[HTML][HTML] Sirtuin 3–dependent mitochondrial dynamic improvements protect against acute kidney injury

M Morigi, L Perico, C Rota, L Longaretti… - The Journal of …, 2015 - Am Soc Clin Investig
M Morigi, L Perico, C Rota, L Longaretti, S Conti, D Rottoli, R Novelli, G Remuzzi, A Benigni
The Journal of clinical investigation, 2015Am Soc Clin Investig
Acute kidney injury (AKI) is a public health concern with an annual mortality rate that
exceeds those of breast and prostate cancer, heart failure, and diabetes combined.
Oxidative stress and mitochondrial damage are drivers of AKI-associated pathology;
however, the pathways that mediate these events are poorly defined. Here, using a murine
cisplatin-induced AKI model, we determined that both oxidative stress and mitochondrial
damage are associated with reduced levels of renal sirtuin 3 (SIRT3). Treatment with the …
Acute kidney injury (AKI) is a public health concern with an annual mortality rate that exceeds those of breast and prostate cancer, heart failure, and diabetes combined. Oxidative stress and mitochondrial damage are drivers of AKI-associated pathology; however, the pathways that mediate these events are poorly defined. Here, using a murine cisplatin-induced AKI model, we determined that both oxidative stress and mitochondrial damage are associated with reduced levels of renal sirtuin 3 (SIRT3). Treatment with the AMPK agonist AICAR or the antioxidant agent acetyl-l-carnitine (ALCAR) restored SIRT3 expression and activity, improved renal function, and decreased tubular injury in WT animals, but had no effect in Sirt3–/– mice. Moreover, Sirt3-deficient mice given cisplatin experienced more severe AKI than WT animals and died, and neither AICAR nor ALCAR treatment prevented death in Sirt3–/– AKI mice. In cultured human tubular cells, cisplatin reduced SIRT3, resulting in mitochondrial fragmentation, while restoration of SIRT3 with AICAR and ALCAR improved cisplatin-induced mitochondrial dysfunction. Together, our results indicate that SIRT3 is protective against AKI and suggest that enhancing SIRT3 to improve mitochondrial dynamics has potential as a strategy for improving outcomes of renal injury.
The Journal of Clinical Investigation