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Introduction
Sphingolipids, a major class of lipids present in all eukaryotic cells, 
are essential to organismal development and maintenance (1). Thu-
dichum first isolated sphingolipids from brain tissue in 1884, dubbing 
them “sphingosins” because of their enigmatic nature. This group of 
lipids includes over 300 members that have a common sphingoid 
base called sphingosine (Sph), an amino-alcohol backbone most 
often composed of 18 carbons that form the nonpolar tail. The sphin-
goid base can be bound to a fatty acid via an amide link to produce 
ceramide (Cer). Two main types of more complex sphingolipids are 
distinguished by their polar head group: in glycosphingolipids, the 
polar head is based on a glycosidic group, and in sphingophospholip-
ids, the polar head contains a phosphate group (2).

Sphingolipids are bioactive molecules that regulate cell biol-
ogy and fate such as cell cycle, senescence, proliferation, and 
migration (3). The bioactive sphingolipids include Cer, Sph, sphin-
gosine-1–phosphate (S1P), ceramide-1-phosphate (C1P), and oth-
ers. Their roles have proven crucial in many functions, such as 
immune responses, inflammation, cancer, metabolic and cardio-
vascular diseases, and neurodegeneration (4).

During aging, organisms progressively lose physiological 
functions (5). Aging is a complex phenomenon that is not strictly 
dependent on chronological age, but some pathways and mech-
anisms are conserved over time and species (6). Cellular senes-
cence is known to contribute to aging and usually forms the basis 
for biological studies because of its intimate connections with 
tissue aging; moreover, many senescence-associated inducers, 
effectors, and markers have been identified over the past 50 years 
(7). Senescence corresponds to a pseudopermanent proliferative 

arrest (as it can be reversed under some conditions) in cells in 
response to diverse stimuli. Since its first description by Hayflick 
and Moorhead in 1961 in primary fibroblasts (8), senescence has 
been observed not only in cells but in tissues of different organ-
isms, making it a pivotal event in the aging process (9). As such, 
senescence likely plays a large role in the age-related risk for prev-
alent human diseases including cancer, neurodegeneration, car-
diovascular dysfunction, and type 2 diabetes (10).

In this Review, we focus on describing links between sphingo-
lipids and aging and age-related diseases. From yeast to clinical 
data in centenarians, we will discuss new and exciting findings 
that could have significant impact.

Overview of sphingolipid metabolism
Complexity of sphingolipid metabolic pathways. Sphingolipid metab-
olism is a complex, interconnected network of molecules. Cer, 
playing the role of a central metabolic hub (11), can be synthesized 
by multiple pathways, including three main pathways: the de novo 
pathway, hydrolysis of complex sphingolipids, and the salvage 
pathway (Figure 1 and ref. 12).

The de novo pathway occurs at the ER membrane and is 
characterized by the condensation of serine and palmitoyl-CoA 
through the action of serine palmitoyltransferase (SPT) (13). SPT 
is a protein complex of three subunits called SPTLC1, SPTLC2, 
and SPTLC3 (14, 15). The 3-ketodihydrosphingosine formed is 
reduced to dihydrosphingosine (dhSph), which is then acetylat-
ed by (dihydro)ceramide synthases (CerSs) to dihydroceramide 
(dhCer). Six CerS isoforms are identified in mammals, and each 
has a preference for different fatty acyl chain lengths (16). For 
instance, CerS1 synthesizes C18dhCer, CerS2 synthesizes very-
long-chain Cer (C22, C24, and C26dhCer), and CerS5 and CerS6 
catalyze the formation of C14 and C16dhCer. The desaturases 
(Des) then desaturate dhCer to generate the corresponding Cer.

Aging is defined as the progressive deterioration of physiological function with age. Incidence of many pathologies 
increases with age, including neurological and cardiovascular diseases and cancer. Aging tissues become less adaptable 
and renewable, and cells undergo senescence, a process by which they “irreversibly” stop dividing. Senescence has 
been shown to serve as a tumor suppression mechanism with clear desirable effects. However, senescence also 
has deleterious consequences, especially for cardiovascular, metabolic, and immune systems. Sphingolipids are a 
major class of lipids that regulate cell biology, owing to their structural and bioactive properties and diversity. Their 
involvement in the regulation of aging and senescence has been demonstrated and studied in multiple organisms 
and cell types, especially that of ceramide and sphingosine-1-phosphate; ceramide induces cellular senescence 
and sphingosine-1–phosphate delays it. These discoveries could be very useful in the future to understand aging 
mechanisms and improve therapeutic interventions.
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the action of S1P phosphatases (SPPs). On the other hand, the S1P 
lyase (SPL) irreversibly degrades S1P into phosphoethanolamine and 
hexadecenal. This unique reaction provides the only known exit to 
sphingolipid metabolism.

Similarly, ceramide kinase (CERK) phosphorylates Cer into C1P, 
and C1P phosphatase (C1PP) dephosphorylates C1P to regenerate Cer.

Central roles of Cer and S1P in cell biology. While Cer and Sph 
are usually involved in induction of cell cycle arrest, senescence, 
apoptosis, and cell differentiation, S1P promotes cell survival, pro-
liferation, migration, invasion, and angiogenesis (25). S1P is also 
implicated in immune responses and inflammation. As a conse-
quence, enzymes involved in producing and degrading Cer, Sph, 
and S1P are crucial regulators of sphingolipid bioactivity.

S1P acts primarily through extracellular receptors (26), 
although it has been shown to have several intracellular targets, 
such as histone deacetylase (23), prohibitin 2 (27), and human 
telomerase reverse transcriptase (hTERT) (28). S1P acts on five 
GPCRs, the S1P receptors (S1PRs), following its extracellular 
export by ATP-binding cassette transporters (29) and the key 
transporters Spinster 2 (30) and major facilitator superfamily 
domain–containing 2b (Mfsd2b) in red blood cells (31). S1P bind-
ing to S1PR triggers canonical GPCR signaling (32) such as Rac, 
ERK, PI3K/Akt, PLC, and Rho pathways (33). Many SK inhibi-
tors based on analogs of Sph have been used, but they generally 
lack specificity and potency (micromolar concentrations) (34). 
FTY720, also called fingolimod, is an Sph analog that is phosphor-
ylated by SK2 and then acts as an S1PR agonist, leading to receptor 
internalization and downregulation, functionally suppressing S1P 

Hydrolysis of complex sphingolipids. Sphingomyelin (SM), the 
most abundant sphingolipid in mammalian cells, can be degrad-
ed into Cer and phosphocholine by sphingomyelinases (SMas-
es). There are three families of SMase — acid (aSMase), neutral 
(nSMase), and alkaline — based on their optimal pH of action 
(17). Conversely, sphingomyelin synthases (SMSs) use phospha-
tidylcholine and Cer to form SM and diacylglycerol (DAG) (18). 
Two SMSs have been identified, and they regulate complex biol-
ogies as they utilize Cer to produce DAG, an important bioactive 
glycerolipid that often exerts effects on cell growth and survival 
opposite those of Cer.

Degradation of glycosphingolipids can be another source of 
Cer through the action of many hydrolases, culminating in the 
action of glucosidase and galactosidase on glucosylceramide (Glu-
Cer) and galactosylceramide (GalCer), respectively.

In the salvage pathway, also called the recycling pathway, 
multiple hydrolytic enzymes, including SMases, glucosidase, and 
ceramidases (CDases) (19), produce Sph, which can be reacylated 
to Cer by CerS. (Note that CerS can utilize Sph to directly produce 
Cer; ref. 20.) CDases mediate the hydrolysis of Cer, producing Sph. 
Like SMases, CDases constitute a family of enzymes categorized by 
preferred pH: acid (aCDase), neutral (nCDase), and alkaline (21).

Sphingosine kinases (SKs) phosphorylate Sph to form S1P. Two 
SK isoforms have been identified: SK1 and SK2. While SK1 is located 
in the cytosol and at the plasma membrane, SK2 is mostly present 
in the nucleus and ER (22). The product S1P acts as a second mes-
senger on intracellular targets (23) and as primary ligand on extra-
cellular receptors (24). S1P can be converted back to Sph through 

Figure 1. Overview of sphingolipid metabolism. 
Cer plays a central role in the complex network of 
sphingolipid metabolism and can be synthesized 
by many different enzymes belonging to different 
pathways. Cer is also one of the most potent 
bioactive sphingolipids. It can regulate cell biology 
by inducing cell cycle arrest and senescence. Its 
role in cell death has been extensively investigat-
ed. The few direct targets of Cer that have been 
discovered are mostly protein phosphatases. 
By activating them, Cer can modulate signaling 
pathways. Another very well-studied sphingolipid 
is S1P, which has been shown to induce cell pro-
liferation and migration among other functions. 
Its actions are mostly known through its ability to 
activate GPCRs, leading to modifications of cell 
biology. Two pharmacological inhibitors have been 
extensively used to study sphingolipid metab-
olism: myriocin inhibits sphingolipid synthesis 
through the inhibition of SPT, and fumonisin B1 
is a CerS inhibitor, inhibiting de novo and salvage 
pathways. Des, dihydroceramide desaturase; 
dhCerS, dihydroceramide synthase; GluCDase, 
glucosylceramidase; GluCerS, glucosylceramide 
synthase; HD, hexadecenal; 3-KdhSph, 3-keto-
sphingosine; 3-KR, 3-ketoreductase; Pal-CoA, 
palmitoyl-CoA; PE, phosphoethanolamine; S1PP, 
S1P phosphatase.
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agents such as ultraviolet or gamma irradiation, chemotherapeutics, 
oncogene activation, or tumor suppressor inactivation; and ROS (49).

Telomeres become progressively shorter after each cell divi-
sion, leading to activation of the DNA damage response (DDR) 
(50). Ataxia-telangiectasia–mutated protein (ATM) is recruited to 
the telomeres and induces p53 phosphorylation and stabilization 
(51). Activated p53 then induces p21 transcription, which inhibits 
cyclin-dependent kinase 2 (CDK2) and leads to pRb hypophos-
phorylation. In this state, active pRb sequesters the transcription 
factor E2F, preventing the expression of genes required for DNA 
synthesis that occurs during the S phase of the cell cycle (52).

Aging induces a derepression of the CDKN2A tumor suppres-
sor locus (53), which codes for two distinct proteins: p16 and ARF 
(also called p19 in mice and p14 in humans). p16 inhibits CDK4 
and CDK6 and inhibits the transition from G1 to S phase. ARF 
increases the stability of p53 protein and consequently increases 
p21 expression (54). p21 upregulation activates the p16 pathway, 
which is involved in maintaining the senescent state, whereas the 
p21 pathway is the mechanism inducing senescence (55). Coopera-
tion between these two pathways varies depending on the context.

Oncogenic activation, especially proteins from the Ras family, 
BRAF, and c-myc, induces senescence in vitro and in vivo. Recip-
rocally, the loss of PTEN or VHL, well-known tumor suppressors, 
can induce senescence (56). Oncogene-induced senescence can 
be DDR-dependent (57) or -independent, mediated through the 
p16 and ARF pathways.

p21 can induce ROS accumulation that is crucial for the induc-
tion of senescence (58). p38 MAPK has also been shown to be an 
important mediator of oxidative stress–induced senescence (59).

Markers of senescence. Senescent cells exhibit some specific char-
acteristics other than cell cycle arrest. They have increased activity of 
the lysosomal hydrolase β-galactosidase, also called senescence-as-
sociated β-galactosidase (SA β-gal) activity, likely the consequence 
of an expanded lysosomal compartment during cell senescence. SA 
β-gal is widely used to detect senescent cells by incubating them with 
the substrate of the enzyme X-gal at pH 6 and measuring the forma-
tion of the product, an insoluble blue pigment (60).

signaling (35). FTY720 is used clinically for treatment of multiple 
sclerosis through suppressing the immune system by preventing 
lymphocyte egress from lymphoid tissues (36). Other nonlipid 
compounds, such as PF-543 (37), SKI-II (38), and ABC294640 
(39), are high-potency SK inhibitors in vitro.

Cer activates serine/threonine protein phosphatases such as 
PP1 and PP2A (40). For example, PP2A activation leads to dephos-
phorylation and inactivation of Akt and retinoblastoma protein 
(pRb) (41). Cer is hydrophobic, and therefore its delivery to cells is 
limited. However, it can flip readily across membrane leaflets and 
shuttle between distinct cellular membranes through two mecha-
nisms: via vesicular transport or via transfer proteins. Indeed, Cer 
trafficking from ER to Golgi apparatus is partly mediated through 
Cer transfer protein (CERT), which selectively couples Cer with 
SM synthesis (42). Cer can be delivered to cells primarily in short-
chain forms such as C2-, C6-, and C8-Cer, or using nanoliposomes 
(43), whereas longer-chain Cer can be delivered by dodecane/
ethanol (44). Inhibitors can modulate the activity of sphingolip-
id enzymes involved in Cer synthesis. For example, fumonisin B1 
(FB1) is a CerS inhibitor that inhibits Cer formation through both 
de novo and salvage pathways, whereas myriocin (Myr), an SPT 
inhibitor, inhibits the de novo pathway at its root (Figure 1).

Overview of senescence
Senescence is a mechanism by which cells adapt to environmental 
stress. It leads to tissue adaptation after diverse injuries, but it can 
also result in poorly functioning cells and tissues. Senescence is a 
multistep process (Figure 2): cells stop dividing, and tissues recruit 
immune cells that lead to clearance of senescent cells and tissue 
regeneration (45, 46). The current hypothesis is that acute senes-
cence is protective whereas chronic senescence can be harmful 
for tissue homeostasis (47). As a result, pro-senescence therapies 
could be beneficial for early-stage diseases, but anti-senescence 
strategies might be of interest to prevent chronic tissue damage 
occurring in late-stage diseases (48).

Inducers and effectors of senescence. Some well-characterized senes-
cence inducers include telomere shortening; DNA damage–inducing 

Figure 2. Senescence and consequences for 
tissue homeostasis. Senescence can have ben-
eficial effects when acute because it allows the 
tissue to adapt to stress. Senescent cells secrete 
proinflammatory molecules in order to recruit 
immune cells that can then lead to clearance 
of senescent cells in the damaged tissue. If the 
regenerative capacity is efficient, tissue homeo-
stasis is maintained. Senescence is a tumor 
suppressor mechanism and has some beneficial 
effects during wound healing and fibrosis. Aging 
induces a decrease in the efficiency of this cycle 
of senescence/recruitment/clearance/regener-
ation. Senescence can have deleterious effects 
when chronic, worsening pathologies such as 
type 2 diabetes and atherosclerosis.
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Over two decades ago, our group showed increased Cer lev-
els in “old” senescent (>55 passages) WI-38 fetal-lung-derived 
human fibroblasts compared with “young” ones (<30 passages) 
(64). nSMase activity was much higher in senescent fibroblasts, 
whereas aSMase activity was only slightly increased (64). Mech-
anistic results demonstrated Cer’s ability to induce a senescent 
phenotype whereby C6-Cer inhibited growth and DNA synthesis 
in young fibroblasts in the 5-to-15-μM range, but was cytotoxic 
when used at 20 μM and more. C6-Cer also induced a complete 

Senescent cells also lose lamin B1 expression (61). This down-
regulation leads to deep changes in chromatin organization and 
transcriptional modifications. Indeed, senescence- associated 
heterochromatin foci are characteristic of senescent cell nuclei.

The senescence-associated secretory phenotype (SASP) is 
a widely studied cellular program and marker of senescence 
(62). Senescent cells express and secrete a wide range of mol-
ecules, from cytokines and chemokines to growth factors and 
matrix metalloproteinases (MMPs), including IL-6, IL-1, IL-8, 
MCP-2, GM-CSF, bFGF, TGF-β, and 
others. SASP induction is dependent on 
the DDR, but p38 signaling also seems 
to play a role. Both pathways activate 
NF-κB, the main signaling pathway that 
triggers SASP (63).

Role of sphingolipids in 
senescence and aging
Studies in yeast, worms, and flies have 
shown that sphingolipids play critical 
roles in regulating lifespan. Indeed these 
studies, using genetic and biochemical 
approaches, demonstrate conclusive-
ly the involvement of sphingolipids in 
aging of these model organisms (sum-
marized in Table 1). In mammalian cells, 
evidence has been accruing on roles of 
sphingolipids in the regulation of senes-
cence (Figure 3). These roles are dis-
cussed here because they are more rele-
vant to human pathobiology.

Table 1. Summary of the role of sphingolipids in regulating lifespan

Organism Role of sphingolipids in lifespan

Saccharomyces cerevisiae Deletion of a gene coding for CerS (longevity-assurance gene 1, LAG1) results in an increase of mean and maximum lifespan (134).

Downregulation of sphingolipid synthesis induces an increase of lifespan, shown by lowering the expression of the SPT subunits LCB1 and LCB2, or by 
using the SPT pharmacological inhibitor Myr (135).

During aging, there is an increase of sphingoid bases (136). It is thought to be the result of the upregulation of alkaline CDase (YPC1 and YDC1) and the 
downregulation of the sphingoid base kinases LCB4/5. Age-induced increase in sphingoid bases was shown to impair mitochondrial structure and function 
and to decrease lifespan.

Caenorhabditis elegans Cer and SM accumulate during aging. Targeting SPT by siRNA or with Myr was also shown to extend mean and maximum lifespan in the worm, whereas 
animals fed a diet rich in sphingolipids have a reduced lifespan (137).

Two CerSs, HYL-1 and HYL-2, seem to have opposite effects on aging. Loss of HYL-1 was shown to have no strong effect on lifespan according to one study 
(138), but another study showed decreases in some signs of aging (139). In contrast, loss of HYL-2 decreases lifespan (138). The disparity is possibly due 
to differing roles in the synthesis of distinct Cers, such that very-long-chain Cer induces aging whereas shorter ones delay it.

SK1-deficient animals have a shorter lifespan (139).

Drosophila melanogaster Inactivation of Dacer, the Drosophila alkaline CDase, induces Cer accumulation and increases lifespan and antioxidative stress capacity of the flies (140).

Flies lacking a functional CERT have an important decrease of SM and Cer, which correlates with increased membrane fluidity and susceptibility to ROS, 
resulting in premature aging and death (141).

Studies in nonmammalian cells have shown that sphingolipids regulate lifespan in yeast, worms, and flies. Sphingolipids are usually associated with a 
decrease of lifespan, especially in yeast and worms. In the flies, Cer could act as a protective molecule and increase lifespan. It is still unclear which bioactive 
sphingolipids are crucial in regulating lifespan. It seems that complex mechanisms are involved and that they depend on the model organism. Besides, the role 
of sphingolipids might not only be due to their bioactive properties but also occur via their structural role.

Figure 3. Mechanisms by which sphingolipids regulate senescence. Cer and S1P have opposite 
effects on senescence: while Cer induces it, S1P seems to prevent it. The mechanisms by which 
Cer and S1P regulate senescence are very distinct. Studies on the mechanisms induced by Cer are 
numerous, whereas little is known about the mechanisms activated by S1P to modulate senes-
cence. CAPP, ceramide-activated protein phosphatase.
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Unlike Cer, few studies have addressed the roles of SK and 
S1P in senescence. One recent study suggested that hTERT is a 
direct target of S1P (28). In human lung cancer cells, SK2 knock-
down or pharmacological inhibition decreased hTERT expression 
at the protein level, suggesting that SK2-generated S1P promotes 
hTERT stability. Mouse embryonic fibroblasts (MEFs) lacking SK2 
became senescent at passage 5, whereas senescence appeared in 
WT or SK1-deficient MEFs after seven passages.

On the other hand, pharmacological inhibition of SK1, SK2, or 
Des1 induced an increase of p53 and p21 expression in prostate can-
cer cells that was associated with decreased cell proliferation (71), a 
mechanism mediated by ROS. Interestingly, silencing either SK1 or 
Des1 expression with siRNA did not have any effect, but combined 
silencing increased p21 expression. This suggests a role for dhCer 
in inducing growth arrest in cancer cells and a synergistic effect of 
Des1 and SK1 knockdown on the development of senescence.

Similar to the results in SK2-deficient MEFs, CERT-deficient 
MEFs showed decreased proliferation, stopped dividing after six 
passages, and exhibited G1 arrest, increased p16 expression, and 
decreased total SM and Cer, whereas total hexosylceramide (Hex-
Cer) increased. Functionally, CERT deficiency induced ER stress, 
altered Golgi dynamics, and dysregulated mitochondria, leading 
to mitophagy and senescence (72).

Role of sphingolipids in senescence and  
age-related diseases
The roles of senescence have been studied in many pathologies, such 
as cancer and metabolic and cardiovascular diseases, and in differ-
ent animal models. Interestingly, sphingolipids and mechanisms 
upstream and downstream of sphingolipid metabolism are implicated 
in regulating senescence in the context of those pathologies (Table 2).

Cancer. Senescence provides a mechanism of cancer pre-
vention by countering tumor growth. An exhaustive literature 
on the role of sphingolipids in cancer has established some links 

dephosphorylation of pRb in young fibroblasts, mimicking obser-
vations in senescent fibroblasts. In a different human fibroblast 
line, IMR-90, Cer levels were observed to be twofold higher in 
senescent fibroblasts compared with young fibroblasts, whereas 
the level of Sph was approximately 50% lower (65).

In human leukemic cell lines such as MOLT-4 and in murine 
fibroblasts (L-929), C6-Cer induced cell cycle arrest in G0/G1 
phase but did not upregulate p53. C6-Cer–induced cell cycle arrest 
was mediated by retinoblastoma protein (Rb) hypophosphoryla-
tion and was p53-independent, implying that p53 is not a down-
stream target of Cer and is not necessary for Cer’s growth-suppres-
sive effects (66). Moreover, in WI-38 fibroblasts, G1 arrest induced 
by serum deprivation did not increase Cer levels, whereas release 
of nocodazole-induced G2/M arrest led to an increase in Cer, 
reversed by FB1, implicating a role for CerS in the Cer increase. 
FB1 also inhibited pRb dephosphorylation that occurred during 
the progression from G2/M to G1. Thus, de novo synthesized Cer 
modulates Rb phosphorylation and cell cycle progression (67).

C6-Cer has also been shown to induce SA β-gal expression 
(68). In WI-38 cells, induction of β-gal expression by C6-Cer was 
time- and concentration-dependent and correlated with inhibi-
tion of DNA synthesis. Incubating the cells for 15 days with 5 μM 
C6-Cer induced β-gal expression in 90% of the cell population.

Further investigation revealed that C6-Cer directly activates 
PP1 and PP2A, which then inhibit CDK2, leading to cell cycle 
arrest. C6-Cer also induced increased p21 expression and associa-
tion with CDK2 but did not affect CDK4, p16, or p27 (69).

Other sphingolipids have been investigated in the regulation 
of cell cycle and senescence. In MOLT-4 cells, Sph induced cell 
cycle arrest in G0/G1 and pRb dephosphorylation in a dose- and 
time-dependent manner, from 100 to 500 nM. The mecha-
nisms are unknown but probably occur through the activation 
of a phosphatase or inhibition of a kinase to maintain Rb in 
dephosphorylated form (70).

Table 2. Summary of the role of senescence and sphingolipids in regulating tissue functions

Pathology Role of senescence Role of sphingolipids

Cancer Beneficial and deleterious Cer mediates oncogene-induced senescence and potentiates the effects of chemotherapeutics
In p53-deficient tumors, loss of SK1 induces senescence and inhibits tumor development
SK2-derived S1P delays senescence and promotes tumor growth
Senescence can be protumorigenic through SASP, but the role of sphingolipids in this context is unknown

Fibrosis Beneficial Cer induces senescence, which has antifibrotic effects and might help tissue recovery

Type 2 diabetes Deleterious Cer induces senescence in adipocytes, hepatocytes, and myoblasts, leading to insulin resistance

Atherosclerosis Deleterious Cer induces endothelial senescence and loss of vasocompliance
S1PR2 promotes senescence and endothelial dysfunction

Immunosenescence Deleterious Cer decreases proliferative capacity of T cells
Cer mimics effect of aging in macrophages

Alzheimer’s disease Deleterious Cer promotes the biogenesis of amyloid β-peptide
Cer-enriched exosomes exacerbate the disease
Inhibition of aSMase or nSMase2 protects from the disease

The senescence-prone progeroid mouse has been very helpful in defining the role of senescence in aging. These mice display a decrease of lifespan. At the 
tissue level, senescence is mostly deleterious but can be beneficial especially in fibrotic tissues. Sphingolipids are modulated during aging, and they have 
been implicated in the regulation of senescence at the cell and tissue levels in the context of many pathologies.
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with senescence regulation, especially in liver cancer (73). Tumor 
suppressors and oncogenes affect sphingolipid metabolism, mod-
ifying the balance between pro-senescence and anti-senescence 
sphingolipids. Similarly, sphingolipids have a role in the response 
to cancer therapy through their regulation of senescence.

In general, induction of senescence by oncogenes such as Ras 
is p53-dependent, but maintaining the senescent state depends 
on p16 and p21. The protein phosphatase PP1CA, a direct target of 
Cer, was shown to regulate oncogene-induced senescence. Loss 
of PP1CA function bypassed p53-induced growth arrest (74). Also, 
PP1CA shRNA impaired p53’s ability to induce p21 and blocked 
pRb dephosphorylation. PP1CA downregulation increased the 
cells’ ability to form colonies, whereas PP1CA overexpression 
reduced colony formation. Therefore, PP1CA acts as a tumor sup-
pressor through its contribution to Ras-induced senescence, rais-
ing the possibility that Cer, through PP1CA activation, may be a 
key signaling molecule in oncogene-induced senescence.

In vitro studies suggest that the p53’s tumor-suppressive 
effects could be mediated, at least in part, through the downreg-
ulation of SK1, leading to decreased S1P levels and increased Cer 
and Sph levels, which then mediate apoptosis and senescence. In 
other words, p53 may act upstream of sphingolipid metabolism to 
induce its tumor suppressor effects. In line with this, it was shown 
that DNA-damaging agents induce p53-dependent proteolysis 
of SK1 in several cell types (75). In p53-KO mice, which develop 
thymic lymphomas, SK1 expression and S1P levels were higher, 
whereas Cer levels were decreased in thymus, compared with WT 
(76). Remarkably, p53-deficient mice lacking SK1 (double KO) 
were almost completely protected from thymic lymphoma, as 
shown by either absence or marked decrease of thymic mass. Thy-
mus from SK1-deficient mice showed less S1P and more Cer than 
that from control. Sph levels were indeed very high in the dou-
ble-KO thymus. There was no change in apoptosis, but there was 
a substantial increase of p21 and SA β-gal, indicating induction of 
senescence, which was postulated as the mechanism preventing 
tumor development in the p53/SK1 double-KO mice.

In additional studies, crossing cancer-prone p53 heterozygote 
mice with SK1-KO mice protected them from developing lympho-
ma, osteosarcoma, lung adenocarcinoma, and rhabdomyosarcoma. 
Restoring SK1 downregulation in p53 heterozygote mice normalized 
Cer levels and expression of the cell cycle inhibitors p16 and p21 (76).

Additional studies have examined targeting the SK2 iso-
form as a possible method to induce senescence in cancer cells 
and tumor suppression. Knockdown of SK2 in lung carcinoma 
cells before implantation into mice completely abolished tumor 
growth (28). An SK inhibitor induced tumor suppression in a 
xenograft model of lung carcinoma in immunodeficient SCID 
mice. hTERT expression gave resistance to SK inhibitor–induced 
tumor suppression and increased tumor volume. These results 
suggest that inhibition of S1P-hTERT binding in cancer cells may 
induce senescence and suppress tumor growth.

Therapy-induced senescence occurs in cancer, and noncancer 
cells after exposure to chemotherapy or radiotherapy, and sphingo-
lipids, especially Cer, are implicated in this response. For example, 
gemcitabine does not completely kill AsPC-1 and PANC-1 human 
pancreatic cancer cell lines in vitro (77). Even at high concentration, 
30%–40% of cells remained viable and became senescent. Adding 

exogenous SM enhanced chemosensitivity through an increase in 
Cer, induced apoptosis up to 90%, and decreased cell cycle arrest 
and senescence. The degree of change in Cer levels determined the 
cell response, such that exogenous C8-Cer did not inhibit cell cycle 
progression at low concentration, induced senescence at moderate 
concentration, and induced apoptosis at high concentration (77).

In cancer therapy, senescence can lead to inflammation, sec-
ondary tumors, or cancer relapse (78). In this context, therapeutic 
strategies that increase Cer levels and decrease S1P levels could 
very efficiently induce senescence and prevent carcinogenesis.

Although senescence is considered a tumor suppressor mech-
anism, a few studies suggest that, in prostate cancer (79) and 
colorectal cancer (80), senescence promotes tumor growth and 
chemoresistance mostly through protumorigenic effects of SASP. 
A complex dialogue between tumor senescent cells, tumor non- 
senescent cells, and nontumor cells regulates the outcome of car-
cinogenesis and response to cancer therapy. Further investigation 
is needed to better understand this interplay and the role of senes-
cence and sphingolipids in the context of cancer.

Fibrosis and organ aging. Accumulating evidence suggests that 
senescence exerts antifibrotic effects in different organs such as 
skin, liver, kidney, and heart. Fibrosis is also increased in many 
organs throughout life. Sphingolipids are involved in the response 
to acute injury and wound healing, but few studies have connected 
sphingolipid metabolism and the regulation of senescence in the 
context of different organ fibrosis. Here we present some promis-
ing parallels between sphingolipids, senescence, and fibrosis.

In a mouse model of cutaneous wound healing, the conver-
sion of fibroblast phenotype from activated to senescent was a key 
event, decreasing tissue fibrosis through an ROS- and p38-depen-
dent mechanism and leading to p16 induction (81). With increasing 
age, nSMase and CerS activities are reduced in the whole epidermis 
(82), and this could explain decreased Cer content observed in the 
skin during aging, which is associated with an increase of fibrosis.

In a mouse model of renal fibrosis induced by unilateral ure-
teral obstruction, p16-deficient mice showed more tubular and 
interstitial cell proliferation, more matrix deposition, and lack of 
senescent cells (83). Thus, in this model, p16-mediated senes-
cence controls cell proliferation and limits matrix deposition and 
fibrosis after injury. On the other hand, in a model of ischemia/
reperfusion injury, loss of p16 reduced injury-induced fibrosis, 
suggesting that in this case senescent cells contributed to the 
fibrosis (84). During aging, nSMase and CerS activities increase, 
and HexCer and lactosylceramide (LacCer) accumulate in mouse 
kidney (85). Caloric restriction reduced those activities, reduced 
levels of sphingolipids, and attenuated the aging processes. 
Therefore, this study suggested that HexCer and LacCer could be 
important mediators of aging in the kidney (85).

Senescence was shown to limit cardiac fibrosis after myocar-
dial infarction (MI) (86), whereby p53 deficiency decreases the 
accumulation of senescent fibroblasts and increases matrix depo-
sition after MI. In mice, Cer accumulates in the heart during aging 
and is associated with cardiac hypertrophy (87).

Carbon tetrachloride–induced (CCl4-induced) liver fibrosis 
results in accumulation of senescent hepatic stellate cells in the 
fibrotic liver (88). p53-deficient mice show more fibrotic tissue con-
taining more proliferating cells and fewer senescent cells compared 
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with controls. This response is enhanced in p53/p16 double-KO 
mice. In rat liver, there is an increase of aSMase, nSMase, aCDase, 
and nCDase activities (89). Indeed, in old rat livers, Nikolova- 
Karakashian and coworkers showed increases in activities of several 
sphingolipid enzymes (especially nSMase) and increased Cer and 
Sph levels, and these changes correlated with increased inflamma-
tory responses (90–92). Moreover, SMS and CerS activities were 
lower in old livers compared with young ones. Additionally, a recent 
study connected aCDase and Cer to liver fibrosis (93), but no direct 
connection has been made between Cer induction and the liver 
during aging, or potential effects on liver function.

Type 2 diabetes. Significant evidence points to roles of sphingo-
lipids in senescence and insulin resistance. Mice fed with a high-fat 
diet (HFD) develop type 2 diabetes, and the pathology positively 
correlates with senescence as evaluated by increased SA β-gal and 
decreased β cell proliferation (94). Accumulating evidence increas-
ingly implicates sphingolipids, especially Cer, in senescence and 
insulin resistance. Levels of sphingolipids in adipose tissue, liver, 
and skeletal muscle change significantly during aging. Adipocytes 
from old mice have higher levels of Cer, SM, GluCer, and C1P 
compared with adipocytes from young mice (95), but no changes 
in Sph and S1P were observed during aging. De novo Cer synthe-
sis is involved in the increase of IL-6 and TNF-α production, and 
mRNA levels of these cytokines are higher in adipocytes from old 
mice. Young adipocytes treated with Cer secrete the same levels 
of cytokines as old adipocytes, suggesting a role for the increase in 
Cer in driving the inflammatory response. Moreover, HFD increas-
es CerS6 expression and C16-Cer levels in adipose tissue. Indeed, 
CerS6-deficient mice have less C16-Cer and are protected from 
HFD-induced obesity and glucose intolerance (96). CerS6 defi-
ciency also decreases inflammation in adipose tissue, as shown 
by decreased macrophage infiltration and decreased expression 
of proinflammatory genes (96). Confirming preclinical results, a 
positive correlation has been established between CerS6 mRNA in 
adipose tissue and insulin resistance in obese subjects (96).

Furthermore, C2-Cer induces insulin resistance in hepato-
cytes of young rats, and treatment of insulin-resistant young 
hepatocytes or old hepatocytes with Myr, which inhibits de novo 
synthesis of Cer and all sphingolipids, increases insulin sensi-
tivity (97). In mouse C2C12 myoblasts, C2-Cer promotes senes-
cence as revealed by increased SA β-gal, p53, and p21 expression, 
decreased BrdU incorporation, and induction of G2/M cell cycle 
arrest. C2-Cer also inhibits insulin signaling (98).

Thus, Cer plays a central role in the regulation of senescence, 
insulin sensitivity, and inflammation in adipose tissue and other 
tissues during aging.

Atherosclerosis. With age, alterations in sphingolipids in the 
heart and vessels accompany altered cardiovascular function. 
Studies show effects of sphingolipids on vascular cell biology, 
especially on the induction of endothelial cell senescence, and 
increasing evidence points to sphingolipid roles in this pathology 
and to possible relationships with senescence. Indeed, it should 
be noted that blood levels of specific Cers are emerging as clinical 
markers of atherosclerotic diseases (99).

Evaluation of sphingolipid levels in mesenteric small arteries 
from sheep during aging shows that old animals have increases 
in long-chain Cer, C14–C20 but mostly C16, and no change in 

levels of very-long-chain Cer, Sph, or S1P. aSMase and nSMase 
activities increase with age, which is most likely the cause of ele-
vated Cer (100). In aged endothelia, nSMase activity is high, Cer 
is increased, and PP2A activity (target of Cer) is also increased. 
Mechanistically, these changes lead to dysregulation of endothe-
lial NOS phosphorylation and inactivation, which are associated 
with age-induced loss of vasomotor function (101). C6-Cer induc-
es senescence in HUVECs, characterized as cell enlargement, cell 
cycle arrest in G1 phase, and expression of SA β-gal (102). Ex vivo 
experiments using vessel rings showed that GW4869, an nSMase 
inhibitor, prevents age-dependent loss of vasomotor function and 
improves whole-vessel vasocompliance (103). Another study con-
firmed these results (104), supporting the deleterious effects of 
nSMase and Cer on vascular tissue during aging.

Endothelial senescence is associated with aging and car-
diovascular diseases (105) and can be modulated by the level of 
cytokines such as IL-1 (106). Aging impairs endothelial functions 
including chemotaxis, wound healing, and morphogenesis. In 
atherosclerotic lesions of mouse aorta, endothelial cells are senes-
cent and S1PR2 expression is dramatically increased (107). In the 
same way, in vitro, young endothelial cells express low levels of 
S1PR2, whereas this receptor is highly expressed in senescent 
endothelial cells. Overexpression of S1PR2 in young cells induced 
senescence-associated endothelial impairments. In contrast, inhi-
bition of S1PR2 signaling in senescent cells decreased senescence 
and restored endothelial function (107). Thus, S1PR2 appears to 
play a critical role in promoting endothelial senescence. From a 
therapeutic perspective, S1PR2 appears to be a candidate target to 
prevent vascular aging. Inhibiting S1PR2 signaling with an antago-
nist or inhibitor might be a way to prevent age-related impairment 
of endothelial functions.

In more advanced atherosclerotic lesions, senescence could 
worsen pathology and trigger complications. MMPs released by 
senescent vascular cells can degrade the fibrous cap and make 
the atheroma less stable, leading to stroke or MI (108). S1P and its 
receptor S1PR1 have been shown to have vasculoprotective effects. 
It would be interesting to study whether some of these effects are 
related to a potential inhibition of endothelial senescence.

Immunosenescence. Some studies have also addressed the 
roles of sphingolipids in immune and adaptive cell senescence. 
The levels of most sphingolipids are higher in CD4+ T cells from 
aged mice compared with young ones, and addition of exoge-
nous C2- and C6-Cer inhibited CD4+ T cell proliferation (109). 
This suggests that age-related Cer increases might contribute to 
the proliferative defects observed in aged CD4+ T cells. Perito-
neal macrophages isolated from old mice showed an increase of 
NF-κB activation compared with those from young mice. Exog-
enous Cer induced NF-κB activation and COX-2 expression in 
young macrophages (110), showing that aging and Cer have the 
same effect on macrophages. The link is not yet fully established, 
but Cer could be responsible for the dysregulation of innate and 
adaptive immunity observed during aging.

Other pathologies. Senescence has been associated with many 
other diseases, among them, Alzheimer’s disease (AD) (111), Par-
kinson’s disease (112), aneurysms (113), osteoarthritis (114), glau-
coma (115), macular degeneration (116), chronic obstructive pul-
monary disease (117), and age-related sarcopenia.
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SM and Cer may be relevant biomarkers and therapeutic tar-
gets in AD. Cer content is elevated in the cerebrospinal fluid of AD 
patients (131). Increases of C24:0 Cer were observed in vulnerable 
brain regions of AD patients such as the middle frontal gyrus, and 
these changes were associated with oxidative stress (132). SM lev-
els are associated with AD severity in the brain and the blood of 
patients (133). Higher baseline serum levels of Cer were associat-
ed with an increased risk of AD (124).

Thus, specific sphingolipids and specific Cers are emerging 
as possible diagnostics, biomarkers, and indices of several human 
diseases, a process increasingly enabled by the evolving mass 
spectrometry technology directed at measuring sphingolipids.

Conclusions
Significant and wide-ranging evidence defines critical roles of 
sphingolipid enzymes and pathways in aging of model organ-
isms. Likewise, increasing evidence points to multiple roles of 
several bioactive sphingolipids, especially Cer and S1P, in mech-
anisms of mammalian cell and tissue senescence. Further inves-
tigations are needed to better understand the specific mecha-
nisms connecting bioactive sphingolipids to specific aspects of 
the senescence program, including regulation by stress stimuli 
and p53, and participation in growth arrest, SASP, and other 
aspects of the senescence response. Beyond that, there is a need 
to understand the roles of sphingolipids in the overall aging pro-
cess and in age-related diseases.
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AD is of particular interest, as significant literature links sphin-
golipids to AD. C6-Cer promotes amyloid β-peptide (Aβ) biogenesis 
in a human neuroglioma cell line by stabilizing β-secretase, leading 
to an increase in the cleavage of the amyloid precursor protein (118). 
aSMase activity is increased in the brains of AD mice, and partial inhi-
bition of aSMase in a mouse model of familial AD decreased AD-like 
symptoms such as Aβ deposition and memory impairment through 
the restoration of lysosomal biogenesis (119). nSMase activity is 
also higher with age in striatum, hippocampus, and frontal cortex. 
This correlates with increased expression of inflammatory markers 
such as IL-1β (120). A recent study showed that nSMase2-deficient 
mice have less severe AD-like symptoms than control mice (121). 
The underlying mechanism was a reduction of brain exosomes in 
the nSMase2-deficient mice. Indeed, this study also showed that 
Cer-enriched exosomes aggravate AD pathology. Thus, as discussed 
in the section below, Cer could play a major role in AD pathogenesis 
through the induction of senescence and inflammation.

Clinical data
A flurry of recent studies have addressed the potential roles of 
blood sphingolipids as possible biomarkers for aging and aging- 
related diseases. Clinical studies have made significant correla-
tions between the levels of sphingolipids, specifically Cer, and 
sphingolipid enzymes and different pathologies such as athero-
sclerosis, cataract, AD, and type 2 diabetes (96, 122–124).

Interestingly, centenarians, considered a human model of 
healthy aging, exhibit increased SM and very-long-chain Cer in 
serum compared with younger elderly subjects (125). Another 
study showed increased plasma levels of some long-chain Cer in 
centenarians compared with aged subjects, but other long-chain 
Cer and GluCer are decreased (126).

Plasma SM and Cer levels correlate with increased risk of cor-
onary heart disease (127, 128). A study suggested that reducing 
Cer levels in the heart might improve ventricular function (129). 
Patients with chronic heart failure exhibit a positive correlation 
between plasma Cer levels and heart failure severity (122).

In human lens, Cer and dhCer levels increase with age (123) 
and are barely detectable before the age of 30. Modification of the 
lipid composition may impact physical properties of the fiber cell 
membranes and may be associated with cataract formation (130).
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