Defective DNA replication impairs mitochondrial biogenesis in human failing hearts

G Karamanlidis, L Nascimben, GS Couper… - Circulation …, 2010 - Am Heart Assoc
G Karamanlidis, L Nascimben, GS Couper, PS Shekar, F del Monte, R Tian
Circulation research, 2010Am Heart Assoc
Rationale: Mitochondrial dysfunction plays a pivotal role in the development of heart failure.
Animal studies suggest that impaired mitochondrial biogenesis attributable to
downregulation of the peroxisome proliferator-activated receptor γ coactivator (PGC)-1
transcriptional pathway is integral of mitochondrial dysfunction in heart failure. Objective:
The study sought to define mechanisms underlying the impaired mitochondrial biogenesis
and function in human heart failure. Methods and Results: We collected left ventricular tissue …
Rationale: Mitochondrial dysfunction plays a pivotal role in the development of heart failure. Animal studies suggest that impaired mitochondrial biogenesis attributable to downregulation of the peroxisome proliferator-activated receptor γ coactivator (PGC)-1 transcriptional pathway is integral of mitochondrial dysfunction in heart failure.
Objective: The study sought to define mechanisms underlying the impaired mitochondrial biogenesis and function in human heart failure.
Methods and Results: We collected left ventricular tissue from end-stage heart failure patients and from nonfailing hearts (n=23, and 19, respectively). The mitochondrial DNA (mtDNA) content was decreased by >40% in the failing hearts, after normalization for a moderate decrease in citrate synthase activity (P<0.05). This was accompanied by reductions in mtDNA-encoded proteins (by 25% to 80%) at both mRNA and protein level (P<0.05). The mRNA levels of PGC-1α/β and PRC (PGC-1–related coactivator) were unchanged, whereas PGC-1α protein increased by 58% in the failing hearts. Among the PGC-1 coactivating targets, the expression of estrogen-related receptor α and its downstream genes decreased by up to 50% (P<0.05), whereas peroxisome proliferator-activated receptor α and its downstream gene expression were unchanged in the failing hearts. The formation of D-loop in the mtDNA was normal but D-loop extension, which dictates the replication process of mtDNA, was decreased by 75% in the failing hearts. Furthermore, DNA oxidative damage was increased by 50% in the failing hearts.
Conclusions: Mitochondrial biogenesis is severely impaired as evidenced by reduced mtDNA replication and depletion of mtDNA in the human failing heart. These defects are independent of the downregulation of the PGC-1 expression suggesting novel mechanisms for mitochondrial dysfunction in heart failure.
Am Heart Assoc