This cover image shows a false-colored murine embryo on day 11.5 of development with GFP labeling of the periderm, an epidermal layer that exists transiently during embryogenesis. On page 3891, Rebecca Richardson, Nigel Hammond, and colleagues uncover a vital role for the periderm in preventing abnormal epithelial adhesion during murine development and in a case of a rare human congenital condition known as cocoon syndrome.
John M. Carethers, Shaun Coughlin, Betty Diamond, Serpil Erzurum, Linda P. Fried, J. Larry Jameson, Kenneth Kaushansky, Mary E. Klotman, Stanley Lemon, Beverly Mitchell, Paul Rothman, Charles Sawyers, Christine Seidman, Stefan Somlo
Prior to the 1990s, genetic analyses indicated that many autoimmune diseases are driven by T cell responses; however, the identity of the pathogenic T cell populations responsible for dysfunctional autoimmune responses remained unclear. Some 20 years ago, the discovery of numerous chemokines and their receptors along with the development of specific mAbs to these provided a distinct advance. These new tools revealed a remarkable dichotomy and disclosed that some chemokine receptors guided the constitutive migration of T cells through lymphoid tissues, whereas others, such as CCR5 and CXCR3, guided effector and memory T cell migration to inflammatory lesions. These T cell markers enabled a new understanding of immune responses and the types of T cells involved in different inflammatory reactions.
Charles R. Mackay
Clinical vignette: A 51-year-old man with right-sided sudden hearing loss presents to the otology clinic. He has a 4-year history of episodic vertigo of several hours’ duration and fluctuating, progressive sensorineural hearing loss in his left ear. The vertigo attacks have not occurred for the last 18 months, and the left ear hearing is consistently poor. The patient’s right ear hearing has dropped in the last 36 hours. MRI imaging of brain and temporal bone are normal. A 2-week “burst and taper” of oral prednisone is administered with no effect. Over the next 3 months, serial audiograms show rapidly progressive loss of threshold and word recognition scores on the right side. A trial of high-dose prednisone (60 mg/d for 30 days) results in full recovery of the right ear hearing and substantial improvement in the left ear. As the prednisone dose is slowly tapered over several months, the hearing drops again.
Steven D. Rauch
Primary immune deficiency diseases arise due to heritable defects that often involve signaling molecules required for immune cell function. Typically, these genetic defects cause loss of gene function, resulting in primary immune deficiencies such as severe combined immune deficiency (SCID) and X-linked agammaglobulinemia (XLA); however, gain-of-function mutations may also promote immune deficiency. In this issue of the
Craig M. Walsh, David A. Fruman
Who among us hasn’t fantasized about a diet that allows ingestion of a surfeit of calories that are burned off effortlessly by ramping up energy expenditure? In this issue of the
Timo D. Müller, Matthias H. Tschöp
Drug-eluting stents have emerged as potent weapons in the treatment of patients with symptomatic coronary artery disease by reducing restenosis rates; however, a significant clinical consequence of these stents is delayed reendothelialization, which may increase the risk of late stent thrombosis. In this issue of the
Mark W. Feinberg
Adult human pancreatic β cells are refractory to current therapeutic approaches to enhance proliferation. This reluctance to expand is problematic, especially for people with diabetes who lack sufficient numbers of functional insulin-producing β cells and could therefore benefit from therapies for β cell expansion. In this issue of the
Adolfo García-Ocaña, Andrew F. Stewart
Schlemm’s canal (SC) is a unique vascular structure that functions to maintain fluid homeostasis by draining aqueous humor from the eye into the systemic circulation. The endothelium lining the inner wall of SC has both blood and lymphatic vascular characteristics, thus prompting exploration of the development and regulation of this unique channel. In this issue of the
Natalie O. Karpinich, Kathleen M. Caron
Like many cancers, mammary carcinomas use lymphatic vessels to disseminate, and numerous clinical and experimental studies have documented a strong correlation between peritumoral lymphangiogenesis and tumor dissemination. At the same time, many other factors can affect the incidence, invasiveness, and mortality of breast cancer, including lactation history. Although lactation reduces overall cancer risk, patients diagnosed within 5 years of pregnancy have an increased incidence of metastatic disease. In this issue of the
Melody A. Swartz
Cancer has long been viewed as a genetic disease; however, epigenetic silencing as the result of aberrant promoter DNA methylation is frequently associated with cancer development, suggesting an epigenetic component to the disease. Nonetheless, it has remained unclear whether an epimutation (an aberrant change in epigenetic regulation) can induce tumorigenesis. Here, we exploited a functionally validated
Da-Hai Yu, Robert A. Waterland, Pumin Zhang, Deborah Schady, Miao-Hsueh Chen, Yongtao Guan, Manasi Gadkari, Lanlan Shen
The endocannabinoid system (ECS) regulates multiple physiological processes, including cutaneous cell growth and differentiation. Here, we explored the effects of the major nonpsychotropic phytocannabinoid of
Attila Oláh, Balázs I. Tóth, István Borbíró, Koji Sugawara, Attila G. Szöllõsi, Gabriella Czifra, Balázs Pál, Lídia Ambrus, Jennifer Kloepper, Emanuela Camera, Matteo Ludovici, Mauro Picardo, Thomas Voets, Christos C. Zouboulis, Ralf Paus, Tamás Bíró
Invariant natural killer T (
Duygu Sag, Petra Krause, Catherine C. Hedrick, Mitchell Kronenberg, Gerhard Wingender
Aberrant activation of EGFR in human cancers promotes tumorigenesis through stimulation of AKT signaling. Here, we determined that the discoidina neuropilin-like membrane protein DCBLD2 is upregulated in clinical specimens of glioblastomas and head and neck cancers (HNCs) and is required for EGFR-stimulated tumorigenesis. In multiple cancer cell lines, EGFR activated phosphorylation of tyrosine 750 (Y750) of DCBLD2, which is located within a recently identified binding motif for TNF receptor-associated factor 6 (TRAF6). Consequently, phosphorylation of DCBLD2 Y750 recruited TRAF6, leading to increased TRAF6 E3 ubiquitin ligase activity and subsequent activation of AKT, thereby enhancing EGFR-driven tumorigenesis. Moreover, evaluation of patient samples of gliomas and HNCs revealed an association among EGFR activation, DCBLD2 phosphorylation, and poor prognoses. Together, our findings uncover a pathway in which DCBLD2 functions as a signal relay for oncogenic EGFR signaling to promote tumorigenesis and suggest DCBLD2 and TRAF6 as potential therapeutic targets for human cancers that are associated with EGFR activation.
Haizhong Feng, Giselle Y. Lopez, Chung Kwon Kim, Angel Alvarez, Christopher G. Duncan, Ryo Nishikawa, Motoo Nagane, An-Jey A. Su, Philip E. Auron, Matthew L. Hedberg, Lin Wang, Jeffery J. Raizer, John A. Kessler, Andrew T. Parsa, Wei-Qiang Gao, Sung-Hak Kim, Mutsuko Minata, Ichiro Nakano, Jennifer R. Grandis, Roger E. McLendon, Darell D. Bigner, Hui-Kuan Lin, Frank B. Furnari, Webster K. Cavenee, Bo Hu, Hai Yan, Shi-Yuan Cheng
The proteasome inhibiter bortezomib has been successfully used to treat patients with relapsed multiple myeloma; however, many of these patients become thrombocytopenic, and it is not clear how the proteasome influences platelet production. Here we determined that pharmacologic inhibition of proteasome activity blocks proplatelet formation in human and mouse megakaryocytes. We also found that megakaryocytes isolated from mice deficient for PSMC1, an essential subunit of the 26S proteasome, fail to produce proplatelets. Consistent with decreased proplatelet formation, mice lacking PSMC1 in platelets (
Dallas S. Shi, Matthew C.P. Smith, Robert A. Campbell, Patrick W. Zimmerman, Zechariah B. Franks, Bjorn F. Kraemer, Kellie R. Machlus, Jing Ling, Patrick Kamba, Hansjörg Schwertz, Jesse W. Rowley, Rodney R. Miles, Zhi-Jian Liu, Martha Sola-Visner, Joseph E. Italiano Jr., Hilary Christensen, Walter H.A. Kahr, Dean Y. Li, Andrew S. Weyrich
Metaplasia can result when injury reactivates latent developmental signaling pathways that determine cell phenotype. Barrett’s esophagus is a squamous-to-columnar epithelial metaplasia caused by reflux esophagitis. Hedgehog (Hh) signaling is active in columnar-lined, embryonic esophagus and inactive in squamous-lined, adult esophagus. We showed previously that Hh signaling is reactivated in Barrett’s metaplasia and overexpression of Sonic hedgehog (SHH) in mouse esophageal squamous epithelium leads to a columnar phenotype. Here, our objective was to identify Hh target genes involved in Barrett’s pathogenesis. By microarray analysis, we found that the transcription factor
David H. Wang, Anjana Tiwari, Monica E. Kim, Nicholas J. Clemons, Nanda L. Regmi, William A. Hodges, David M. Berman, Elizabeth A. Montgomery, D. Neil Watkins, Xi Zhang, Qiuyang Zhang, Chunfa Jie, Stuart J. Spechler, Rhonda F. Souza
Protein-tyrosine phosphatase 1B (PTP1B) regulates food intake (FI) and energy expenditure (EE) by inhibiting leptin signaling in the hypothalamus. In peripheral tissues, PTP1B regulates insulin signaling, but its effects on CNS insulin action are largely unknown. Mice harboring a whole-brain deletion of the gene encoding PTP1B (
Franck Chiappini, Karyn J. Catalano, Jennifer Lee, Odile D. Peroni, Jacqueline Lynch, Abha S. Dhaneshwar, Kerry Wellenstein, Alexandra Sontheimer, Benjamin G. Neel, Barbara B. Kahn
The intestinal epithelium has a high rate of turnover, and dysregulation of pathways that regulate regeneration can lead to tumor development; however, the negative regulators of oncogenic events in the intestinal epithelium are not fully understood. Here we identified a feedback loop between the epidermal growth factor receptor (EGFR), a known mediator of proliferation, and the transient receptor potential cation channel, subfamily V, member 1 (TRPV1), in intestinal epithelial cells (IECs). We found that TRPV1 was expressed by IECs and was intrinsically activated upon EGFR stimulation. Subsequently, TRPV1 activation inhibited EGFR-induced epithelial cell proliferation via activation of Ca2+/calpain and resulting activation of protein tyrosine phosphatase 1B (PTP1B). In a murine model of multiple intestinal neoplasia (
Petrus R. de Jong, Naoki Takahashi, Alexandra R. Harris, Jihyung Lee, Samuel Bertin, James Jeffries, Michael Jung, Jen Duong, Amy I. Triano, Jongdae Lee, Yaron Niv, David S. Herdman, Koji Taniguchi, Chang-Whan Kim, Hui Dong, Lars Eckmann, Stephanie M. Stanford, Nunzio Bottini, Maripat Corr, Eyal Raz
Despite advancement in breast cancer treatment, 30% of patients with early breast cancers experience relapse with distant metastasis. It is a challenge to identify patients at risk for relapse; therefore, the identification of markers and therapeutic targets for metastatic breast cancers is imperative. Here, we identified DP103 as a biomarker and metastasis-driving oncogene in human breast cancers and determined that DP103 elevates matrix metallopeptidase 9 (MMP9) levels, which are associated with metastasis and invasion through activation of NF-κB. In turn, NF-κB signaling positively activated DP103 expression. Furthermore, DP103 enhanced TGF-β–activated kinase-1 (TAK1) phosphorylation of NF-κB–activating IκB kinase 2 (IKK2), leading to increased NF-κB activity. Reduction of DP103 expression in invasive breast cancer cells reduced phosphorylation of IKK2, abrogated NF-κB–mediated MMP9 expression, and impeded metastasis in a murine xenograft model. In breast cancer patient tissues, elevated levels of
Eun Myoung Shin, Hui Sin Hay, Moon Hee Lee, Jen Nee Goh, Tuan Zea Tan, Yin Ping Sen, See Wee Lim, Einas M. Yousef, Hooi Tin Ong, Aye Aye Thike, Xiangjun Kong, Zhengsheng Wu, Earnest Mendoz, Wei Sun, Manuel Salto-Tellez, Chwee Teck Lim, Peter E. Lobie, Yoon Pin Lim, Celestial T. Yap, Qi Zeng, Gautam Sethi, Martin B. Lee, Patrick Tan, Boon Cher Goh, Lance D. Miller, Jean Paul Thiery, Tao Zhu, Louis Gaboury, Puay Hoon Tan, Kam Man Hui, George Wai-Cheong Yip, Shigeki Miyamoto, Alan Prem Kumar, Vinay Tergaonkar
Canonical WNT signaling is required for proper vascularization of the CNS during embryonic development. Here, we used mice with targeted mutations in genes encoding canonical WNT pathway members to evaluate the exact contribution of these components in CNS vascular development and in specification of the blood-brain barrier (BBB) and blood-retina barrier (BRB). We determined that vasculature in various CNS regions is differentially sensitive to perturbations in canonical WNT signaling. The closely related WNT signaling coreceptors LDL receptor–related protein 5 (LRP5) and LRP6 had redundant functions in brain vascular development and barrier maintenance; however, loss of LRP5 alone dramatically altered development of the retinal vasculature. The BBB in the cerebellum and pons/interpeduncular nuclei was highly sensitive to decrements in canonical WNT signaling, and WNT signaling was required to maintain plasticity of barrier properties in mature CNS vasculature. Brain and retinal vascular defects resulting from ablation of Norrin/Frizzled4 signaling were ameliorated by stabilizing β-catenin, while inhibition of β-catenin–dependent transcription recapitulated the vascular development and barrier defects associated with loss of receptor, coreceptor, or ligand, indicating that Norrin/Frizzled4 signaling acts predominantly through β-catenin–dependent transcriptional regulation. Together, these data strongly support a model in which identical or nearly identical canonical WNT signaling mechanisms mediate neural tube and retinal vascularization and maintain the BBB and BRB.
Yulian Zhou, Yanshu Wang, Max Tischfield, John Williams, Philip M. Smallwood, Amir Rattner, Makoto M. Taketo, Jeremy Nathans
Cancer stem cells (CSCs) are responsible for the initiation and maintenance of some types of cancer, suggesting that inhibition of these cells may limit disease progression and relapse. Unfortunately, few CSC-specific genes have been identified. Here, we determined that the gene encoding arachidonate 15-lipoxygenase (Alox15/15-LO) is essential for the survival of leukemia stem cells (LSCs) in a murine model of BCR-ABL–induced chronic myeloid leukemia (CML). In the absence of Alox15, BCR-ABL was unable to induce CML in mice. Furthermore, Alox15 deletion impaired LSC function by affecting cell division and apoptosis, leading to an eventual depletion of LSCs. Moreover, chemical inhibition of 15-LO function impaired LSC function and attenuated CML in mice. The defective CML phenotype in Alox15-deficient animals was rescued by depleting the gene encoding P-selectin, which is upregulated in Alox15-deficient animals. Both deletion and overexpression of P-selectin affected the survival of LSCs. In human CML cell lines and CD34+ cells, knockdown of Alox15 or inhibition of 15-LO dramatically reduced survival. Loss of Alox15 altered expression of PTEN, PI3K/AKT, and the transcription factor ICSBP, which are known mediators of cancer pathogenesis. These results suggest that ALOX15 has potential as a therapeutic target for eradicating LSCs in CML.
Yaoyu Chen, Cong Peng, Sheela A. Abraham, Yi Shan, Zhiru Guo, Ngoc Desouza, Giulia Cheloni, Dongguang Li, Tessa L. Holyoake, Shaoguang Li
Crohn’s disease (CD) and ulcerative colitis (UC) are chronic inflammatory bowel diseases (IBDs) of unknown etiology that are associated with an aberrant mucosal immune response. Neoangiogenesis and vascular injury are observed in IBD along with increased lymphangiogenesis. While the pathogenic role of angiogenesis in IBD is well characterized, it is not clear how or if increased lymphangiogenesis promotes disease. Here, we determined that enhancing lymphangiogenesis and lymphatic function reduces experimental IBD. Specifically, we demonstrated that adenoviral induction of prolymphangiogenic factor VEGF-C provides marked protection against the development of acute and chronic colitis in 2 different animal models. VEGF-C–dependent protection was observed in combination with increased inflammatory cell mobilization and bacterial antigen clearance from the inflamed colon to the draining lymph nodes. Moreover, we found that the VEGF-C/VEGFR3 pathway regulates macrophage (MΦ) plasticity and activation both in cultured MΦs and in vivo, imparting a hybrid M1-M2 phenotype. The protective function of VEGF-C was meditated by the so-called resolving MΦs during chronic experimental colitis in a STAT6-dependent manner. Together, these findings shed light on the contribution of lymphatics to the pathogenesis of gut inflammation and suggest that correction of defective lymphatic function with VEGF-C has potential as a therapeutic strategy for IBD.
Silvia D’Alessio, Carmen Correale, Carlotta Tacconi, Alessandro Gandelli, Giovanni Pietrogrande, Stefania Vetrano, Marco Genua, Vincenzo Arena, Antonino Spinelli, Laurent Peyrin-Biroulet, Claudio Fiocchi, Silvio Danese
The phase III RV144 HIV-1 vaccine trial estimated vaccine efficacy (VE) to be 31.2%. This trial demonstrated that the presence of HIV-1–specific IgG-binding Abs to envelope (Env) V1V2 inversely correlated with infection risk, while the presence of Env-specific plasma IgA Abs directly correlated with risk of HIV-1 infection. Moreover, Ab-dependent cellular cytotoxicity responses inversely correlated with risk of infection in vaccine recipients with low IgA; therefore, we hypothesized that vaccine-induced Fc receptor–mediated (FcR-mediated) Ab function is indicative of vaccine protection. We sequenced exons and surrounding areas of FcR-encoding genes and found one
Shuying S. Li, Peter B. Gilbert, Georgia D. Tomaras, Gustavo Kijak, Guido Ferrari, Rasmi Thomas, Chul-Woo Pyo, Susan Zolla-Pazner, David Montefiori, Hua-Xin Liao, Gary Nabel, Abraham Pinter, David T. Evans, Raphael Gottardo, James Y. Dai, Holly Janes, Daryl Morris, Youyi Fong, Paul T. Edlefsen, Fusheng Li, Nicole Frahm, Michael D. Alpert, Heather Prentice, Supachai Rerks-Ngarm, Punnee Pitisuttithum, Jaranit Kaewkungwal, Sorachai Nitayaphan, Merlin L. Robb, Robert J. O’Connell, Barton F. Haynes, Nelson L. Michael, Jerome H. Kim, M. Juliana McElrath, Daniel E. Geraghty
Appropriate development of stratified, squamous, keratinizing epithelia, such as the epidermis and oral epithelia, generates an outer protective permeability barrier that prevents water loss, entry of toxins, and microbial invasion. During embryogenesis, the immature ectoderm initially consists of a single layer of undifferentiated, cuboidal epithelial cells that stratifies to produce an outer layer of flattened periderm cells of unknown function. Here, we determined that periderm cells form in a distinct pattern early in embryogenesis, exhibit highly polarized expression of adhesion complexes, and are shed from the outer surface of the embryo late in development. Mice carrying loss-of-function mutations in the genes encoding IFN regulatory factor 6 (IRF6), IκB kinase-α (IKKα), and stratifin (SFN) exhibit abnormal epidermal development, and we determined that mutant animals exhibit dysfunctional periderm formation, resulting in abnormal intracellular adhesions. Furthermore, tissue from a fetus with cocoon syndrome, a lethal disorder that results from a nonsense mutation in
Rebecca J. Richardson, Nigel L. Hammond, Pierre A. Coulombe, Carola Saloranta, Heidi O. Nousiainen, Riitta Salonen, Andrew Berry, Neil Hanley, Denis Headon, Riitta Karikoski, Michael J. Dixon
Breast involution following pregnancy has been implicated in the high rates of metastasis observed in postpartum breast cancers; however, it is not clear how this remodeling process promotes metastasis. Here, we demonstrate that human postpartum breast cancers have increased peritumor lymphatic vessel density that correlates with increased frequency of lymph node metastases. Moreover, lymphatic vessel density was increased in normal postpartum breast tissue compared with tissue from nulliparous women. In rodents, mammary lymphangiogenesis was upregulated during weaning-induced mammary gland involution. Furthermore, breast cancer cells exposed to the involuting mammary microenvironment acquired prolymphangiogenic properties that contributed to peritumor lymphatic expansion, tumor size, invasion, and distant metastases. Finally, in rodent models of postpartum breast cancer, cyclooxygenase-2 (COX-2) inhibition during the involution window decreased normal mammary gland lymphangiogenesis, mammary tumor-associated lymphangiogenesis, tumor cell invasion into lymphatics, and metastasis. Our data indicate that physiologic COX-2–dependent lymphangiogenesis occurs in the postpartum mammary gland and suggest that tumors within this mammary microenvironment acquire enhanced prolymphangiogenic activity. Further, our results suggest that the prolymphangiogenic microenvironment of the postpartum mammary gland has potential as a target to inhibit metastasis and suggest that further study of the therapeutic efficacy of COX-2 inhibitors in postpartum breast cancer is warranted.
Traci R. Lyons, Virginia F. Borges, Courtney B. Betts, Qiuchen Guo, Puja Kapoor, Holly A. Martinson, Sonali Jindal, Pepper Schedin
Enhanced fibroblast growth factor 21 (FGF21) production and circulation has been linked to the metabolic adaptation to starvation. Here, we demonstrated that hepatic FGF21 expression is induced by dietary protein restriction, but not energy restriction. Circulating FGF21 was increased 10-fold in mice and rats fed a low-protein (LP) diet. In these animals, liver
Thomas Laeger, Tara M. Henagan, Diana C. Albarado, Leanne M. Redman, George A. Bray, Robert C. Noland, Heike Münzberg, Susan M. Hutson, Thomas W. Gettys, Michael W. Schwartz, Christopher D. Morrison
Recently, patient mutations that activate PI3K signaling have been linked to a primary antibody deficiency. Here, we used whole-exome sequencing and characterized the molecular defects in 4 patients from 3 unrelated families diagnosed with hypogammaglobulinemia and recurrent infections. We identified 2 different heterozygous splice site mutations that affect the same splice site in
Marie-Céline Deau, Lucie Heurtier, Pierre Frange, Felipe Suarez, Christine Bole-Feysot, Patrick Nitschke, Marina Cavazzana, Capucine Picard, Anne Durandy, Alain Fischer, Sven Kracker
Spermatogenesis is a complex, multistep process that maintains male fertility and is sustained by rare germline stem cells. Spermatogenic progression begins with spermatogonia, populations of which express distinct markers. The identity of the spermatogonial stem cell population in the undisturbed testis is controversial due to a lack of reliable and specific markers. Here we identified the transcription factor PAX7 as a specific marker of a rare subpopulation of Asingle spermatogonia in mice. PAX7+ cells were present in the testis at birth. Compared with the adult testis, PAX7+ cells constituted a much higher percentage of neonatal germ cells. Lineage tracing in healthy adult mice revealed that PAX7+ spermatogonia self-maintained and produced expanding clones that gave rise to mature spermatozoa. Interestingly, in mice subjected to chemotherapy and radiotherapy, both of which damage the vast majority of germ cells and can result in sterility, PAX7+ spermatogonia selectively survived, and their subsequent expansion contributed to the recovery of spermatogenesis. Finally, PAX7+ spermatogonia were present in the testes of a diverse set of mammals. Our data indicate that the PAX7+ subset of Asingle spermatogonia functions as robust testis stem cells that maintain fertility in normal spermatogenesis in healthy mice and mediate recovery after severe germline injury, such as occurs after cancer therapy.
Gina M. Aloisio, Yuji Nakada, Hatice D. Saatcioglu, Christopher G. Peña, Michael D. Baker, Edward D. Tarnawa, Jishnu Mukherjee, Hema Manjunath, Abhijit Bugde, Anita L. Sengupta, James F. Amatruda, Ileana Cuevas, F. Kent Hamra, Diego H. Castrillon
Rheumatoid arthritis–associated (RA-associated) inflammation is mediated through the interaction between RA IgG immune complexes and IgG Fc receptors on immune cells. Polymorphisms within the gene encoding the human IgG Fc receptor IIA (hFcγRIIA) are associated with an increased risk of developing RA. Within the hFcγRIIA intracytoplasmic domain, there are 2 conserved tyrosine residues arranged in a noncanonical immunoreceptor tyrosine–based activation motif (ITAM). Here, we reveal that inhibitory engagement of the hFcγRIIA ITAM either with anti-hFcγRII F(ab′)2 fragments or intravenous hIgG (IVIg) ameliorates RA-associated inflammation, and this effect was characteristic of previously described inhibitory ITAM (ITAMi) signaling for hFcαRI and hFcγRIIIA, but only involves a single tyrosine. In hFcγRIIA-expressing mice, arthritis induction was inhibited following hFcγRIIA engagement. Moreover, hFcγRIIA ITAMi-signaling reduced ROS and inflammatory cytokine production through inhibition of guanine nucleotide exchange factor VAV-1 and IL-1 receptor–associated kinase 1 (IRAK-1), respectively. ITAMi signaling was mediated by tyrosine 304 (Y304) within the hFcγRIIA ITAM, which was required for recruitment of tyrosine kinase SYK and tyrosine phosphatase SHP-1. Anti-hFcγRII F(ab′)2 treatment of inflammatory synovial cells from RA patients inhibited ROS production through induction of ITAMi signaling. These data suggest that shifting constitutive hFcγRIIA-mediated activation to ITAMi signaling could ameliorate RA-associated inflammation.
Sanae Ben Mkaddem, Gilles Hayem, Friederike Jönsson, Elisabetta Rossato, Erwan Boedec, Tarek Boussetta, Jamel El Benna, Pierre Launay, Jean-Michel Goujon, Marc Benhamou, Pierre Bruhns, Renato C. Monteiro
Schlemm’s canal (SC) is a specialized vascular structure in the eye that functions to drain aqueous humor from the intraocular chamber into systemic circulation. Dysfunction of SC has been proposed to underlie increased aqueous humor outflow (AHO) resistance, which leads to elevated ocular pressure, a factor for glaucoma development in humans. Here, using lymphatic and blood vasculature reporter mice, we determined that SC, which originates from blood vessels during the postnatal period, acquires lymphatic identity through upregulation of prospero homeobox protein 1 (PROX1), the master regulator of lymphatic development. SC expressed lymphatic valve markers FOXC2 and integrin α9 and exhibited continuous vascular endothelial–cadherin (VE-cadherin) junctions and basement membrane, similar to collecting lymphatics. SC notably lacked luminal valves and expression of the lymphatic endothelial cell markers podoplanin and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1). Using an ocular puncture model, we determined that reduced AHO altered the fate of SC both during development and under pathologic conditions; however, alteration of VEGF-C/VEGFR3 signaling did not modulate SC integrity and identity. Intriguingly, PROX1 expression levels linearly correlated with SC functionality. For example, PROX1 expression was reduced or undetectable under pathogenic conditions and in deteriorated SCs. Collectively, our data indicate that PROX1 is an accurate and reliable biosensor of SC integrity and identity.
Dae-Young Park, Junyeop Lee, Intae Park, Dongwon Choi, Sunju Lee, Sukhyun Song, Yoonha Hwang, Ki Yong Hong, Yoshikazu Nakaoka, Taija Makinen, Pilhan Kim, Kari Alitalo, Young-Kwon Hong, Gou Young Koh
In glaucoma, aqueous outflow into the Schlemm’s canal (SC) is obstructed. Despite striking structural and functional similarities with the lymphatic vascular system, it is unknown whether the SC is a blood or lymphatic vessel. Here, we demonstrated the expression of lymphatic endothelial cell markers by the SC in murine and zebrafish models as well as in human eye tissue. The initial stages of SC development involved induction of the transcription factor PROX1 and the lymphangiogenic receptor tyrosine kinase VEGFR-3 in venous endothelial cells in postnatal mice. Using gene deletion and function-blocking antibodies in mice, we determined that the lymphangiogenic growth factor VEGF-C and its receptor, VEGFR-3, are essential for SC development. Delivery of VEGF-C into the adult eye resulted in sprouting, proliferation, and growth of SC endothelial cells, whereas VEGF-A obliterated the aqueous outflow system. Furthermore, a single injection of recombinant VEGF-C induced SC growth and was associated with trend toward a sustained decrease in intraocular pressure in adult mice. These results reveal the evolutionary conservation of the lymphatic-like phenotype of the SC, implicate VEGF-C and VEGFR-3 as critical regulators of SC lymphangiogenesis, and provide a basis for further studies on therapeutic manipulation of the SC with VEGF-C in glaucoma treatment.
Aleksanteri Aspelund, Tuomas Tammela, Salli Antila, Harri Nurmi, Veli-Matti Leppänen, Georgia Zarkada, Lukas Stanczuk, Mathias Francois, Taija Mäkinen, Pipsa Saharinen, Ilkka Immonen, Kari Alitalo
The pathogenesis of chronic obstructive pulmonary disease (COPD) remains unclear, but involves loss of alveolar surface area (emphysema) and airway inflammation (bronchitis) as the consequence of cigarette smoke (CS) exposure. Previously, we demonstrated that autophagy proteins promote lung epithelial cell death, airway dysfunction, and emphysema in response to CS; however, the underlying mechanisms have yet to be elucidated. Here, using cultured pulmonary epithelial cells and murine models, we demonstrated that CS causes mitochondrial dysfunction that is associated with a reduction of mitochondrial membrane potential. CS induced mitophagy, the autophagy-dependent elimination of mitochondria, through stabilization of the mitophagy regulator PINK1. CS caused cell death, which was reduced by administration of necrosis or necroptosis inhibitors. Genetic deficiency of PINK1 and the mitochondrial division/mitophagy inhibitor Mdivi-1 protected against CS-induced cell death and mitochondrial dysfunction in vitro and reduced the phosphorylation of MLKL, a substrate for RIP3 in the necroptosis pathway. Moreover,
Kenji Mizumura, Suzanne M. Cloonan, Kiichi Nakahira, Abhiram R. Bhashyam, Morgan Cervo, Tohru Kitada, Kimberly Glass, Caroline A. Owen, Ashfaq Mahmood, George R. Washko, Shu Hashimoto, Stefan W. Ryter, Augustine M.K. Choi
T cell senescence is thought to contribute to immune function decline, but the pathways that mediate senescence in these cells are not clear. Here, we evaluated T cell populations from healthy volunteers and determined that human CD8+ effector memory T cells that reexpress the naive T cell marker CD45RA have many characteristics of cellular senescence, including decreased proliferation, defective mitochondrial function, and elevated levels of both ROS and p38 MAPK. Despite their apparent senescent state, we determined that these cells secreted high levels of both TNF-α and IFN-γ and showed potent cytotoxic activity. We found that the senescent CD45RA-expressing population engaged anaerobic glycolysis to generate energy for effector functions. Furthermore, inhibition of p38 MAPK signaling in senescent CD8+ T cells increased their proliferation, telomerase activity, mitochondrial biogenesis, and fitness; however, the extra energy required for these processes did not arise from increased glucose uptake or oxidative phosphorylation. Instead, p38 MAPK blockade in these senescent cells induced an increase in autophagy through enhanced interactions between p38 interacting protein (p38IP) and autophagy protein 9 (ATG9) in an mTOR-independent manner. Together, our findings describe fundamental metabolic requirements of senescent primary human CD8+ T cells and demonstrate that p38 MAPK blockade reverses senescence via an mTOR-independent pathway.
Sian M. Henson, Alessio Lanna, Natalie E. Riddell, Ornella Franzese, Richard Macaulay, Stephen J. Griffiths, Daniel J. Puleston, Alexander Scarth Watson, Anna Katharina Simon, Sharon A. Tooze, Arne N. Akbar
Activation of central PPARγ promotes food intake and body weight gain; however, the identity of the neurons that express PPARγ and mediate the effect of this nuclear receptor on energy homeostasis is unknown. Here, we determined that selective ablation of PPARγ in murine proopiomelanocortin (POMC) neurons decreases peroxisome density, elevates reactive oxygen species, and induces leptin sensitivity in these neurons. Furthermore, ablation of PPARγ in POMC neurons preserved the interaction between mitochondria and the endoplasmic reticulum, which is dysregulated by HFD. Compared with control animals, mice lacking PPARγ in POMC neurons had increased energy expenditure and locomotor activity; reduced body weight, fat mass, and food intake; and improved glucose metabolism when exposed to high-fat diet (HFD). Finally, peripheral administration of either a PPARγ activator or inhibitor failed to affect food intake of mice with POMC-specific PPARγ ablation. Taken together, our data indicate that PPARγ mediates cellular, biological, and functional adaptations of POMC neurons to HFD, thereby regulating whole-body energy balance.
Lihong Long, Chitoku Toda, Jing Kwon Jeong, Tamas L. Horvath, Sabrina Diano
Structural maintenance of chromosomes (SMC) complexes are essential for maintaining chromatin structure and regulating gene expression. Two the three known SMC complexes, cohesin and condensin, are important for sister chromatid cohesion and condensation, respectively; however, the function of the third complex, SMC5–6, which includes the E3 SUMO-ligase NSMCE2 (also widely known as MMS21) is less clear. Here, we characterized 2 patients with primordial dwarfism, extreme insulin resistance, and gonadal failure and identified compound heterozygous frameshift mutations in
Felicity Payne, Rita Colnaghi, Nuno Rocha, Asha Seth, Julie Harris, Gillian Carpenter, William E. Bottomley, Eleanor Wheeler, Stephen Wong, Vladimir Saudek, David Savage, Stephen O’Rahilly, Jean-Claude Carel, Inês Barroso, Mark O’Driscoll, Robert Semple
The endothelium plays a fundamental role in maintaining vascular homeostasis by releasing factors that regulate local blood flow, systemic blood pressure, and the reactivity of leukocytes and platelets. Accordingly, endothelial dysfunction underpins many cardiovascular diseases, including hypertension, myocardial infarction, and stroke. Herein, we evaluated mice with endothelial-specific deletion of
Amie J. Moyes, Rayomand S. Khambata, Inmaculada Villar, Kristen J. Bubb, Reshma S. Baliga, Natalie G. Lumsden, Fang Xiao, Paul J. Gane, Anne-Sophie Rebstock, Roberta J. Worthington, Michela I. Simone, Filipa Mota, Fernando Rivilla, Susana Vallejo, Concepción Peiró, Carlos F. Sánchez Ferrer, Snezana Djordjevic, Mark J. Caulfield, Raymond J. MacAllister, David L. Selwood, Amrita Ahluwalia, Adrian J. Hobbs
Cancer is the second deadliest disease in the United States, necessitating improvements in tumor diagnosis and treatment. Current model systems of cancer are informative, but translating promising imaging approaches and therapies to clinical practice has been challenging. In particular, the lack of a large-animal model that accurately mimics human cancer has been a major barrier to the development of effective diagnostic tools along with surgical and therapeutic interventions. Here, we developed a genetically modified porcine model of cancer in which animals express a mutation in
Jessica C. Sieren, David K. Meyerholz, Xiao-Jun Wang, Bryan T. Davis, John D. Newell Jr., Emily Hammond, Judy A. Rohret, Frank A. Rohret, Jason T. Struzynski, J. Adam Goeken, Paul W. Naumann, Mariah R. Leidinger, Agshin Taghiyev, Richard Van Rheeden, Jussara Hagen, Benjamin W. Darbro, Dawn E. Quelle, Christopher S. Rogers
X-linked agammaglobulinemia (XLA) is an inherited immunodeficiency that results from mutations within the gene encoding Bruton’s tyrosine kinase (BTK). Many XLA-associated mutations affect splicing of
Burcu Bestas, Pedro M.D. Moreno, K. Emelie M. Blomberg, Dara K. Mohammad, Amer F. Saleh, Tolga Sutlu, Joel Z. Nordin, Peter Guterstam, Manuela O. Gustafsson, Shabnam Kharazi, Barbara Piątosa, Thomas C. Roberts, Mark A. Behlke, Matthew J.A. Wood, Michael J. Gait, Karin E. Lundin, Samir El Andaloussi, Robert Månsson, Anna Berglöf, Jesper Wengel, C.I. Edvard Smith
Jennifer E. Adair, Sandra K. Johnston, Maciej M. Mrugala, Brian C. Beard, Laura A. Guyman, Anne L. Baldock, Carly A. Bridge, Andrea Hawkins-Daarud, Jennifer L. Gori, Donald E. Born, Luis F. Gonzalez-Cuyar, Daniel L. Silbergeld, Russell C. Rockne, Barry E. Storer, Jason K. Rockhill, Kristin R. Swanson, Hans-Peter Kiem
Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene
Chester E. Chamberlain, David W. Scheel, Kathleen McGlynn, Hail Kim, Takeshi Miyatsuka, Juehu Wang, Vinh Nguyen, Shuhong Zhao, Anastasia Mavropoulos, Aswin G. Abraham, Eric O’Neill, Gregory M. Ku, Melanie H. Cobb, Gail R. Martin, Michael S. German
Drugs currently approved to coat stents used in percutaneous coronary interventions do not discriminate between proliferating vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). This lack of discrimination delays reendothelialization and vascular healing, increasing the risk of late thrombosis following angioplasty. We developed a microRNA-based (miRNA-based) approach to inhibit proliferative VSMCs, thus preventing restenosis, while selectively promoting reendothelialization and preserving EC function. We used an adenoviral (Ad) vector that encodes cyclin-dependent kinase inhibitor p27Kip1 (p27) with target sequences for EC-specific miR-126-3p at the 3′ end (Ad-p27-126TS). Exogenous p27 overexpression was evaluated in vitro and in a rat arterial balloon injury model following transduction with Ad-p27-126TS, Ad-p27 (without miR-126 target sequences), or Ad-GFP (control). In vitro, Ad-p27-126TS protected the ability of ECs to proliferate, migrate, and form networks. At 2 and 4 weeks after injury, Ad-p27-126TS–treated animals exhibited reduced restenosis, complete reendothelialization, reduced hypercoagulability, and restoration of the vasodilatory response to acetylcholine to levels comparable to those in uninjured vessels. By incorporating miR-126-3p target sequences to leverage endogenous EC-specific miR-126, we overexpressed exogenous p27 in VSMCs, while selectively inhibiting p27 overexpression in ECs. Our proof-of-principle study demonstrates the potential of using a miRNA-based strategy as a therapeutic approach to specifically inhibit vascular restenosis while preserving EC function.
Gaetano Santulli, Anetta Wronska, Kunihiro Uryu, Thomas G. Diacovo, Melanie Gao, Steven O. Marx, Jan Kitajewski, Jamie M. Chilton, Kemal Marc Akat, Thomas Tuschl, Andrew R. Marks, Hana Totary-Jain
Andrea Vambutas, Martin Lesser, Virginia Mullooly, Shresh Pathak, Gerald Zahtz, Lisa Rosen, Elliot Goldofsky
The prevalence of brain tumors in males is common but unexplained. While sex differences in disease are typically mediated through acute sex hormone actions, sex-specific differences in brain tumor rates are comparable at all ages, suggesting that factors other than sex hormones underlie this discrepancy. We found that mesenchymal glioblastoma (Mes-GBM) affects more males as the result of cell-intrinsic sexual dimorphism in astrocyte transformation. We used astrocytes from neurofibromin-deficient (
Tao Sun, Nicole M. Warrington, Jingqin Luo, Michael D. Brooks, Sonika Dahiya, Steven C. Snyder, Rajarshi Sengupta, Joshua B. Rubin
Francesco Niola, Xudong Zhao, Devendra Singh, Ryan Sullivan, Angelica Castano, Antonio Verrico, Pietro Zoppoli, Dinorah Friedmann-Morvinski, Erik Sulman, Lindy Barrett, Yuan Zhuang, Inder Verma, Robert Benezra, Ken Aldape, Antonio Iavarone, Anna Lasorella