Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease

JE Lambert, MA Ramos–Roman, JD Browning… - Gastroenterology, 2014 - Elsevier
JE Lambert, MA Ramos–Roman, JD Browning, EJ Parks
Gastroenterology, 2014Elsevier
Background & Aims There have been few studies of the role of de novo lipogenesis in the
development of nonalcoholic fatty liver disease (NAFLD). We used isotope analyses to
compare de novo lipogenesis and fatty acid flux between subjects with NAFLD and those
without, matched for metabolic factors (controls). Methods We studied subjects with
metabolic syndrome and/or levels of alanine aminotransferase and aspartate
aminotransferase> 30 mU/L, using magnetic resonance spectroscopy to identify those with …
Background & Aims
There have been few studies of the role of de novo lipogenesis in the development of nonalcoholic fatty liver disease (NAFLD). We used isotope analyses to compare de novo lipogenesis and fatty acid flux between subjects with NAFLD and those without, matched for metabolic factors (controls).
Methods
We studied subjects with metabolic syndrome and/or levels of alanine aminotransferase and aspartate aminotransferase >30 mU/L, using magnetic resonance spectroscopy to identify those with high levels (HighLF, n = 13) or low levels (LowLF, n = 11) of liver fat. Clinical and demographic information was collected from all participants, and insulin sensitivity was measured using the insulin-modified intravenous glucose tolerance test. Stable isotopes were administered and gas chromatography with mass spectrometry was used to analyze free (nonesterified) fatty acid (FFA) and triacylglycerol flux and lipogenesis.
Results
Subjects with HighLF (18.4% ± 3.6%) had higher plasma levels of FFAs during the nighttime and higher concentrations of insulin than subjects with LowLF (3.1% ± 2.7%; P = .04 and P < .001, respectively). No differences were observed between groups in adipose flux of FFAs (414 ± 195 μmol/min for HighLF vs 358 ± 105 μmol/min for LowLF; P = .41) or production of very-low-density lipoprotein triacylglycerol from FFAs (4.06 ± 2.57 μmol/min vs 4.34 ± 1.82 μmol/min; P = .77). In contrast, subjects with HighLF had more than 3-fold higher rates of de novo fatty acid synthesis than subjects with LowLF (2.57 ± 1.53 μmol/min vs 0.78 ± 0.42 μmol/min; P = .001). As a percentage of triacylglycerol palmitate, de novo lipogenesis was 2-fold higher in subjects with HighLF (23.2% ± 7.9% vs 10.1% ± 6.7%; P < .001); this level was independently associated with the level of intrahepatic triacylglycerol (r = 0.53; P = .007).
Conclusions
By administering isotopes to subjects with NAFLD and control subjects, we confirmed that those with NAFLD have increased synthesis of fatty acids. Subjects with NAFLD also had higher nocturnal plasma levels of FFAs and did not suppress the contribution from de novo lipogenesis on fasting. These findings indicate that lipogenesis might be a therapeutic target for NAFLD.
Elsevier