Cluster analysis: a simple, versatile, and robust algorithm for endocrine pulse detection

JD Veldhuis, ML Johnson - American Journal of Physiology …, 1986 - journals.physiology.org
JD Veldhuis, ML Johnson
American Journal of Physiology-Endocrinology and Metabolism, 1986journals.physiology.org
Endocrine signaling provides one critical means of physiological communication within an
organism. Many endocrine signals exhibit an episodic or pulsatile configuration. In an effort
to provide a versatile and statistically based algorithm for investigating the regulation of
endocrine pulse signals, we have formulated a computerized algorithm in which a pulse is
defined as a statistically significant increase in a" cluster" of hormone values followed by a
statistically significant decrease in a second cluster of values. The increase or decrease is …
Endocrine signaling provides one critical means of physiological communication within an organism. Many endocrine signals exhibit an episodic or pulsatile configuration. In an effort to provide a versatile and statistically based algorithm for investigating the regulation of endocrine pulse signals, we have formulated a computerized algorithm in which a pulse is defined as a statistically significant increase in a "cluster" of hormone values followed by a statistically significant decrease in a second cluster of values. The increase or decrease is judged in relation to the actual experimental error expressed by the replicates in the presumptive nadir and peak data clusters. The program permits the operator to specify the cluster sizes of test peaks and pre- and postpeak nadirs. This method is largely insensitive to unstable base-line hormone concentrations and is not adversely affected by varying pulse amplitudes, widths, or configurations within the endocrine series. In addition, the simple statistical basis for this algorithm renders it minimally dependent on explicit or a priori assumptions about rates of hormone secretion or disappearance. The program has been validated for false-positive errors against a wide range of intraseries coefficients of variation (4-52%). We have illustrated its performance for profiles of luteinizing hormone, follicle-stimulating hormone, growth hormone, prolactin, adrenocorticotropic hormone, and cortisol and compared these episodic patterns with those of stable serum constituents (total serum protein and calcium), which do not exhibit pulsatile fluctuation.
American Physiological Society