Tissue inhibitor of metalloproteinase-1 deficiency amplifies acute lung injury in bleomycin-exposed mice

KH Kim, K Burkhart, P Chen, CW Frevert… - American journal of …, 2005 - atsjournals.org
KH Kim, K Burkhart, P Chen, CW Frevert, J Randolph-Habecker, RC Hackman, PD Soloway…
American journal of respiratory cell and molecular biology, 2005atsjournals.org
Bleomycin-induced lung injury triggers a profound and durable increase in tissue inhibitor of
metalloproteinase (TIMP)-1 expression, suggesting a potential role for this antiproteinase in
the regulation of lung inflammation and fibrosis. TIMP-1 protein induction is spatially
restricted to areas of lung injury as determined by immunohistochemistry. Using TIMP-1 null
mutation mice, we demonstrate that TIMP-1 deficiency amplifies acute lung injury as
determined by exaggerated pulmonary neutrophilia, hemorrhage, and vascular permeability …
Bleomycin-induced lung injury triggers a profound and durable increase in tissue inhibitor of metalloproteinase (TIMP)-1 expression, suggesting a potential role for this antiproteinase in the regulation of lung inflammation and fibrosis. TIMP-1 protein induction is spatially restricted to areas of lung injury as determined by immunohistochemistry. Using TIMP-1 null mutation mice, we demonstrate that TIMP-1 deficiency amplifies acute lung injury as determined by exaggerated pulmonary neutrophilia, hemorrhage, and vascular permeability compared with wild-type littermates after bleomycin exposure. The augmented pulmonary neutrophilia observed in TIMP-1–deficient animals was not found in similarly treated TIMP-2–deficient mice. Using TIMP-1 bone marrow (BM) chimeric mice, we observed that the TIMP-1–deficient phenotype was abolished in wild-type recipients of TIMP-1–deficient BM but not in TIMP-1–deficient recipients of wild-type BM. Acute lung injury in TIMP-1–deficient mice was accompanied by exaggerated gelatinase-B activity in the alveolar compartment. TIMP-1 deficiency did not alter neutrophil chemotactic factor accumulation in the injured lung nor neutrophil migration in response to chemotactic stimuli in vivo or in vitro. Moreover, TIMP-1 deficiency did not modify collagen accumulation after bleomycin injury. Our results provide direct evidence that TIMP-1 contributes significantly to the regulation of acute lung injury, functioning to limit inflammation and lung permeability.
ATS Journals