deletions, constitutes a driving force in tumorigenesis.
Ming Chen, Jiangwen Zhang, Alice H. Berger, Moussa S. Diolombi, Christopher Ng, Jacqueline Fung, Roderick T. Bronson, Mireia Castillo-Martin, Tin Htwe Thin, Carlos Cordon-Cardo, Robin Plevin, Pier Paolo Pandolfi
Replicative immortality is a hallmark of cancer cells governed by telomere maintenance. Approximately 90% of human cancers maintain their telomeres by activating telomerase, driven by the transcriptional upregulation of telomerase reverse transcriptase (TERT). Although TERT promoter mutations (TPMs) are a major cancer-associated genetic mechanism of TERT upregulation, many cancers exhibit TERT upregulation without TPMs. In this study, we describe the TERT hypermethylated oncological region (THOR), a 433-bp genomic region encompassing 52 CpG sites located immediately upstream of the TERT core promoter, as a cancer-associated epigenetic mechanism of TERT upregulation. Unmethylated THOR repressed TERT promoter activity regardless of TPM status, and hypermethylation of THOR counteracted this repressive function. THOR methylation analysis in 1,352 human tumors revealed frequent (>45%) cancer-associated DNA hypermethylation in 9 of 11 (82%) tumor types screened. Additionally, THOR hypermethylation, either independently or along with TPMs, accounted for how approximately 90% of human cancers can aberrantly activate telomerase. Thus, we propose that THOR hypermethylation is a prevalent telomerase-activating mechanism in cancer that can act independently of or in conjunction with TPMs, further supporting the utility of THOR hypermethylation as a prognostic biomarker.
Donghyun D. Lee, Ricardo Leão, Martin Komosa, Marco Gallo, Cindy H. Zhang, Tatiana Lipman, Marc Remke, Abolfazl Heidari, Nuno Miguel Nunes, Joana D. Apolónio, Aryeh J. Price, Ramon Andrade De Mello, João S. Dias, David Huntsman, Thomas Hermanns, Peter J. Wild, Robert Vanner, Gelareh Zadeh, Jason Karamchandani, Sunit Das, Michael D. Taylor, Cynthia E. Hawkins, Jonathan D. Wasserman, Arnaldo Figueiredo, Robert J. Hamilton, Mark D. Minden, Khalida Wani, Bill Diplas, Hai Yan, Kenneth Aldape, Mohammad R. Akbari, Arnavaz Danesh, Trevor J. Pugh, Peter B. Dirks, Pedro Castelo-Branco, Uri Tabori
Levothyroxine (LT4) is a form of thyroid hormone used to treat hypothyroidism. In the brain, T4 is converted to the active form T3 by type 2 deiodinase (D2). Thus, it is intriguing that carriers of the Thr92Ala polymorphism in the D2 gene (DIO2) exhibit clinical improvement when liothyronine (LT3) is added to LT4 therapy. Here, we report that D2 is a cargo protein in ER Golgi intermediary compartment (ERGIC) vesicles, recycling between ER and Golgi. The Thr92-to-Ala substitution (Ala92-D2) caused ER stress and activated the unfolded protein response (UPR). Ala92-D2 accumulated in the trans-Golgi and generated less T3, which was restored by eliminating ER stress with the chemical chaperone 4-phenyl butyric acid (4-PBA). An Ala92-Dio2 polymorphism–carrying mouse exhibited UPR and hypothyroidism in distinct brain areas. The mouse refrained from physical activity, slept more, and required additional time to memorize objects. Enhancing T3 signaling in the brain with LT3 improved cognition, whereas restoring proteostasis with 4-PBA eliminated the Ala92-Dio2 phenotype. In contrast, primary hypothyroidism intensified the Ala92-Dio2 phenotype, with only partial response to LT4 therapy. Disruption of cellular proteostasis and reduced Ala92-D2 activity may explain the failure of LT4 therapy in carriers of Thr92Ala-DIO2.
Sungro Jo, Tatiana L. Fonseca, Barbara M. L. C. Bocco, Gustavo W. Fernandes, Elizabeth A. McAninch, Anaysa P. Bolin, Rodrigo R. Da Conceição, Joao Pedro Werneck-de-Castro, Daniele L. Ignacio, Péter Egri, Dorottya Németh, Csaba Fekete, Maria Martha Bernardi, Victoria D. Leitch, Naila S. Mannan, Katharine F. Curry, Natalie C. Butterfield, J.H. Duncan Bassett, Graham R. Williams, Balázs Gereben, Miriam O. Ribeiro, Antonio C. Bianco
Using an integrated approach to characterize the pancreatic tissue and isolated islets from a 33-year-old with 17 years of type 1 diabetes (T1D), we found that donor islets contained β cells without insulitis and lacked glucose-stimulated insulin secretion despite a normal insulin response to cAMP-evoked stimulation. With these unexpected findings for T1D, we sequenced the donor DNA and found a pathogenic heterozygous variant in the gene encoding hepatocyte nuclear factor-1α (HNF1A). In one of the first studies of human pancreatic islets with a disease-causing HNF1A variant associated with the most common form of monogenic diabetes, we found that HNF1A dysfunction leads to insulin-insufficient diabetes reminiscent of T1D by impacting the regulatory processes critical for glucose-stimulated insulin secretion and suggest a rationale for a therapeutic alternative to current treatment.
Rachana Haliyur, Xin Tong, May Sanyoura, Shristi Shrestha, Jill Lindner, Diane C. Saunders, Radhika Aramandla, Greg Poffenberger, Sambra D. Redick, Rita Bottino, Nripesh Prasad, Shawn E. Levy, Raymond D. Blind, David M. Harlan, Louis H. Philipson, Roland W. Stein, Marcela Brissova, Alvin C. Powers
Acetaldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme detoxifying acetaldehyde and endogenous lipid aldehydes; previous studies suggest a protective role of ALDH2 against cardiovascular disease (CVD). Around 40% of East Asians carrying the single nucleotide polymorphism (SNP) ALDH2 rs671 have an increased incidence of CVD. However, the role of ALDH2 in CVD beyond alcohol consumption remains poorly defined. Here we report that ALDH2/LDLR double knockout (DKO) mice have decreased atherosclerosis compared with LDLR-KO mice, whereas ALDH2/APOE-DKO mice have increased atherosclerosis, suggesting an unexpected interaction of ALDH2 with LDLR. Further studies demonstrate that in the absence of LDLR, AMPK phosphorylates ALDH2 at threonine 356 and enables its nuclear translocation. Nuclear ALDH2 interacts with HDAC3 and represses transcription of a lysosomal proton pump protein ATP6V0E2, critical for maintaining lysosomal function, autophagy, and degradation of oxidized low-density lipid protein. Interestingly, an interaction of cytosolic LDLR C-terminus with AMPK blocks ALDH2 phosphorylation and subsequent nuclear translocation, whereas ALDH2 rs671 mutant in human macrophages attenuates this interaction, which releases ALDH2 to the nucleus to suppress ATP6V0E2 expression, resulting in increased foam cells due to impaired lysosomal function. Our studies reveal a novel role of ALDH2 and LDLR in atherosclerosis and provide a molecular mechanism by which ALDH2 rs671 SNP increases CVD.
Shanshan Zhong, Luxiao Li, Yu-Lei Zhang, Lili Zhang, Jianhong Lu, Shuyuan Guo, Ningning Liang, Jing Ge, Mingjiang Zhu, Yongzhen Tao, Yun-Cheng Wu, Huiyong Yin
Notch signaling regulates differentiation of the pancreatic endocrine lineage during embryogenesis, but the role of Notch in mature β cells is unclear. We found that islets derived from lean mice show modest β cell Notch activity, which increases in obesity and in response to high glucose. This response appeared maladaptive, as mice with β cell–specific–deficient Notch transcriptional activity showed improved glucose tolerance when subjected to high-fat diet feeding. Conversely, mice with β cell–specific Notch gain of function (β-NICD) had a progressive loss of β cell maturity, due to proteasomal degradation of MafA, leading to impaired glucose-stimulated insulin secretion and glucose intolerance with aging or obesity. Surprisingly, Notch-active β cells had increased proliferative capacity, leading to increased but dysfunctional β cell mass. These studies demonstrate a dynamic role for Notch in developed β cells for simultaneously regulating β cell function and proliferation.
Alberto Bartolome, Changyu Zhu, Lori Sussel, Utpal B. Pajvani
The lipin phosphatidic acid phosphatase (PAP) enzymes are required for triacylglycerol (TAG) synthesis from glycerol 3-phosphate in most mammalian tissues. The 3 lipin proteins (lipin 1, lipin 2, and lipin 3) each have PAP activity, but have distinct tissue distributions, with lipin 1 being the predominant PAP enzyme in many metabolic tissues. One exception is the small intestine, which is unique in expressing exclusively lipin 2 and lipin 3. TAG synthesis in small intestinal enterocytes utilizes 2-monoacylglycerol and does not require the PAP reaction, making the role of lipin proteins in enterocytes unclear. Enterocyte TAGs are stored transiently as cytosolic lipid droplets or incorporated into lipoproteins (chylomicrons) for secretion. We determined that lipin enzymes are critical for chylomicron biogenesis, through regulation of membrane phospholipid composition and association of apolipoprotein B48 with nascent chylomicron particles. Lipin 2/3 deficiency caused phosphatidic acid accumulation and mammalian target of rapamycin complex 1 (mTORC1) activation, which were associated with enhanced protein levels of a key phospholipid biosynthetic enzyme (CTP:phosphocholine cytidylyltransferase α) and altered membrane phospholipid composition. Impaired chylomicron synthesis in lipin 2/3 deficiency could be rescued by normalizing phospholipid synthesis levels. These data implicate lipin 2/3 as a control point for enterocyte phospholipid homeostasis and chylomicron biogenesis.
Peixiang Zhang, Lauren S. Csaki, Emilio Ronquillo, Lynn J. Baufeld, Jason Y. Lin, Alexis Gutierrez, Jennifer R. Dwyer, David N. Brindley, Loren G. Fong, Peter Tontonoz, Stephen G. Young, Karen Reue
In response to viral pathogens, the host upregulates antiviral genes that suppress translation of viral mRNAs. However, induction of such antiviral responses may not be exclusive to viruses, as the pathways lie at the intersection of broad inflammatory networks that can also be induced by bacterial pathogens. Using a model of Gram-negative sepsis, we show that propagation of kidney damage initiated by a bacterial origin ultimately involves antiviral responses that result in host translation shutdown. We determined that activation of the eukaryotic translation initiation factor 2-α kinase 2/eukaryotic translation initiation factor 2α (Eif2ak2/Eif2α) axis is the key mediator of translation initiation block in late-phase sepsis. Reversal of this axis mitigated kidney injury. Furthermore, temporal profiling of the kidney translatome revealed that multiple genes involved in formation of the initiation complex were translationally altered during bacterial sepsis. Collectively, our findings imply that translation shutdown is indifferent to the specific initiating pathogen and is an important determinant of tissue injury in sepsis.
Takashi Hato, Bernhard Maier, Farooq Syed, Jered Myslinski, Amy Zollman, Zoya Plotkin, Michael T. Eadon, Pierre C. Dagher
We investigated how pathological changes in newborn hippocampal dentate granule cells (DGCs) lead to epilepsy. Using a rabies virus–mediated retrograde tracing system and a designer receptors exclusively activated by designer drugs (DREADD) chemogenetic method, we demonstrated that newborn hippocampal DGCs are required for the formation of epileptic neural circuits and the induction of spontaneous recurrent seizures (SRS). A rabies virus–mediated mapping study revealed that aberrant circuit integration of hippocampal newborn DGCs formed excessive de novo excitatory connections as well as recurrent excitatory loops, allowing the hippocampus to produce, amplify, and propagate excessive recurrent excitatory signals. In epileptic mice, DREADD-mediated–specific suppression of hippocampal newborn DGCs dramatically reduced epileptic spikes and SRS in an inducible and reversible manner. Conversely, specific activation of hippocampal newborn DGCs increased both epileptic spikes and SRS. Our study reveals an essential role for hippocampal newborn DGCs in the formation and function of epileptic neural circuits, providing critical insights into DGCs as a potential therapeutic target for treating epilepsy.
Qi-Gang Zhou, Ashley D. Nemes, Daehoon Lee, Eun Jeoung Ro, Jing Zhang, Amy S. Nowacki, Susan M. Dymecki, Imad M. Najm, Hoonkyo Suh
Adoptive transfer of T cell receptor–engineered (TCR-engineered) T cells is a promising approach in cancer therapy but needs improvement for more effective treatment of solid tumors. While most clinical approaches have focused on CD8+ T cells, the importance of CD4+ T cells in mediating tumor regression has become apparent. Regarding shared (self) tumor antigens, it is unclear whether the human CD4+ T cell repertoire has been shaped by tolerance mechanisms and lacks highly functional TCRs suitable for therapy. Here, TCRs against the tumor-associated antigen NY-ESO-1 were isolated either from human CD4+ T cells or from mice that express a diverse human TCR repertoire with HLA-DRA/DRB1*0401 restriction and are NY-ESO-1 negative. NY-ESO-1–reactive TCRs from the mice showed superior recognition of tumor cells and higher functional activity compared with TCRs from humans. We identified a candidate TCR, TCR-3598_2, which was expressed in CD4+ T cells and caused tumor regression in combination with NY-ESO-1–redirected CD8+ T cells in a mouse model of adoptive T cell therapy. These data suggest that MHC II–restricted TCRs against NY-ESO-1 from a nontolerant nonhuman host are of optimal affinity and that the combined use of MHC I– and II–restricted TCRs against NY-ESO-1 can make adoptive T cell therapy more effective.
Lucia Poncette, Xiaojing Chen, Felix K.M. Lorenz, Thomas Blankenstein
Iron-related disorders are among the most prevalent diseases worldwide. Systemic iron homeostasis requires hepcidin, a liver-derived hormone that controls iron mobilization through its molecular target ferroportin (FPN), the only known mammalian iron exporter. This pathway is perturbed in diseases that cause iron overload. Additionally, intestinal HIF-2α is essential for the local absorptive response to systemic iron deficiency and iron overload. Our data demonstrate a hetero-tissue crosstalk mechanism, whereby hepatic hepcidin regulated intestinal HIF-2α in iron deficiency, anemia, and iron overload. We show that FPN controlled cell-autonomous iron efflux to stabilize and activate HIF-2α by regulating the activity of iron-dependent intestinal prolyl hydroxylase domain enzymes. Pharmacological blockade of HIF-2α using a clinically relevant and highly specific inhibitor successfully treated iron overload in a mouse model. These findings demonstrate a molecular link between hepatic hepcidin and intestinal HIF-2α that controls physiological iron uptake and drives iron hyperabsorption during iron overload.
Andrew J. Schwartz, Nupur K. Das, Sadeesh K. Ramakrishnan, Chesta Jain, Mladen T. Jurkovic, Jun Wu, Elizabeta Nemeth, Samira Lakhal-Littleton, Justin A. Colacino, Yatrik M. Shah
While immune checkpoint blockade leads to potent antitumor efficacy, it also leads to immune-related adverse events in cancer patients. These toxicities stem from systemic immune activation resulting in inflammation of multiple organs, including the gastrointestinal tract, lung, and endocrine organs. We developed a dual variable domain immunoglobulin of anti-CTLA4 antibody (anti-CTLA4 DVD, where CTLA4 is defined as cytotoxic T lymphocyte–associated antigen-4) possessing an outer tumor-specific antigen-binding site engineered to shield the inner anti-CTLA4–binding domain. Upon reaching the tumor, the outer domain was cleaved by membrane type-serine protease 1 (MT-SP1) present in the tumor microenvironment, leading to enhanced localization of CTLA4 blockade. Anti-CTLA4 DVD markedly reduced multiorgan immune toxicity by preserving tissue-resident Tregs in Rag 1–/– mice that received naive donor CD4+ T cells from WT C57BL/6j mice. Moreover, anti-CTLA4 DVD induced potent antitumor effects by decreasing tumor-infiltrating Tregs and increasing the infiltration of antigen-specific CD8+ T lymphocytes in TRAMP-C2–bearing C57BL/6j mice. Treg depletion was mediated through the antibody-dependent cellular cytotoxicity (ADCC) mechanism, as anti-CTLA4 without the FcγR-binding portion (anti-CTLA4 DANA) spared Tregs, preventing treatment-induced toxicities. In summary, our results demonstrate an approach to anti-CTLA4 blockade that depletes tumor-infiltrating, but not tissue-resident, Tregs, preserving antitumor effects while minimizing toxicity. Thus, our tumor-conditional anti-CTLA4 DVD provides an avenue for uncoupling antitumor efficacy from immunotherapy-induced toxicities.
Chien-Chun Steven Pai, Donald M. Simons, Xiaoqing Lu, Michael Evans, Junnian Wei, Yung-hua Wang, Mingyi Chen, John Huang, Chanhyuk Park, Anthony Chang, Jiaxi Wang, Susan Westmoreland, Christine Beam, Dave Banach, Diana Bowley, Feng Dong, Jane Seagal, Wendy Ritacco, Paul L. Richardson, Soumya Mitra, Grace Lynch, Pete Bousquet, John Mankovich, Gillian Kingsbury, Lawrence Fong
BACKGROUND. Patients with schizophrenia (SCZ) experience chronic cognitive deficits. Histone deacetylases (HDACs) are enzymes that regulate cognitive circuitry; however, the role of HDACs in cognitive disorders, including SCZ, remains unknown in humans. We previously determined that HDAC2 mRNA levels were lower in dorsolateral prefrontal cortex (DLPFC) tissue from donors with SCZ compared with controls. Here we investigated the relationship between in vivo HDAC expression and cognitive impairment in patients with SCZ and matched healthy controls using [11C]Martinostat positron emission tomography (PET). METHODS. In a case-control study, relative [11C]Martinostat uptake was compared between 14 patients with SCZ or schizoaffective disorder (SCZ/SAD) and 17 controls using hypothesis-driven region-of-interest analysis and unbiased whole brain voxel-wise approaches. Clinical measures, including the MATRICS consensus cognitive battery, were administered. RESULTS. Relative HDAC expression was lower in the DLPFC of patients with SCZ/SAD compared with controls, and HDAC expression positively correlated with cognitive performance scores across groups. Patients with SCZ/SAD also showed lower relative HDAC expression in the dorsomedial prefrontal cortex and orbitofrontal gyrus, and higher relative HDAC expression in the cerebral white matter, pons, and cerebellum compared with controls. CONCLUSIONS. These findings provide in vivo evidence of HDAC dysregulation in patients with SCZ and suggest that altered HDAC expression may impact cognitive function in humans. FUNDING. National Institute of Mental Health (NIMH), Brain and Behavior Foundation, Massachusetts General Hospital (MGH), Athinoula A. Martinos Center for Biomedical Imaging, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH Shared Instrumentation Grant Program.
Tonya M. Gilbert, Nicole R. Zürcher, Christine J. Wu, Anisha Bhanot, Baileigh G. Hightower, Minhae Kim, Daniel S. Albrecht, Hsiao-Ying Wey, Frederick A. Schroeder, Anais Rodriguez-Thompson, Thomas M. Morin, Kamber L. Hart, Amelia M. Pellegrini, Misha M. Riley, Changning Wang, Steven M. Stufflebeam, Stephen J. Haggarty, Daphne J. Holt, Marco L. Loggia, Roy H. Perlis, Hannah E. Brown, Joshua L. Roffman, Jacob M. Hooker
BACKGROUND.l-Carnitine, an abundant nutrient in red meat, accelerates atherosclerosis in mice via gut microbiota–dependent formation of trimethylamine (TMA) and trimethylamine N-oxide (TMAO) via a multistep pathway involving an atherogenic intermediate, γ-butyrobetaine (γBB). The contribution of γBB in gut microbiota–dependent l-carnitine metabolism in humans is unknown. METHODS. Omnivores and vegans/vegetarians ingested deuterium-labeled l-carnitine (d3-l-carnitine) or γBB (d9-γBB), and both plasma metabolites and fecal polymicrobial transformations were examined at baseline, following oral antibiotics, or following chronic (≥2 months) l-carnitine supplementation. Human fecal commensals capable of performing each step of the l-carnitine→γBB→TMA transformation were identified. RESULTS. Studies with oral d3-l-carnitine or d9-γBB before versus after antibiotic exposure revealed gut microbiota contribution to the initial 2 steps in a metaorganismal l-carnitine→γBB→TMA→TMAO pathway in subjects. Moreover, a striking increase in d3-TMAO generation was observed in omnivores over vegans/vegetarians (>20-fold; P = 0.001) following oral d3-l-carnitine ingestion, whereas fasting endogenous plasma l-carnitine and γBB levels were similar in vegans/vegetarians (n = 32) versus omnivores (n = 40). Fecal metabolic transformation studies, and oral isotope tracer studies before versus after chronic l-carnitine supplementation, revealed that omnivores and vegans/vegetarians alike rapidly converted carnitine to γBB, whereas the second gut microbial transformation, γBB→TMA, was diet inducible (l-carnitine, omnivorous). Extensive anaerobic subculturing of human feces identified no single commensal capable of l-carnitine→TMA transformation, multiple community members that converted l-carnitine to γBB, and only 1 Clostridiales bacterium, Emergencia timonensis, that converted γBB to TMA. In coculture, E. timonensis promoted the complete l-carnitine→TMA transformation. CONCLUSION. In humans, dietary l-carnitine is converted into the atherosclerosis- and thrombosis-promoting metabolite TMAO via 2 sequential gut microbiota–dependent transformations: (a) initial rapid generation of the atherogenic intermediate γBB, followed by (b) transformation into TMA via low-abundance microbiota in omnivores, and to a markedly lower extent, in vegans/vegetarians. Gut microbiota γBB→TMA/TMAO transformation is induced by omnivorous dietary patterns and chronic l-carnitine exposure. TRIAL REGISTRATION. ClinicalTrials.gov NCT01731236. FUNDING. NIH and Office of Dietary Supplements grants HL103866, HL126827, and DK106000, and the Leducq Foundation.
Robert A. Koeth, Betzabe Rachel Lam-Galvez, Jennifer Kirsop, Zeneng Wang, Bruce S. Levison, Xiaodong Gu, Matthew F. Copeland, David Bartlett, David B. Cody, Hong J. Dai, Miranda K. Culley, Xinmin S. Li, Xiaoming Fu, Yuping Wu, Lin Li, Joseph A. DiDonato, W.H. Wilson Tang, Jose Carlos Garcia-Garcia, Stanley L. Hazen
Hereditary angioedema (HAE) is an autosomal dominant disease characterized by recurrent edema attacks associated with morbidity and mortality. HAE results from variations in the SERPING1 gene that encodes the C1 inhibitor (C1INH), a serine protease inhibitor (serpin). Reduced plasma levels of C1INH lead to enhanced activation of the contact system, triggering high levels of bradykinin and increased vascular permeability, but the cellular mechanisms leading to low C1INH levels (20%–30% of normal) in heterozygous HAE type I patients remain obscure. Here, we showed that C1INH encoded by a subset of HAE-causing SERPING1 alleles affected secretion of normal C1INH protein in a dominant-negative fashion by triggering formation of protein-protein interactions between normal and mutant C1INH, leading to the creation of larger intracellular C1INH aggregates that were trapped in the endoplasmic reticulum (ER). Notably, intracellular aggregation of C1INH and ER abnormality were observed in fibroblasts from a heterozygous carrier of a dominant-negative SERPING1 gene variant, but the condition was ameliorated by viral delivery of the SERPING1 gene. Collectively, our data link abnormal accumulation of serpins, a hallmark of serpinopathies, with dominant-negative disease mechanisms affecting C1INH plasma levels in HAE type I patients, and may pave the way for new treatments of HAE.
Didde Haslund, Laura Barrett Ryø, Sara Seidelin Majidi, Iben Rose, Kristian Alsbjerg Skipper, Tue Fryland, Anja Bille Bohn, Claus Koch, Martin K. Thomsen, Yaseelan Palarasah, Thomas J. Corydon, Anette Bygum, Lene N. Nejsum, Jacob Giehm Mikkelsen
Activation of the type 1 angiotensin II receptor (AT1) triggers proinflammatory signaling through pathways independent of classical Gq signaling that regulate vascular homeostasis. Here, we report that the AT1 receptor preformed a heteromeric complex with the receptor for advanced glycation endproducts (RAGE). Activation of the AT1 receptor by angiotensin II (Ang II) triggered transactivation of the cytosolic tail of RAGE and NF-κB–driven proinflammatory gene expression independently of the liberation of RAGE ligands or the ligand-binding ectodomain of RAGE. The importance of this transactivation pathway was demonstrated by our finding that adverse proinflammatory signaling events induced by AT1 receptor activation were attenuated when RAGE was deleted or transactivation of its cytosolic tail was inhibited. At the same time, classical homeostatic Gq signaling pathways were unaffected by RAGE deletion or inhibition. These data position RAGE transactivation by the AT1 receptor as a target for vasculoprotective interventions. As proof of concept, we showed that treatment with the mutant RAGE peptide S391A-RAGE362–404 was able to inhibit transactivation of RAGE and attenuate Ang II–dependent inflammation and atherogenesis. Furthermore, treatment with WT RAGE362–404 restored Ang II–dependent atherogenesis in Ager/Apoe-KO mice, without restoring ligand-mediated signaling via RAGE, suggesting that the major effector of RAGE activation was its transactivation.
Raelene J. Pickering, Christos Tikellis, Carlos J. Rosado, Despina Tsorotes, Alexandra Dimitropoulos, Monique Smith, Olivier Huet, Ruth M. Seeber, Rekhati Abhayawardana, Elizabeth K.M. Johnstone, Jonathan Golledge, Yutang Wang, Karin A. Jandeleit-Dahm, Mark E. Cooper, Kevin D.G. Pfleger, Merlin C. Thomas
The negatively charged sugar sialic acid (Sia) occupies the outermost position in the bulk of cell surface glycans. Lack of sialylated glycans due to genetic ablation of the Sia-activating enzyme CMP–sialic acid synthase (CMAS) resulted in embryonic lethality around day 9.5 post coitum (E9.5) in mice. Developmental failure was caused by complement activation on trophoblasts in Cmas–/– implants and was accompanied by infiltration of maternal neutrophils at the fetal-maternal interface, intrauterine growth restriction, impaired placental development, and a thickened Reichert’s membrane. This phenotype, which shared features with complement receptor 1-related protein Y (Crry) depletion, was rescued in E8.5 Cmas–/– mice upon injection of cobra venom factor, resulting in exhaustion of the maternal complement component C3. Here we show that Sia is dispensable for early development of the embryo proper but pivotal for fetal-maternal immune homeostasis during pregnancy, i.e., for protecting the allograft implant against attack by the maternal innate immune system. Finally, embryos devoid of cell surface sialylation suffered from malnutrition due to inadequate placentation as a secondary effect.
Markus Abeln, Iris Albers, Ulrike Peters-Bernard, Kerstin Flächsig-Schulz, Elina Kats, Andreas Kispert, Stephen Tomlinson, Rita Gerardy-Schahn, Anja Münster-Kühnel, Birgit Weinhold
Carmen Guerra, Paloma Navarro, Angela M. Valverde, Monica Arribas, Jens Brüning, Leslie P. Kozak, C. Ronald Kahn, Manuel Benito