Some autoimmune disorders are monogenetic diseases; however, clinical manifestations among individuals vary, despite the presence of identical mutations in the disease-causing gene. In this issue of the
Stuart G. Tangye
Hepatocyte death, which can be apoptosis or necrosis depending on the context, is a prominent feature of liver disease. The lectin concanavalin A (ConA) activates immune cells, resulting in inflammatory liver injury and hepatocyte necrosis. In this issue of the
Lily Dara, Zhang-Xu Liu, Neil Kaplowitz
An increasing amount of evidence suggests that metabolic alterations play a key role in chronic kidney disease (CKD) pathogenesis. In this issue of the
Szu Yuan Li, Katalin Susztak
Radiotherapy causes dose-limiting toxicity and long-term complications in rapidly renewing tissues, including the gastrointestinal tract. Currently, there is no FDA-approved agent for the prevention or treatment of radiation-induced intestinal injury. In this study, we have shown that PD 0332991 (PD), an FDA-approved selective inhibitor of cyclin-dependent kinase 4/6 (CDK4/6), prevents radiation-induced lethal intestinal injury in mice. Treating mice with PD or a structurally distinct CDK4/6 inhibitor prior to radiation blocked proliferation and crypt apoptosis and improved crypt regeneration. PD treatment also enhanced LGR5+ stem cell survival and regeneration after radiation. PD was an on-target inhibitor of RB phosphorylation and blocked G1/S transition in the intestinal crypts. PD treatment strongly but reversibly inhibited radiation-induced p53 activation, which blocked p53-upregulated modulator of apoptosis–dependent (PUMA-dependent) apoptosis without affecting p21-dependent suppression of DNA damage accumulation, with a repair bias toward nonhomologous end joining. Further, deletion of
Liang Wei, Brian J. Leibowitz, Xinwei Wang, Michael Epperly, Joel Greenberger, Lin Zhang, Jian Yu
Oncogenic mutations drive anabolic metabolism, creating a dependency on nutrient influx through transporters, receptors, and macropinocytosis. While sphingolipids suppress tumor growth by downregulating nutrient transporters, macropinocytosis and autophagy still provide cancer cells with fuel. Therapeutics that simultaneously disrupt these parallel nutrient access pathways have potential as powerful starvation agents. Here, we describe a water-soluble, orally bioavailable synthetic sphingolipid, SH-BC-893, that triggers nutrient transporter internalization and also blocks lysosome-dependent nutrient generation pathways. SH-BC-893 activated protein phosphatase 2A (PP2A), leading to mislocalization of the lipid kinase PIKfyve. The concomitant mislocalization of the PIKfyve product PI(3,5)P2 triggered cytosolic vacuolation and blocked lysosomal fusion reactions essential for LDL, autophagosome, and macropinosome degradation. By simultaneously limiting access to both extracellular and intracellular nutrients, SH-BC-893 selectively killed cells expressing an activated form of the anabolic oncogene
Seong M. Kim, Saurabh G. Roy, Bin Chen, Tiffany M. Nguyen, Ryan J. McMonigle, Alison N. McCracken, Yanling Zhang, Satoshi Kofuji, Jue Hou, Elizabeth Selwan, Brendan T. Finicle, Tricia T. Nguyen, Archna Ravi, Manuel U. Ramirez, Tim Wiher, Garret G. Guenther, Mari Kono, Atsuo T. Sasaki, Lois S. Weisman, Eric O. Potma, Bruce J. Tromberg, Robert A. Edwards, Stephen Hanessian, Aimee L. Edinger
Rush desensitization (DS) is a widely used and effective clinical strategy for the rapid inhibition of IgE-mediated anaphylactic responses. However, the cellular targets and underlying mechanisms behind this process remain unclear. Recent studies have implicated mast cells (MCs) as the primary target cells for DS. Here, we developed a murine model of passive anaphylaxis with demonstrated MC involvement and an in vitro assay to evaluate the effect of DS on MCs. In contrast with previous reports, we determined that functional IgE remains on the cell surface of desensitized MCs following DS. Despite notable reductions in MC degranulation following DS, the high-affinity IgE receptor FcεRI was still capable of transducing signals in desensitized MCs. Additionally, we found that displacement of the actin cytoskeleton and its continued association with FcεRI impede the capacity of desensitized MCs to evoke the calcium response that is essential for MC degranulation. Together, these findings suggest that reduced degranulation responses in desensitized MCs arise from aberrant actin remodeling, providing insights that may lead to improvement of DS treatments for anaphylactic responses.
W.X. Gladys Ang, Alison M. Church, Mike Kulis, Hae Woong Choi, A. Wesley Burks, Soman N. Abraham
Radioiodide (RAI) therapy of thyroid cancer exploits the relatively selective ability of thyroid cells to transport and accumulate iodide. Iodide uptake requires expression of critical genes that are involved in various steps of thyroid hormone biosynthesis. ERK signaling, which is markedly increased in thyroid cancer cells driven by oncogenic
James Nagarajah, Mina Le, Jeffrey A. Knauf, Giuseppe Ferrandino, Cristina Montero-Conde, Nagavarakishore Pillarsetty, Alexander Bolaender, Christopher Irwin, Gnana Prakasam Krishnamoorthy, Mahesh Saqcena, Steven M. Larson, Alan L. Ho, Venkatraman Seshan, Nobuya Ishii, Nancy Carrasco, Neal Rosen, Wolfgang A. Weber, James A. Fagin
Neutrophils need to penetrate the perivascular basement membrane for successful extravasation into inflamed tissue, but this process is incompletely understood. Recent findings have associated mammalian sterile 20–like kinase 1 (MST1) loss of function with a human primary immunodeficiency disorder, suggesting that MST1 may be involved in immune cell migration. Here, we have shown that MST1 is a critical regulator of neutrophil extravasation during inflammation.
Angela R.M. Kurz, Monika Pruenster, Ina Rohwedder, Mahalakshmi Ramadass, Kerstin Schäfer, Ute Harrison, Gabriel Gouveia, Claudia Nussbaum, Roland Immler, Johannes R. Wiessner, Andreas Margraf, Dae-Sik Lim, Barbara Walzog, Steffen Dietzel, Markus Moser, Christoph Klein, Dietmar Vestweber, Rainer Haas, Sergio D. Catz, Markus Sperandio
The intratumoral microenvironment, or stroma, is of major importance in the pathobiology of pancreatic ductal adenocarcinoma (PDA), and specific conditions in the stroma may promote increased cancer aggressiveness. We hypothesized that this heterogeneous and evolving compartment drastically influences tumor cell abilities, which in turn influences PDA aggressiveness through crosstalk that is mediated by extracellular vesicles (EVs). Here, we have analyzed the PDA proteomic stromal signature and identified a contribution of the annexin A6/LDL receptor-related protein 1/thrombospondin 1 (ANXA6/LRP1/TSP1) complex in tumor cell crosstalk. Formation of the ANXA6/LRP1/TSP1 complex was restricted to cancer-associated fibroblasts (CAFs) and required physiopathologic culture conditions that improved tumor cell survival and migration. Increased PDA aggressiveness was dependent on tumor cell–mediated uptake of CAF-derived ANXA6+ EVs carrying the ANXA6/LRP1/TSP1 complex. Depletion of ANXA6 in CAFs impaired complex formation and subsequently impaired PDA and metastasis occurrence, while injection of CAF-derived ANXA6+ EVs enhanced tumorigenesis. We found that the presence of ANXA6+ EVs in serum was restricted to PDA patients and represents a potential biomarker for PDA grade. These findings suggest that CAF–tumor cell crosstalk supported by ANXA6+ EVs is predictive of PDA aggressiveness, highlighting a therapeutic target and potential biomarker for PDA.
Julie Leca, Sébastien Martinez, Sophie Lac, Jérémy Nigri, Véronique Secq, Marion Rubis, Christian Bressy, Arnauld Sergé, Marie-Noelle Lavaut, Nelson Dusetti, Céline Loncle, Julie Roques, Daniel Pietrasz, Corinne Bousquet, Stéphane Garcia, Samuel Granjeaud, Mehdi Ouaissi, Jean Baptiste Bachet, Christine Brun, Juan L. Iovanna, Pascale Zimmermann, Sophie Vasseur, Richard Tomasini
Tumor-associated macrophages (TAMs) can influence ovarian cancer growth, migration, and metastasis, but the detailed mechanisms underlying ovarian cancer metastasis remain unclear. Here, we have shown a strong correlation between TAM-associated spheroids and the clinical pathology of ovarian cancer. Further, we have determined that TAMs promote spheroid formation and tumor growth at early stages of transcoelomic metastasis in an established mouse model for epithelial ovarian cancer. M2 macrophage–like TAMs were localized in the center of spheroids and secreted EGF, which upregulated αMβ2 integrin on TAMs and ICAM-1 on tumor cells to promote association between tumor cells and TAM. Moreover, EGF secreted by TAMs activated EGFR on tumor cells, which in turn upregulated VEGF/VEGFR signaling in surrounding tumor cells to support tumor cell proliferation and migration. Pharmacological blockade of EGFR or antibody neutralization of ICAM-1 in TAMs blunted spheroid formation and ovarian cancer progression in mouse models. These findings suggest that EGF secreted from TAMs plays a critical role in promoting early transcoelomic metastasis of ovarian cancer. As transcoelomic metastasis is also associated with many other cancers, such as pancreatic and colon cancers, our findings uncover a mechanism for TAM-mediated spheroid formation and provide a potential target for the treatment of ovarian cancer and other transcoelomic metastatic cancers.
Mingzhu Yin, Xia Li, Shu Tan, Huanjiao Jenny Zhou, Weidong Ji, Stefania Bellone, Xiaocao Xu, Haifeng Zhang, Alessandro D. Santin, Ge Lou, Wang Min
Carcinoma cells can acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT). However, the significance of EMT in cancer metastasis has been controversial, and the exact fates and functions of EMT cancer cells in vivo remain inadequately understood. Here, we tracked epithelial cancer cells that underwent inducible or spontaneous EMT in various tumor transplantation models. Unlike epithelial cells, the majority of EMT cancer cells were specifically located in the perivascular space and closely associated with blood vessels. EMT markedly activated multiple pericyte markers in carcinoma cells, in particular PDGFR-β and N-cadherin, which enabled EMT cells to be chemoattracted towards and physically interact with endothelium. In tumor xenografts generated from carcinoma cells that were prone to spontaneous EMT, a substantial fraction of the pericytes associated with tumor vasculature were derived from EMT cancer cells. Depletion of such EMT cells in transplanted tumors diminished pericyte coverage, impaired vascular integrity, and attenuated tumor growth. These findings suggest that EMT confers key pericyte attributes on cancer cells. The resulting EMT cells phenotypically and functionally resemble pericytes and are indispensable for vascular stabilization and sustained tumor growth. This study thus proposes a previously unrecognized role for EMT in cancer.
Anitha K. Shenoy, Yue Jin, Huacheng Luo, Ming Tang, Christine Pampo, Rong Shao, Dietmar W. Siemann, Lizi Wu, Coy D. Heldermon, Brian K. Law, Lung-Ji Chang, Jianrong Lu
Different tumor microenvironments (TMEs) induce stromal cell plasticity that affects tumorigenesis. The impact of TME-dependent heterogeneity of tumor endothelial cells (TECs) on tumorigenesis is unclear. Here, we isolated pure TECs from human colorectal carcinomas (CRCs) that exhibited TMEs with either improved (Th1-TME CRCs) or worse clinical prognosis (control-TME CRCs). Transcriptome analyses identified markedly different gene clusters that reflected the tumorigenic and angiogenic activities of the respective TMEs. The gene encoding the matricellular protein SPARCL1 was most strongly upregulated in Th1-TME TECs. It was also highly expressed in ECs in healthy colon tissues and Th1-TME CRCs but low in control-TME CRCs. In vitro, SPARCL1 expression was induced in confluent, quiescent ECs and functionally contributed to EC quiescence by inhibiting proliferation, migration, and sprouting, whereas siRNA-mediated knockdown increased sprouting. In human CRC tissues and mouse models, vessels with SPARCL1 expression were larger and more densely covered by mural cells. SPARCL1 secretion from quiescent ECs inhibited mural cell migration, which likely led to stabilized mural cell coverage of mature vessels. Together, these findings demonstrate TME-dependent intertumoral TEC heterogeneity in CRC. They further indicate that TEC heterogeneity is regulated by SPARCL1, which promotes the cell quiescence and vessel homeostasis contributing to the favorable prognoses associated with Th1-TME CRCs.
Elisabeth Naschberger, Andrea Liebl, Vera S. Schellerer, Manuela Schütz, Nathalie Britzen-Laurent, Patrick Kölbel, Ute Schaal, Lisa Haep, Daniela Regensburger, Thomas Wittmann, Ludger Klein-Hitpass, Tilman T. Rau, Barbara Dietel, Valérie S. Méniel, Alan R. Clarke, Susanne Merkel, Roland S. Croner, Werner Hohenberger, Michael Stürzl
The regulatory roles of long noncoding RNAs (lncRNAs) in transcriptional coactivators are still largely unknown. Here, we have shown that the peroxisome proliferator–activated receptor γ (PPARγ) coactivator α (PGC-1α, encoded by
Jianyin Long, Shawn S. Badal, Zengchun Ye, Yin Wang, Bernard A. Ayanga, Daniel L. Galvan, Nathanael H. Green, Benny H. Chang, Paul A. Overbeek, Farhad R. Danesh
Alterations in the apoptosis of immune cells have been associated with autoimmunity. Here, we have identified a homozygous missense mutation in the gene encoding the base excision repair enzyme Nei endonuclease VIII-like 3 (
Michel J. Massaad, Jia Zhou, Daisuke Tsuchimoto, Janet Chou, Haifa Jabara, Erin Janssen, Salomé Glauzy, Brennan G. Olson, Henner Morbach, Toshiro K. Ohsumi, Klaus Schmitz, Markianos Kyriacos, Jennifer Kane, Kumiko Torisu, Yusaku Nakabeppu, Luigi D. Notarangelo, Eliane Chouery, Andre Megarbane, Peter B. Kang, Eman Al-Idrissi, Hasan Aldhekri, Eric Meffre, Masayuki Mizui, George C. Tsokos, John P. Manis, Waleed Al-Herz, Susan S. Wallace, Raif S. Geha
A vast number of cancer genes are transcription factors that drive tumorigenesis as oncogenic fusion proteins. Although the direct targeting of transcription factors remains challenging, therapies aimed at oncogenic fusion proteins are attractive as potential treatments for cancer. There is particular interest in targeting the oncogenic PAX3-FOXO1 fusion transcription factor, which induces alveolar rhabdomyosarcoma (aRMS), an aggressive cancer of skeletal muscle cells for which patient outcomes remain dismal. In this work, we have defined the interactome of PAX3-FOXO1 and screened 60 candidate interactors using siRNA-mediated depletion to identify candidates that affect fusion protein activity in aRMS cells. We report that chromodomain helicase DNA binding protein 4 (CHD4), an ATP-dependent chromatin remodeler, acts as crucial coregulator of PAX3-FOXO1 activity. CHD4 interacts with PAX3-FOXO1 via short DNA fragments. Together, they bind to regulatory regions of PAX3-FOXO1 target genes. Gene expression analysis suggested that CHD4 coregulatory activity is essential for a subset of PAX3-FOXO1 target genes. Depletion of CHD4 reduced cell viability of fusion-positive but not of fusion-negative RMS in vitro, which resembled loss of PAX3-FOXO1. It also caused specific regression of fusion-positive xenograft tumors in vivo. Therefore, this work identifies CHD4 as an epigenetic coregulator of PAX3-FOXO1 activity, providing rational evidence for CHD4 as a potential therapeutic target in aRMS.
Maria Böhm, Marco Wachtel, Joana G. Marques, Natalie Streiff, Dominik Laubscher, Paolo Nanni, Kamel Mamchaoui, Raffaella Santoro, Beat W. Schäfer
Little is known about the role of mTOR signaling in plasma cell differentiation and function. Furthermore, for reasons not understood, mTOR inhibition reverses antibody-associated disease in a murine model of systemic lupus erythematosus. Here, we have demonstrated that induced B lineage–specific deletion of the gene encoding RAPTOR, an essential signaling adaptor for rapamycin-sensitive mTOR complex 1 (mTORC1), abrogated the generation of antibody-secreting plasma cells in mice. Acute treatment with rapamycin recapitulated the effects of RAPTOR deficiency, and both strategies led to the ablation of newly formed plasma cells in the spleen and bone marrow while also obliterating preexisting germinal centers. Surprisingly, although perturbing mTOR activity caused a profound decline in serum antibodies that were specific for exogenous antigen or DNA, frequencies of long-lived bone marrow plasma cells were unaffected. Instead, mTORC1 inhibition led to decreased expression of immunoglobulin-binding protein (BiP) and other factors needed for robust protein synthesis. Consequently, blockade of antibody synthesis was rapidly reversed after termination of rapamycin treatment. We conclude that mTOR signaling plays critical but diverse roles in early and late phases of antibody responses and plasma cell differentiation.
Derek D. Jones, Brian T. Gaudette, Joel R. Wilmore, Irene Chernova, Alexandra Bortnick, Brendan M. Weiss, David Allman
The adoptive transfer of T cells that have been genetically modified to express a CD19-specific chimeric antigen receptor (CAR) is effective for treating human B cell malignancies. However, the persistence of functional CD19 CAR T cells causes sustained depletion of endogenous CD19+ B cells and hypogammaglobulinemia. Thus, there is a need for a mechanism to ablate transferred T cells after tumor eradication is complete to allow recovery of normal B cells. Previously, we developed a truncated version of the epidermal growth factor receptor (EGFRt) that is coexpressed with the CAR on the T cell surface. Here, we show that targeting EGFRt with the IgG1 monoclonal antibody cetuximab eliminates CD19 CAR T cells both early and late after adoptive transfer in mice, resulting in complete and permanent recovery of normal functional B cells, without tumor relapse. EGFRt can be incorporated into many clinical applications to regulate the survival of gene-engineered cells. These results support the concept that EGFRt represents a promising approach to improve safety of cell-based therapies.
Paulina J. Paszkiewicz, Simon P. Fräßle, Shivani Srivastava, Daniel Sommermeyer, Michael Hudecek, Ingo Drexler, Michel Sadelain, Lingfeng Liu, Michael C. Jensen, Stanley R. Riddell, Dirk H. Busch
Enhancing energy expenditure (EE) is an attractive strategy to combat obesity and diabetes. Global deletion of
Qingzhang Zhu, Sarbani Ghoshal, Ana Rodrigues, Su Gao, Alice Asterian, Theodore M. Kamenecka, James C. Barrow, Anutosh Chakraborty
Patients with mutations in
Tineke Cantaert, Jean-Nicolas Schickel, Jason M. Bannock, Yen-Shing Ng, Christopher Massad, Fabien R. Delmotte, Natsuko Yamakawa, Salome Glauzy, Nicolas Chamberlain, Tuure Kinnunen, Laurence Menard, Aubert Lavoie, Jolan E. Walter, Luigi D. Notarangelo, Julie Bruneau, Waleed Al-Herz, Sara Sebnem Kilic, Hans D. Ochs, Charlotte Cunningham-Rundles, Mirjam van der Burg, Taco W. Kuijpers, Sven Kracker, Hideo Kaneko, Yujin Sekinaka, Shigeaki Nonoyama, Anne Durandy, Eric Meffre
Eccrine sweat glands are essential for sweating and thermoregulation in humans. Loss-of-function mutations in the Ca2+ release–activated Ca2+ (CRAC) channel genes
Axel R. Concepcion, Martin Vaeth, Larry E. Wagner II, Miriam Eckstein, Lee Hecht, Jun Yang, David Crottes, Maximilian Seidl, Hyosup P. Shin, Carl Weidinger, Scott Cameron, Stuart E. Turvey, Thomas Issekutz, Isabelle Meyts, Rodrigo S. Lacruz, Mario Cuk, David I. Yule, Stefan Feske
Huntington’s disease (HD) is a polyglutamine disorder caused by a CAG expansion in the Huntingtin (
Laura Rué, Mónica Bañez-Coronel, Jordi Creus-Muncunill, Albert Giralt, Rafael Alcalá-Vida, Gartze Mentxaka, Birgit Kagerbauer, M. Teresa Zomeño-Abellán, Zeus Aranda, Veronica Venturi, Esther Pérez-Navarro, Xavier Estivill, Eulàlia Martí
Scleroderma is a group of skin-fibrosing diseases for which there are no effective treatments. A feature of the skin fibrosis typical of scleroderma is atrophy of the dermal white adipose tissue (DWAT). Adipose tissue contains adipose-derived mesenchymal stromal cells (ADSCs) that have regenerative and reparative functions; however, whether DWAT atrophy in fibrosis is accompanied by ADSC loss is poorly understood, as are the mechanisms that might maintain ADSC survival in fibrotic skin. Here, we have shown that DWAT ADSC numbers were reduced, likely because of cell death, in 2 murine models of scleroderma skin fibrosis. The remaining ADSCs showed a partial dependence on dendritic cells (DCs) for survival. Lymphotoxin β (LTβ) expression in DCs maintained ADSC survival in fibrotic skin by activating an LTβ receptor/β1 integrin (LTβR/β1 integrin) pathway on ADSCs. Stimulation of LTβR augmented the engraftment of therapeutically injected ADSCs, which was associated with reductions in skin fibrosis and improved skin function. These findings provide insight into the effects of skin fibrosis on DWAT ADSCs, identify a DC-ADSC survival axis in fibrotic skin, and suggest an approach for improving mesenchymal stromal cell therapy in scleroderma and other diseases.
Jennifer J. Chia, Tong Zhu, Susan Chyou, Dragos C. Dasoveanu, Camila Carballo, Sha Tian, Cynthia M. Magro, Scott Rodeo, Robert F. Spiera, Nancy H. Ruddle, Timothy E. McGraw, Jeffrey L. Browning, Robert Lafyatis, Jessica K. Gordon, Theresa T. Lu
Although necrosis and necroinflammation are central features of many liver diseases, the role of programmed necrosis in the context of inflammation-dependent hepatocellular death remains to be fully determined. Here, we have demonstrated that the pseudokinase mixed lineage kinase domain–like protein (MLKL), which plays a key role in the execution of receptor-interacting protein (RIP) kinase–dependent necroptosis, is upregulated and activated in human autoimmune hepatitis and in a murine model of inflammation-dependent hepatitis. Using genetic and pharmacologic approaches, we determined that hepatocellular necrosis in experimental hepatitis is driven by an MLKL-dependent pathway that occurs independently of RIPK3. Moreover, we have provided evidence that the cytotoxic activity of the proinflammatory cytokine IFN-γ in hepatic inflammation is strongly connected to induction of MLKL expression via activation of the transcription factor STAT1. In summary, our results reveal a pathway for MLKL-dependent programmed necrosis that is executed in the absence of RIPK3 and potentially drives the pathogenesis of severe liver diseases.
Claudia Günther, Gui-Wei He, Andreas E. Kremer, James M. Murphy, Emma J. Petrie, Kerstin Amann, Peter Vandenabeele, Andreas Linkermann, Christopher Poremba, Ulrike Schleicher, Christin Dewitz, Stefan Krautwald, Markus F. Neurath, Christoph Becker, Stefan Wirtz
Nonalcoholic fatty liver disease (NAFLD) is a risk factor for type 2 diabetes (T2D), but whether NAFLD plays a causal role in the pathogenesis of T2D is uncertain. One proposed mechanism linking NAFLD to hepatic insulin resistance involves diacylglycerol-mediated (DAG-mediated) activation of protein kinase C-ε (PKCε) and the consequent inhibition of insulin receptor (INSR) kinase activity. However, the molecular mechanism underlying PKCε inhibition of INSR kinase activity is unknown. Here, we used mass spectrometry to identify the phosphorylation site Thr1160 as a PKCε substrate in the functionally critical INSR kinase activation loop. We hypothesized that Thr1160 phosphorylation impairs INSR kinase activity by destabilizing the active configuration of the INSR kinase, and our results confirmed this prediction by demonstrating severely impaired INSR kinase activity in phosphomimetic T1160E mutants. Conversely, the INSR T1160A mutant was not inhibited by PKCε in vitro. Furthermore, mice with a threonine-to-alanine mutation at the homologous residue Thr1150 (
Max C. Petersen, Anila K. Madiraju, Brandon M. Gassaway, Michael Marcel, Ali R. Nasiri, Gina Butrico, Melissa J. Marcucci, Dongyan Zhang, Abudukadier Abulizi, Xian-Man Zhang, William Philbrick, Stevan R. Hubbard, Michael J. Jurczak, Varman T. Samuel, Jesse Rinehart, Gerald I. Shulman
Obese, insulin-resistant states are characterized by a paradoxical pathogenic condition in which the liver appears to be selectively insulin resistant. Specifically, insulin fails to suppress glucose production, yet successfully stimulates de novo lipogenesis. The mechanisms underlying this dysregulation remain controversial. Here, we hypothesized that carbohydrate-responsive element-binding protein (ChREBP), a transcriptional activator of glycolytic and lipogenic genes, plays a central role in this paradox. Administration of fructose increased hepatic hexose-phosphate levels, activated ChREBP, and caused glucose intolerance, hyperinsulinemia, hypertriglyceridemia, and hepatic steatosis in mice. Activation of ChREBP was required for the increased expression of glycolytic and lipogenic genes as well as glucose-6-phosphatase (G6pc) that was associated with the effects of fructose administration. We found that fructose-induced G6PC activity is a major determinant of hepatic glucose production and reduces hepatic glucose-6-phosphate levels to complete a homeostatic loop. Moreover, fructose activated ChREBP and induced G6pc in the absence of Foxo1a, indicating that carbohydrate-induced activation of ChREBP and G6PC dominates over the suppressive effects of insulin to enhance glucose production. This ChREBP/G6PC signaling axis is conserved in humans. Together, these findings support a carbohydrate-mediated, ChREBP-driven mechanism that contributes to hepatic insulin resistance.
Mi-Sung Kim, Sarah A. Krawczyk, Ludivine Doridot, Alan J. Fowler, Jennifer X. Wang, Sunia A. Trauger, Hye-Lim Noh, Hee Joon Kang, John K. Meissen, Matthew Blatnik, Jason K. Kim, Michelle Lai, Mark A. Herman
Cullen M. Taniguchi, Kohjiro Ueki, C. Ronald Kahn
Sabina Signoretti, Lucia Di Marcotullio, Andrea Richardson, Sridhar Ramaswamy, Beth Isaac, Montserrat Rue, Franco Monti, Massimo Loda, Michele Pagano
Beatrice Rondinelli, Dalia Rosano, Elena Antonini, Michela Frenquelli, Laura Montanini, DaChuan Huang, Simona Segalla, Kosuke Yoshihara, Samir B. Amin, Dejan Lazarevic, Bin Tean The, Roel G.W. Verhaak, P. Andrew Futreal, Luciano Di Croce, Lynda Chin, Davide Cittaro, Giovanni Tonon
Marianne R. Spalinger, Stephanie Kasper, Claudia Gottier, Silvia Lang, Kirstin Atrott, Stephan R. Vavricka, Sylvie Scharl, Tina Raselli, Isabelle Frey-Wagner, Petrus M. Gutte, Markus G. Grütter, Hans-Dietmar Beer, Emmanuel Contassot, Andrew C. Chan, Xuezhi Dai, David J. Rawlings, Florian Mair, Burkhard Becher, Werner Falk, Michael Fried, Gerhard Rogler, Michael Scharl
Jolan E. Walter, Lindsey B. Rosen, Krisztian Csomos, Jacob M. Rosenberg, Divij Mathew, Marton Keszei, Boglarka Ujhazi, Karin Chen, Yu Nee Lee, Irit Tirosh, Kerry Dobbs, Waleed Al-Herz, Morton J. Cowan, Jennifer Puck, Jack J. Bleesing, Michael S. Grimley, Harry Malech, Suk See De Ravin, Andrew R. Gennery, Roshini S. Abraham, Avni Y. Joshi, Thomas G. Boyce, Manish J. Butte, Kari C. Nadeau, Imelda Balboni, Kathleen E. Sullivan, Javeed Akhter, Mehdi Adeli, Reem A. El-Feky, Dalia H. El-Ghoneimy, Ghassan Dbaibo, Rima Wakim, Chiara Azzari, Paolo Palma, Caterina Cancrini, Kelly Capuder, Antonio Condino-Neto, Beatriz T. Costa-Carvalho, Joao Bosco Oliveira, Chaim Roifman, David Buchbinder, Attila Kumanovics, Jose Luis Franco, Tim Niehues, Catharina Schuetz, Taco Kuijpers, Christina Yee, Janet Chou, Michel J. Masaad, Raif Geha, Gulbu Uzel, Rebecca Gelman, Steven M. Holland, Mike Recher, Paul J. Utz, Sarah K. Browne, Luigi D. Notarangelo