[HTML][HTML] p38 MAPK stress signalling in replicative senescence in fibroblasts from progeroid and genomic instability syndromes

HSE Tivey, AJC Brook, MJ Rokicki, D Kipling, T Davis - Biogerontology, 2013 - Springer
HSE Tivey, AJC Brook, MJ Rokicki, D Kipling, T Davis
Biogerontology, 2013Springer
Werner Syndrome (WS) is a human segmental progeria resulting from mutations in a DNA
helicase. WS fibroblasts have a shortened replicative capacity, an aged appearance, and
activated p38 MAPK, features that can be modulated by inhibition of the p38 pathway. Loss
of the WRNp RecQ helicase has been shown to result in replicative stress, suggesting that a
link between faulty DNA repair and stress-induced premature cellular senescence may lead
to premature ageing in WS. Other progeroid syndromes that share overlapping …
Abstract
Werner Syndrome (WS) is a human segmental progeria resulting from mutations in a DNA helicase. WS fibroblasts have a shortened replicative capacity, an aged appearance, and activated p38 MAPK, features that can be modulated by inhibition of the p38 pathway. Loss of the WRNp RecQ helicase has been shown to result in replicative stress, suggesting that a link between faulty DNA repair and stress-induced premature cellular senescence may lead to premature ageing in WS. Other progeroid syndromes that share overlapping pathophysiological features with WS also show defects in DNA processing, raising the possibility that faulty DNA repair, leading to replicative stress and premature cellular senescence, might be a more widespread feature of premature ageing syndromes. We therefore analysed replicative capacity, cellular morphology and p38 activation, and the effects of p38 inhibition, in fibroblasts from a range of progeroid syndromes. In general, populations of young fibroblasts from non-WS progeroid syndromes do not have a high level of cells with an enlarged morphology and F-actin stress fibres, unlike young WS cells, although this varies between strains. p38 activation and phosphorylated HSP27 levels generally correlate well with cellular morphology, and treatment with the p38 inhibitor SB203580 effects cellular morphology only in strains with enlarged cells and phosphorylated HSP27. For some syndromes fibroblast replicative capacity was within the normal range, whereas for others it was significantly shorter (e.g. HGPS and DKC). However, although in most cases SB203580 extended replicative capacity, with the exception of WS and DKC the magnitude of the effect was not significantly different from normal dermal fibroblasts. This suggests that stress-induced premature cellular senescence via p38 activation is restricted to a small subset of progeroid syndromes.
Springer