The β-secretase-derived C-terminal fragment of βAPP, C99, but not Aβ, is a key contributor to early intraneuronal lesions in triple-transgenic mouse hippocampus

I Lauritzen, R Pardossi-Piquard, C Bauer… - Journal of …, 2012 - Soc Neuroscience
I Lauritzen, R Pardossi-Piquard, C Bauer, E Brigham, JD Abraham, S Ranaldi, P Fraser…
Journal of Neuroscience, 2012Soc Neuroscience
Triple-transgenic mice (3xTgAD) overexpressing Swedish-mutated β-amyloid precursor
protein (βAPPswe), P310L-Tau (TauP301L), and physiological levels of M146V-presenilin-1
(PS1M146V) display extracellular amyloid-β peptides (Aβ) deposits and Tau tangles. More
disputed is the observation that these mice accumulate intraneuronal Aβ that has been
linked to synaptic dysfunction and cognitive deficits. Here, we provide immunohistological,
genetic, and pharmacological evidences for early, age-dependent, and hippocampus …
Triple-transgenic mice (3xTgAD) overexpressing Swedish-mutated β-amyloid precursor protein (βAPPswe), P310L-Tau (TauP301L), and physiological levels of M146V-presenilin-1 (PS1M146V) display extracellular amyloid-β peptides (Aβ) deposits and Tau tangles. More disputed is the observation that these mice accumulate intraneuronal Aβ that has been linked to synaptic dysfunction and cognitive deficits. Here, we provide immunohistological, genetic, and pharmacological evidences for early, age-dependent, and hippocampus-specific accumulation of the β-secretase-derived βAPP fragment C99 that is observed from 3 months of age and enhanced by pharmacological blockade of γ-secretase. Notably, intracellular Aβ is only detectable several months later and appears, as is the case of C99, in enlarged cathepsin B-positive structures, while extracellular Aβ deposits are detected ∼12 months of age and beyond. Early C99 production occurs mainly in the CA1/subicular interchange area of the hippocampus corresponding to the first region exhibiting plaques and tangles in old mice. Furthermore, the comparison of 3xTgAD mice with double-transgenic mice bearing the βAPPswe and TauP301L mutations but expressing endogenous PS1 (2xTgAD) demonstrate that C99 accumulation is not accounted for by a loss of function triggered by PS1 mutation that would have prevented C99 secondary cleavage by γ-secretase. Together, our work identifies C99 as the earliest βAPP catabolite and main contributor to the intracellular βAPP-related immunoreactivity in 3xTgAD mice, suggesting its implication as an initiator of the neurodegenerative process and cognitive alterations taking place in this mouse model.
Soc Neuroscience