Abstract

Clinical complications of atherosclerosis arise primarily as a result of luminal obstruction due to atherosclerotic plaque growth, with inadequate outward vessel remodeling and plaque destabilization leading to rupture. IL-1 is a proinflammatory cytokine that promotes atherogenesis in animal models, but its role in plaque destabilization and outward vessel remodeling is unclear. The studies presented herein show that advanced atherosclerotic plaques in mice lacking both IL-1 receptor type I and apolipoprotein E (Il1r1–/–Apoe–/– mice) unexpectedly exhibited multiple features of plaque instability as compared with those of Il1r1+/+Apoe–/– mice. These features included reduced plaque SMC content and coverage, reduced plaque collagen content, and increased intraplaque hemorrhage. In addition, the brachiocephalic arteries of Il1r1–/–Apoe–/– mice exhibited no difference in plaque size, but reduced vessel area and lumen size relative to controls, demonstrating a reduction in outward vessel remodeling. Interestingly, expression of MMP3 was dramatically reduced within the plaque and vessel wall of Il1r1–/–Apoe–/– mice, and Mmp3–/–Apoe–/– mice showed defective outward vessel remodeling compared with controls. In addition, MMP3 was required for IL-1–induced SMC invasion of Matrigel in vitro. Taken together, these results show that IL-1 signaling plays a surprising dual protective role in advanced atherosclerosis by promoting outward vessel remodeling and enhancing features of plaque stability, at least in part through MMP3-dependent mechanisms.

Authors

Matthew R. Alexander, Christopher W. Moehle, Jason L. Johnson, Zhengyu Yang, Jae K. Lee, Christopher L. Jackson, Gary K. Owens

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement