[HTML][HTML] Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin

RK Graham, Y Deng, EJ Slow, B Haigh, N Bissada… - Cell, 2006 - cell.com
RK Graham, Y Deng, EJ Slow, B Haigh, N Bissada, G Lu, J Pearson, J Shehadeh, L Bertram…
Cell, 2006cell.com
Cleavage of huntingtin (htt) has been characterized in vitro, and accumulation of caspase
cleavage fragments represents an early pathological change in brains of Huntington's
disease (HD) patients. However, the relationship between htt proteolysis and the
pathogenesis of HD is unknown. To determine whether caspase cleavage of htt is a key
event in the neuronal dysfunction and selective neurodegeneration in HD, we generated
YAC mice expressing caspase-3-and caspase-6-resistant mutant htt. Mice expressing …
Summary
Cleavage of huntingtin (htt) has been characterized in vitro, and accumulation of caspase cleavage fragments represents an early pathological change in brains of Huntington's disease (HD) patients. However, the relationship between htt proteolysis and the pathogenesis of HD is unknown. To determine whether caspase cleavage of htt is a key event in the neuronal dysfunction and selective neurodegeneration in HD, we generated YAC mice expressing caspase-3- and caspase-6-resistant mutant htt. Mice expressing mutant htt, resistant to cleavage by caspase-6 but not caspase-3, maintain normal neuronal function and do not develop striatal neurodegeneration. Furthermore, caspase-6-resistant mutant htt mice are protected against neurotoxicity induced by multiple stressors including NMDA, quinolinic acid (QA), and staurosporine. These results are consistent with proteolysis of htt at the caspase-6 cleavage site being an important event in mediating neuronal dysfunction and neurodegeneration and highlight the significant role of htt proteolysis and excitotoxicity in HD.
cell.com