[HTML][HTML] Myeloid Derived Hypoxia Inducible Factor 1-alpha Is Required for Protection against Pulmonary Aspergillus fumigatus Infection

KM Shepardson, A Jhingran, A Caffrey, JJ Obar… - PLoS …, 2014 - journals.plos.org
KM Shepardson, A Jhingran, A Caffrey, JJ Obar, BT Suratt, BL Berwin, TM Hohl, RA Cramer
PLoS pathogens, 2014journals.plos.org
Hypoxia inducible factor 1α (HIF1α) is the mammalian transcriptional factor that controls
metabolism, survival, and innate immunity in response to inflammation and low oxygen.
Previous work established that generation of hypoxic microenvironments occurs within the
lung during infection with the human fungal pathogen Aspergillus fumigatus. Here we
demonstrate that A. fumigatus stabilizes HIF1α protein early after pulmonary challenge that
is inhibited by treatment of mice with the steroid triamcinolone. Utilizing myeloid deficient …
Hypoxia inducible factor 1α (HIF1α) is the mammalian transcriptional factor that controls metabolism, survival, and innate immunity in response to inflammation and low oxygen. Previous work established that generation of hypoxic microenvironments occurs within the lung during infection with the human fungal pathogen Aspergillus fumigatus. Here we demonstrate that A. fumigatus stabilizes HIF1α protein early after pulmonary challenge that is inhibited by treatment of mice with the steroid triamcinolone. Utilizing myeloid deficient HIF1α mice, we observed that HIF1α is required for survival and fungal clearance early following pulmonary challenge with A. fumigatus. Unlike previously reported research with bacterial pathogens, HIF1α deficient neutrophils and macrophages were surprisingly not defective in fungal conidial killing. The increase in susceptibility of the myeloid deficient HIF1α mice to A. fumigatus was in part due to decreased early production of the chemokine CXCL1 (KC) and increased neutrophil apoptosis at the site of infection, resulting in decreased neutrophil numbers in the lung. Addition of recombinant CXCL1 restored neutrophil survival and numbers, murine survival, and fungal clearance. These results suggest that there are unique HIF1α mediated mechanisms employed by the host for protection and defense against fungal pathogen growth and invasion in the lung. Additionally, this work supports the strategy of exploring HIF1α as a therapeutic target in specific immunosuppressed populations with fungal infections.
PLOS