A cholinergic mechanism involved in the respiratory chemosensitivity of the medulla oblongata in the cat.

NB Dev, HH Loeschcke - Pflugers Archiv: European Journal of …, 1979 - europepmc.org
NB Dev, HH Loeschcke
Pflugers Archiv: European Journal of Physiology, 1979europepmc.org
1. Cholinomimetic and adrenomimetic substances were tested on the chemosensitive zones
of the ventral surface of the medulla oblongata using a plexiglas ring method. Tidal volume
and respiratory frequency, arterial pressure and heart frequency were observed. 2. The
increase of ventilation and the depression of arterial blood pressure by locally applied
acetylcholine could be blocked by previous local application of atropine. It is therefore
assumed that the acetylcholine receptors have muscarinic properties. 3. Nicotine in a small …
1. Cholinomimetic and adrenomimetic substances were tested on the chemosensitive zones of the ventral surface of the medulla oblongata using a plexiglas ring method. Tidal volume and respiratory frequency, arterial pressure and heart frequency were observed. 2. The increase of ventilation and the depression of arterial blood pressure by locally applied acetylcholine could be blocked by previous local application of atropine. It is therefore assumed that the acetylcholine receptors have muscarinic properties. 3. Nicotine in a small dose raises arterial pressure and with higher doses a drop is observed. The responses of respiration and of arterial pressure to nicotine were blocked by previous intravenous administration of hexamethonium. 4. Local application of atropine in the caudal (L) and rostral (M) chemosensitive zones reduced resting ventilation and the slope of the ventilatory response to CO2-inhalation. Physostigmine in these areas enhanced resting ventilation leaving unchanged the slope of the ventilatory response to CO2-inhalation. 5. With high concentrations of (L)-noradrenaline and (L)-adrenaline a slight increase of arterial pressure was seen while serotonin caused a drop. 6. These results together with those of Fukuda and Loeschcke (1978) suggest that a cholinergic transmission in the surface layer of the ventral medulla is a component in the respiratory and circulatory control systems.
europepmc.org