Abstract

Mechanisms mediating the cardioprotective actions of glucagon-like peptide 1 (GLP-1) were unknown. Here, we show in both ex vivo and in vivo models of ischemic injury that treatment with GLP-1(28–36), a neutral endopeptidase–generated (NEP-generated) metabolite of GLP-1, was as cardioprotective as GLP-1 and was abolished by scrambling its amino acid sequence. GLP-1(28–36) enters human coronary artery endothelial cells (caECs) through macropinocytosis and acts directly on mouse and human coronary artery smooth muscle cells (caSMCs) and caECs, resulting in soluble adenylyl cyclase Adcy10–dependent (sAC-dependent) increases in cAMP, activation of protein kinase A, and cytoprotection from oxidative injury. GLP-1(28–36) modulates sAC by increasing intracellular ATP levels, with accompanying cAMP accumulation lost in sAC–/– cells. We identify mitochondrial trifunctional protein-α (MTPα) as a binding partner of GLP-1(28–36) and demonstrate that the ability of GLP-1(28–36) to shift substrate utilization from oxygen-consuming fatty acid metabolism toward oxygen-sparing glycolysis and glucose oxidation and to increase cAMP levels is dependent on MTPα. NEP inhibition with sacubitril blunted the ability of GLP-1 to increase cAMP levels in coronary vascular cells in vitro. GLP-1(28–36) is a small peptide that targets novel molecular (MTPα and sAC) and cellular (caSMC and caEC) mechanisms in myocardial ischemic injury.

Authors

M. Ahsan Siraj, Dhanwantee Mundil, Sanja Beca, Abdul Momen, Eric A. Shikatani, Talat Afroze, Xuetao Sun, Ying Liu, Siavash Ghaffari, Warren Lee, Michael B. Wheeler, Gordon Keller, Peter Backx, Mansoor Husain

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement