[HTML][HTML] HLA-C–Dependent Prevention of Leukemia Relapse by Donor Activating KIR2DS1

JM Venstrom, G Pittari, TA Gooley… - … England Journal of …, 2012 - Mass Medical Soc
JM Venstrom, G Pittari, TA Gooley, JH Chewning, S Spellman, M Haagenson, MM Gallagher
New England Journal of Medicine, 2012Mass Medical Soc
Background Of the cancers treated with allogeneic hematopoietic stem-cell transplantation
(HSCT), acute myeloid leukemia (AML) is most sensitive to natural killer (NK)–cell reactivity.
The activating killer-cell immunoglobulin-like receptor (KIR) 2DS1 has ligand specificity for
HLA-C2 antigens and activates NK cells in an HLA-dependent manner. Donor-derived NK
reactivity controlled by KIR2DS1 and HLA could have beneficial effects in patients with AML
who undergo allogeneic HSCT. Methods We assessed clinical data, HLA genotyping …
Background
Of the cancers treated with allogeneic hematopoietic stem-cell transplantation (HSCT), acute myeloid leukemia (AML) is most sensitive to natural killer (NK)–cell reactivity. The activating killer-cell immunoglobulin-like receptor (KIR) 2DS1 has ligand specificity for HLA-C2 antigens and activates NK cells in an HLA-dependent manner. Donor-derived NK reactivity controlled by KIR2DS1 and HLA could have beneficial effects in patients with AML who undergo allogeneic HSCT.
Methods
We assessed clinical data, HLA genotyping results, and donor cell lines or genomic DNA for 1277 patients with AML who had received hematopoietic stem-cell transplants from unrelated donors matched for HLA-A, B, C, DR, and DQ or with a single mismatch. We performed donor KIR genotyping and evaluated the clinical effect of donor KIR genotype and donor and recipient HLA genotypes.
Results
Patients with AML who received allografts from donors who were positive for KIR2DS1 had a lower rate of relapse than those with allografts from donors who were negative for KIR2DS1 (26.5% vs. 32.5%; hazard ratio, 0.76; 95% confidence interval [CI], 0.61 to 0.96; P=0.02). Of allografts from donors with KIR2DS1, those from donors who were homozygous or heterozygous for HLA-C1 antigens could mediate this antileukemic effect, whereas those from donors who were homozygous for HLA-C2 did not provide any advantage (24.9% with homozygosity or heterozygosity for HLA-C1 vs. 37.3% with homozygosity for HLA-C2; hazard ratio, 0.46; 95% CI, 0.28 to 0.75; P=0.002). Recipients of KIR2DS1-positive allografts mismatched for a single HLA-C locus had a lower relapse rate than recipients of KIR2DS1-negative allografts with a mismatch at the same locus (17.1% vs. 35.6%; hazard ratio, 0.40; 95% CI, 0.20 to 0.78; P=0.007). KIR3DS1, in positive genetic linkage disequilibrium with KIR2DS1, had no effect on leukemia relapse but was associated with decreased mortality (60.1%, vs. 66.9% without KIR3DS1; hazard ratio, 0.83; 95% CI, 0.71 to 0.96; P=0.01).
Conclusions
Activating KIR genes from donors were associated with distinct outcomes of allogeneic HSCT for AML. Donor KIR2DS1 appeared to provide protection against relapse in an HLA-C–dependent manner, and donor KIR3DS1 was associated with reduced mortality. (Funded by the National Institutes of Health and others.)
The New England Journal Of Medicine