NLRP12 provides a critical checkpoint for osteoclast differentiation

JL Krauss, R Zeng… - Proceedings of the …, 2015 - National Acad Sciences
JL Krauss, R Zeng, CL Hickman-Brecks, JE Wilson, JPY Ting, DV Novack
Proceedings of the National Academy of Sciences, 2015National Acad Sciences
The alternative or noncanonical nuclear factor kappa B (NF-κB) pathway regulates the
osteoclast (OC) response to receptor activator of nuclear factor kappa B ligand (RANKL) and
thus bone metabolism. Although several lines of evidence support the emerging concept
that nucleotide-binding leucine-rich repeat and pyrin domain-containing receptor 12
(NLRP12) impedes alternative NF-κB activation in innate immune cells, a functional role for
NLRP12 outside an inflammatory disease model has yet to be reported. Our study …
The alternative or noncanonical nuclear factor kappa B (NF-κB) pathway regulates the osteoclast (OC) response to receptor activator of nuclear factor kappa B ligand (RANKL) and thus bone metabolism. Although several lines of evidence support the emerging concept that nucleotide-binding leucine-rich repeat and pyrin domain-containing receptor 12 (NLRP12) impedes alternative NF-κB activation in innate immune cells, a functional role for NLRP12 outside an inflammatory disease model has yet to be reported. Our study demonstrates that NLRP12 has a protective role in bone via suppression of alternative NF-κB–induced osteoclastogenesis and is down-modulated in response to osteoclastogenic stimuli. Here, we show that retroviral overexpression of NLRP12 suppressed RelB nuclear translocation and OC formation. Conversely, genetic ablation of NLRP12 promoted NIK stabilization, RelB nuclear translocation, and increased osteoclastogenesis in vitro. Using radiation chimeras, we demonstrated these in vitro observations dovetail with our in vivo findings that NLRP12 deficiency leads to enhanced OC numbers accompanied by a significant decline in bone mass under physiological conditions. Consistent with the basal bone phenotype, we also observed an enhanced osteolytic response following RANKL injection over the calvaria of NLRP12-deficient chimeric mice compared with wild-type control mice. Thus, modulation of NLRP12 levels controls alternative NF-κB signaling in OC precursors, altering bone homeostasis and osteolytic responses.
National Acad Sciences