Concise Communication

Abstract

Chronic granulomatous disease (CGD) patients have recurrent life-threatening bacterial and fungal infections. Olfactomedin 4 (OLFM4) is a neutrophil granule protein that negatively regulates host defense against bacterial infection. The goal of this study was to evaluate the impact of Olfm4 deletion on host defense against Staphylococcus aureus and Aspergillus fumigatus in a murine X-linked gp91phox-deficiency CGD model. We found that intracellular killing and in vivo clearance of S. aureus, as well as resistance to S. aureus sepsis, were significantly increased in gp91phox and Olfm4 double-deficient mice compared with CGD mice. The activities of cathepsin C and its downstream proteases (neutrophil elastase and cathepsin G) and serum levels of IL-1β, IL-6, IL-12p40, CXCL2, G-CSF, and GM-CSF in Olfm4-deficient as well as gp91phox and Olfm4 double-deficient mice were significantly higher than those in WT and CGD mice after challenge with S. aureus. We did not observe enhanced defense against A. fumigatus in Olfm4-deficient mice using a lung infection model. These results show that Olfm4 deletion can successfully enhance immune defense against S. aureus, but not A. fumigatus, in CGD mice. These data suggest that OLFM4 may be an important target in CGD patients for the augmentation of host defense against bacterial infection.

Authors

Wenli Liu, Ming Yan, Janyce A. Sugui, Hongzhen Li, Chengfu Xu, Jungsoo Joo, Kyung J. Kwon-Chung, William G. Coleman, Griffin P. Rodgers

×

Abstract

Diabetes elevates the risk for neurological diseases, but little is known about the underlying mechanisms. Brain-derived neurotrophic factor (BDNF) is secreted by microvascular endothelial cells (ECs) in the brain, functioning as a neuroprotectant through the activation of the neurotrophic tyrosine kinase receptor TRKB. In a rat model of streptozotocin-induced hyperglycemia, we found that endothelial activation of MMP9 altered TRKB-dependent trophic pathways by degrading TRKB in neurons. Treatment of brain microvascular ECs with advanced glycation endproducts (AGE), a metabolite commonly elevated in diabetic patients, increased MMP9 activation, similar to in vivo findings. Recombinant human MMP9 degraded the TRKB ectodomain in primary neuronal cultures, suggesting that TRKB could be a substrate for MMP9 proteolysis. Consequently, AGE-conditioned endothelial media with elevated MMP9 activity degraded the TRKB ectodomain and simultaneously disrupted the ability of endothelium to protect neurons against hypoxic injury. Our findings demonstrate that neuronal TRKB trophic function is ablated by MMP9-mediated degradation in the diabetic brain, disrupting cerebrovascular trophic coupling and leaving the brain vulnerable to injury.

Authors

Deepti Navaratna, Xiang Fan, Wendy Leung, Josephine Lok, Shuzhen Guo, Changhong Xing, Xiaoying Wang, Eng H. Lo

×

Abstract

Brown adipose tissue (BAT) burns fat to produce heat when the body is exposed to cold and plays a role in energy metabolism. Using fluorodeoxyglucose-positron emission tomography and computed tomography, we previously reported that BAT decreases with age and thereby accelerates age-related accumulation of body fat in humans. Thus, the recruitment of BAT may be effective for body fat reduction. In this study, we examined the effects of repeated stimulation by cold and capsinoids (nonpungent capsaicin analogs) in healthy human subjects with low BAT activity. Acute cold exposure at 19°C for 2 hours increased energy expenditure (EE). Cold-induced increments of EE (CIT) strongly correlated with BAT activity independently of age and fat-free mass. Daily 2-hour cold exposure at 17°C for 6 weeks resulted in a parallel increase in BAT activity and CIT and a concomitant decrease in body fat mass. Changes in BAT activity and body fat mass were negatively correlated. Similarly, daily ingestion of capsinoids for 6 weeks increased CIT. These results demonstrate that human BAT can be recruited even in individuals with decreased BAT activity, thereby contributing to body fat reduction.

Authors

Takeshi Yoneshiro, Sayuri Aita, Mami Matsushita, Takashi Kayahara, Toshimitsu Kameya, Yuko Kawai, Toshihiko Iwanaga, Masayuki Saito

×

Abstract

Numerous common genetic variants have been linked to blood pressure, but no underlying mechanism has been elucidated. Population studies have revealed that the variant rs5068 (A/G) in the 3′ untranslated region of NPPA, the gene encoding atrial natriuretic peptide (ANP), is associated with blood pressure. We selected individuals on the basis of rs5068 genotype (AG vs. AA) and fed them a low- or high-salt diet for 1 week, after which they were challenged with an intravenous saline infusion. On both diets, before and after saline administration, ANP levels were up to 50% higher in AG individuals than in AA individuals, a difference comparable to the changes induced by high-salt diet or saline infusion. In contrast, B-type natriuretic peptide levels did not differ by rs5068 genotype. We identified a microRNA, miR-425, that is expressed in human atria and ventricles and is predicted to bind the sequence spanning rs5068 for the A, but not the G, allele. miR-425 silenced NPPA mRNA in an allele-specific manner, with the G allele conferring resistance to miR-425. This study identifies miR-425 as a regulator of ANP production, raising the possibility that miR-425 antagonists could be used to treat disorders of salt overload, including hypertension and heart failure.

Authors

Pankaj Arora, Connie Wu, Abigail May Khan, Donald B. Bloch, Brandi N. Davis-Dusenbery, Anahita Ghorbani, Ester Spagnolli, Andrew Martinez, Allicia Ryan, Laurel T. Tainsh, Samuel Kim, Jian Rong, Tianxiao Huan, Jane E. Freedman, Daniel Levy, Karen K. Miller, Akiko Hata, Federica del Monte, Sara Vandenwijngaert, Melissa Swinnen, Stefan Janssens, Tara M. Holmes, Emmanuel S. Buys, Kenneth D. Bloch, Christopher Newton-Cheh, Thomas J. Wang

×

Abstract

Sim1 haploinsufficiency in mice induces hyperphagic obesity and developmental abnormalities of the brain. In humans, abnormalities in chromosome 6q16, a region that includes SIM1, were reported in obese children with a Prader-Willi–like syndrome; however, SIM1 involvement in obesity has never been conclusively demonstrated. Here, SIM1 was sequenced in 44 children with Prader-Willi–like syndrome features, 198 children with severe early-onset obesity, 568 morbidly obese adults, and 383 controls. We identified 4 rare variants (p.I128T, p.Q152E, p.R581G, and p.T714A) in 4 children with Prader-Willi–like syndrome features (including severe obesity) and 4 other rare variants (p.T46R, p.E62K, p.H323Y, and p.D740H) in 7 morbidly obese adults. By assessing the carriers’ relatives, we found a significant contribution of SIM1 rare variants to intra-family risk for obesity. We then assessed functional effects of the 8 substitutions on SIM1 transcriptional activities in stable cell lines using luciferase gene reporter assays. Three mutations showed strong loss-of-function effects (p.T46R, p.H323Y, and p.T714A) and were associated with high intra-family risk for obesity, while the variants with mild or no effects on SIM1 activity were not associated with obesity within families. Our genetic and functional studies demonstrate a firm link between SIM1 loss of function and severe obesity associated with, or independent of, Prader-Willi–like features.

Authors

Amélie Bonnefond, Anne Raimondo, Fanny Stutzmann, Maya Ghoussaini, Shwetha Ramachandrappa, David C. Bersten, Emmanuelle Durand, Vincent Vatin, Beverley Balkau, Olivier Lantieri, Violeta Raverdy, François Pattou, Wim Van Hul, Luc Van Gaal, Daniel J. Peet, Jacques Weill, Jennifer L. Miller, Fritz Horber, Anthony P. Goldstone, Daniel J. Driscoll, John B. Bruning, David Meyre, Murray L. Whitelaw, Philippe Froguel

×

Abstract

Adenoid cystic carcinoma (ACC) is a rare malignancy that can occur in multiple organ sites and is primarily found in the salivary gland. While the identification of recurrent fusions of the MYB-NFIB genes have begun to shed light on the molecular underpinnings, little else is known about the molecular genetics of this frequently fatal cancer. We have undertaken exome sequencing in a series of 24 ACC to further delineate the genetics of the disease. We identified multiple mutated genes that, combined, implicate chromatin deregulation in half of cases. Further, mutations were identified in known cancer genes, including PIK3CA, ATM, CDKN2A, SF3B1, SUFU, TSC1, and CYLD. Mutations in NOTCH1/2 were identified in 3 cases, and we identify the negative NOTCH signaling regulator, SPEN, as a new cancer gene in ACC with mutations in 5 cases. Finally, the identification of 3 likely activating mutations in the tyrosine kinase receptor FGFR2, analogous to those reported in ovarian and endometrial carcinoma, point to potential therapeutic avenues for a subset of cases.

Authors

Philip J. Stephens, Helen R. Davies, Yoshitsugu Mitani, Peter Van Loo, Adam Shlien, Patrick S. Tarpey, Elli Papaemmanuil, Angela Cheverton, Graham R. Bignell, Adam P. Butler, John Gamble, Stephen Gamble, Claire Hardy, Jonathan Hinton, Mingming Jia, Alagu Jayakumar, David Jones, Calli Latimer, Stuart McLaren, David J. McBride, Andrew Menzies, Laura Mudie, Mark Maddison, Keiran Raine, Serena Nik-Zainal, Sarah O’Meara, Jon W. Teague, Ignacio Varela, David C. Wedge, Ian Whitmore, Scott M. Lippman, Ultan McDermott, Michael R. Stratton, Peter J. Campbell, Adel K. El-Naggar, P. Andrew Futreal

×

Abstract

Hippocampal development is coordinated by both extracellular factors like GABA neurotransmission and intracellular components like DISC1. We previously reported that SLC12A2-dependent GABA depolarization and DISC1 coregulate hippocampal neuronal development, and 2 SNPs in these genes linked to mRNA expression interactively increase schizophrenia risk. Using functional MRI, we now confirm this biological interaction in vivo by showing in 2 independent samples of healthy individuals (total N = 349) that subjects homozygous for both risk alleles evince dramatically decreased hippocampal area activation (Cohen’s d = 0.78) and connectivity (d = 0.57) during a recognition memory task. These data highlight the importance of epistatic models in understanding genetic association with complex brain phenotypes.

Authors

Joseph H. Callicott, Emer L. Feighery, Venkata S. Mattay, Michael G. White, Qiang Chen, David A.A. Baranger, Karen F. Berman, Bai Lu, Hongjun Song, Guo-li Ming, Daniel R. Weinberger

×

Abstract

Multiple sclerosis (MS) is a genetically mediated autoimmune disease of the central nervous system. B cells have recently emerged as major contributors to disease pathogenesis, but the mechanisms responsible for the loss of B cell tolerance in patients with MS are largely unknown. In healthy individuals, developing autoreactive B cells are removed from the repertoire at 2 tolerance checkpoints during early B cell development. Both of these central and peripheral B cell tolerance checkpoints are defective in patients with rheumatoid arthritis (RA) and type 1 diabetes (T1D). Here, we found that only the peripheral, but not the central, B cell tolerance checkpoint is defective in patients with MS. We show that this specific defect is accompanied by increased activation and homeostatic proliferation of mature naive B cells. Interestingly, all of these MS features parallel defects observed in FOXP3-deficient IPEX patients, who harbor nonfunctional Tregs. We demonstrate that in contrast to patients with RA or T1D, bone marrow central B cell selection in MS appears normal in most patients. In contrast, patients with MS suffer from a specific peripheral B cell tolerance defect that is potentially attributable to impaired Treg function and that leads to the accumulation of autoreactive B cell clones in their blood.

Authors

Tuure Kinnunen, Nicolas Chamberlain, Henner Morbach, Tineke Cantaert, Megan Lynch, Paula Preston-Hurlburt, Kevan C. Herold, David A. Hafler, Kevin C. O’Connor, Eric Meffre

×

Abstract

The ELR+-CXCL chemokines have been described typically as potent chemoattractants and activators of neutrophils during the acute phase of inflammation. Their role in atherosclerosis, a chronic inflammatory vascular disease, has been largely unexplored. Using a mouse model of atherosclerosis, we found that CXCL5 expression was upregulated during disease progression, both locally and systemically, but was not associated with neutrophil infiltration. Unexpectedly, inhibition of CXCL5 was not beneficial but rather induced a significant macrophage foam cell accumulation in murine atherosclerotic plaques. Additionally, we demonstrated that CXCL5 modulated macrophage activation, increased expression of the cholesterol efflux regulatory protein ABCA1, and enhanced cholesterol efflux activity in macrophages. These findings reveal a protective role for CXCL5, in the context of atherosclerosis, centered on the regulation of macrophage foam cell formation.

Authors

Anthony Rousselle, Fatimunnisa Qadri, Lisa Leukel, Rüstem Yilmaz, Jean-Fred Fontaine, Gabin Sihn, Michael Bader, Amrita Ahluwalia, Johan Duchene

×

Abstract

Milk fat globule-EGF 8 (MFGE8) plays important, nonredundant roles in several biological processes, including apoptotic cell clearance, angiogenesis, and adaptive immunity. Several recent studies have reported a potential role for MFGE8 in regulation of the innate immune response; however, the precise mechanisms underlying this role are poorly understood. Here, we show that MFGE8 is an endogenous inhibitor of inflammasome-induced IL-1β production. MFGE8 inhibited necrotic cell–induced and ATP-dependent IL-1β production by macrophages through mediation of integrin β3 and P2X7 receptor interactions in primed cells. Itgb3 deficiency in macrophages abrogated the inhibitory effect of MFGE8 on ATP-induced IL-1β production. In a setting of postischemic cerebral injury in mice, MFGE8 deficiency was associated with enhanced IL-1β production and larger infarct size; the latter was abolished after treatment with IL-1 receptor antagonist. MFGE8 supplementation significantly dampened caspase-1 activation and IL-1β production and reduced infarct size in wild-type mice, but did not limit cerebral necrosis in Il1b-, Itgb3-, or P2rx7-deficient animals. In conclusion, we demonstrated that MFGE8 regulates innate immunity through inhibition of inflammasome-induced IL-1β production.

Authors

Nicolas Deroide, Xuan Li, Dominique Lerouet, Emily Van Vré, Lauren Baker, James Harrison, Marine Poittevin, Leanne Masters, Lina Nih, Isabelle Margaill, Yoichiro Iwakura, Bernhard Ryffel, Marc Pocard, Alain Tedgui, Nathalie Kubis, Ziad Mallat

×

No posts were found with this tag.