Hyperoxia, endothelial progenitor cell mobilization, and diabetic wound healing

ZJ Liu, OC Velazquez - Antioxidants & redox signaling, 2008 - liebertpub.com
ZJ Liu, OC Velazquez
Antioxidants & redox signaling, 2008liebertpub.com
Diabetic foot disease is a major health problem, which affects 15% of the 200 million
patients with diabetes worldwide. Diminished peripheral blood flow and decreased local
neovascularization are critical factors that contribute to the delayed or nonhealing wounds in
these patients. The correction of impaired local angiogenesis may be a key component in
developing therapeutic protocols for treating chronic wounds of the lower extremity and
diabetic foot ulcers. Endothelial progenitor cells (EPCs) are the key cellular effectors of …
Abstract
Diabetic foot disease is a major health problem, which affects 15% of the 200 million patients with diabetes worldwide. Diminished peripheral blood flow and decreased local neovascularization are critical factors that contribute to the delayed or nonhealing wounds in these patients. The correction of impaired local angiogenesis may be a key component in developing therapeutic protocols for treating chronic wounds of the lower extremity and diabetic foot ulcers. Endothelial progenitor cells (EPCs) are the key cellular effectors of postnatal neovascularization and play a central role in wound healing, but their circulating and wound-level numbers are decreased in diabetes, implicating an abnormality in EPC mobilization and homing mechanisms. The deficiency in EPC mobilization is presumably due to impairment of eNOS-NO cascade in bone marrow (BM). Hyperoxia, induced by a clinically relevant hyperbaric oxygen therapy (HBO) protocol, can significantly enhance the mobilization of EPCs from the BM into peripheral blood. However, increased circulating EPCs failed to reach to wound tissues. This is partly a result of downregulated production of SDF-1α in local wound lesions with diabetes. Administration of exogenous SDF-1α into wounds reversed the EPC homing impairment and, with hyperoxia, synergistically enhanced EPC mobilization, homing, neovascularization, and wound healing. Antioxid. Redox Signal. 10, 1869–1882.
Mary Ann Liebert