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Eya proteins are critical developmental regulators that are highly expressed in embryogenesis but downregulated after
development. Amplification and/or re-expression of Eyas occurs in many tumor types. In breast cancer, Eyas regulate
tumor progression by acting as transcriptional cofactors and tyrosine phosphatases. Intriguingly, Eyas harbor a separate
threonine (Thr) phosphatase activity, which was previously implicated in innate immunity. Here we describe what we
believe to be a novel role for Eya3 in mediating triple-negative breast cancer–associated immune suppression. Eya3 loss
decreases tumor growth in immune-competent mice and is associated with increased numbers of infiltrated CD8+ T cells,
which, when depleted, reverse the effects of Eya3 knockdown. Mechanistically, Eya3 utilizes its Thr phosphatase activity
to dephosphorylate Myc at pT58, resulting in a stabilized form. We show that Myc is required for Eya3-mediated
increases in PD-L1, and that rescue of PD-L1 in Eya3-knockdown cells restores tumor progression. Finally, we
demonstrate that Eya3 significantly correlates with PD-L1 in human breast tumors, and that tumors expressing high levels
of Eya3 have a decreased CD8+ T cell signature. Our data uncover a role for Eya3 in mediating tumor-associated immune
suppression, and suggest that its inhibition may enhance checkpoint therapies.
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Introduction
The eyes absent family of proteins (Eyas 1–4) are crucial regula-
tors of embryogenesis, contributing to the development of diverse 
tissues such as the ear (1, 2), eye (3), craniofacial complex (4, 5), 
colon (6, 7), esophagus (8), heart (9, 10), kidney (1, 11), lung (11, 
12), and muscle (11, 13). The ability of Eya proteins to contribute to 
the proper development of numerous organs is likely due in part 
to their diverse functions, acting both as transcriptional regulators 
and as phosphatases (14, 15).

The best-described function of the Eya proteins is as transcrip-
tional cofactors to the Six family of homeoproteins (16, 17). All 
members of the Eya family act as transactivating proteins when 
bound to Six family members, and the Six/Eya complex acts as a 
bipartite transcription factor in the development of many organs 
(18, 19). Described Six/Eya transcriptional targets include c-Myc, 
cyclin A/D, VEGF-C, and TGF-βRI (20–25). In addition to acting 
as transcriptional cofactors, the Eyas belong to the haloacid dehy-
drogenase (HAD) superfamily, as they contain intrinsic tyrosine 
(Tyr) phosphatase activity in their C-termini (14, 15, 26). The Tyr 
phosphatase activity of Eya proteins has been shown to regulate 
cell proliferation and apoptosis (1, 26–29), migration (28, 30, 31), 

invasion (28), survival (32), and angiogenesis (30). Whether these 
functions are solely due to the Tyr phosphatase activity of Eya, or 
whether the interaction with Six family members also plays a role, 
is not clear. Since the Six1/Eya interaction has been shown to medi-
ate TGF-β signaling and epithelial-mesenchymal transition (EMT) 
(33, 34), this interaction likely contributes to migratory and inva-
sive properties mediated by Eya. Because Eya proteins mediate key 
developmental properties that are utilized in tumors, it is not sur-
prising that their misexpression is observed in numerous cancers.

Eya family members are expressed and/or amplified in Ewing 
sarcoma (35), lung (36), ovarian (37), and breast cancers (28, 33, 
38), as well as Wilms tumors (39). In breast cancer, Eyas play a role 
in tumor progression and metastasis, in large part via their action 
with Six1 (33, 34). Currently, novel compounds are being created to 
inhibit the Six/Eya interaction (40) and the Tyr phosphatase activ-
ity of Eyas (31, 40, 41), which may have utility as tools to dissect the 
different functions of Eya, and as potential antimetastatic agents. 
However, these compounds do not target the third described activ-
ity of Eyas: a novel threonine (Thr) phosphatase activity found in 
their N-termini (42–44). Intriguingly, the Thr phosphatase activity 
of Eya regulates the innate immune response to denatured DNA 
and double-stranded RNA in mouse embryonic fibroblasts and in 
Drosophila by promoting the expression of CXCL10 and IFN-β (43, 
44). This novel link of Eya proteins with the innate immune system 
suggests that Eya expression in tumor cells may have additional 
functions through regulation of antitumor immune responses.
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Eya3 results in decreased numbers of CD8+ 
T cells in tumors, and leads to CD8+ T cell 
exhaustion. Mechanistically, we demonstrate 
that Eya3, through its Thr phosphatase activ-
ity, and through regulating c-Myc, upregulates 
PD-L1, and that this upregulation is required 
for Eya3-mediated alterations in adaptive 
immune response and tumor growth. Further, 
we demonstrate that Eya3 and PD-L1 are sig-
nificantly associated in breast cancer, and that 
breast cancer patients with high Eya3 have a 
significantly reduced CD8+ T cell signature. 
Our findings suggest a potential role for Eya3 
as a biomarker or target to enhance immune 
therapies in TNBC.

Results
Eya3 decreases the number of CD8+ cytotoxic T 
cells in mammary tumors. By examining public 
gene expression data sets, we found that Eya3 
is most highly expressed in the TNBC subtype 
compared with other subtypes of breast cancer 

(Figure 1). Thus, to determine the role of Eya3 in TNBC, and to 
specifically examine whether Eya3 has any function in tumor 
immunity, we knocked down Eya3 in 2 immune-competent 
murine TNBC cell lines: the BALB/c-derived 66cl4 cell line (78) 
and the FVB/N-Tg(MMTV-PyVmT)–derived Met1 cell line (79). 
Knockdown (KD) was confirmed using quantitative reverse 
transcription PCR (RT-qPCR) and Western blot analysis (Figure 
2, A and B). To determine whether KD of Eya3 altered param-
eters previously associated with Eya3 in human breast cancer 
cell lines (28), we performed cell growth assays using IncuCyte 
Live-Cell Analysis from Essen BioScience and in vitro migra-
tion assays. Knockdown of Eya3 decreased the proliferative and 
migratory abilities of 66cl4 cells, similar to what has been pre-
viously reported in human TNBC cell lines (28). However, in 
Met1 cells, KD of Eya3 had no effect on proliferation, although 
it did still significantly affect migration, suggesting that Eya3’s 
ability to promote proliferation may be context-dependent 
(Figure 2, C and D).

To determine the role of Eya3 in TNBC growth in vivo, in the 
context of an intact immune system, we orthotopically injected 
66cl4 and Met1 scramble (SCR) and Eya3-KD cell lines into the 
mammary fat pads of BALB/c and FVB/N mice, respectively. 
Although KD of Eya3 inhibited proliferation in vitro in 66cl4 cells 
(Figure 2C), KD of Eya3 significantly delayed tumor growth in vivo 
in both mouse models without any clear alteration in proliferation, 
when examined at the time of sacrifice (Figure 3, A–D, and Fig-
ure 4, A–D). Because the 66cl4-SCR and Eya3-KD cell lines were 
clonal (whereas the Met1-KD lines were pooled populations), we 
repeated this in vivo experiment using two 66cl4-SCR and two 
66cl4-Eya3-KD clones, to ensure that our tumor growth effects 
were not due to clonal variability. Importantly, we observed a 
similar, and consistent, significant delay in tumor growth with 
Eya3-KD when compared with both SCR clones (Supplemental 
Figure 1A; supplemental material available online with this article; 
https://doi.org/10.1172/JCI96784DS1).

Evading immune destruction is now recognized as a hallmark 
of cancer (45), and numerous mechanisms by which cancer cells 
evade immune detection have been discovered. These mecha-
nisms include cancer cell secretion of factors that suppress CD8+ T 
cell function and differentiation/proliferation (46–48), secretion 
of factors to attract or modify additional immune cells that sup-
press CD8+ T cell function (46, 49, 50), the ability of cancer cells 
to become unrecognizable to CD8+ T cells through loss of anti-
gen processing/presentation (51), and cancer cell presentation of 
ligands that render CD8+ T cells unable to function and/or lead to 
CD8+ T cell apoptosis (46, 48, 52).

PD-L1 is an immunosuppressive ligand that is normally 
expressed by myeloid-lineage cells and can bind to its receptor, 
PD-1, on activated, functional CD8+ cytotoxic T cells. Binding 
of PD-L1 to PD-1 causes inhibition of CD8+ T cell proliferation 
and function while promoting CD8+ T cell apoptosis and anergy/
exhaustion (53–57). PD-L1 is an important part of the adaptive 
immune response as it serves to prevent autoimmunity (58) and 
fetal-maternal rejection during pregnancy (59). PD-L1 is normally 
expressed in myeloid cells in addition to a handful of epithelial 
cell types, including cells of the lung, heart, and placenta (60). It 
is often overexpressed in cancers, including breast cancer, where 
it dampens the CD8+ T cell tumor response and is associated with 
tumor aggressiveness and poor prognosis (53, 61–67). One of the 
most highly aggressive and metastatic types of breast cancer is 
the triple-negative breast cancer (TNBC) subtype. TNBCs are 
highly immunogenic, because of their high genomic instability 
and mutational load, and yet are frequently seen to possess low 
levels of infiltrated CD8+ T cells (68–75). The loss of CD8+ T cells 
in TNBC correlates with high levels of PD-L1 in these tumors, 
and clinical trials using immunotherapies against PD-L1/PD-1 in 
TNBC are showing favorable outcomes (76, 77).

Here we show, for the first time to our knowledge, that 
Eya3 expression in TNBC promotes tumor growth by regulat-
ing the adaptive immune response. We demonstrate that high 

Figure 1. Eya3 is expressed in TNBCs. Eya3 gene expression (log2 median-centered intensity) 
graphed as mean with SD in data sets separated by TNBC and other biomarker status. Data sets 
were categorized as ER–PR–ERBB2– if negative for ER, PR, and ERBB2 protein and “other bio-
marker status” if tumors were positive for either ER, PR, or ERBB2 protein. Data were obtained 
from the Oncomine portal (https://www.oncomine.com). Data represent mean ± SEM, and sig-
nificance was measured by a 2-tailed Student’s t test. (A) Eya3 expression from TCGA data set. 
Other biomarker status, n = 250; ER–PR–ERBB2–, n = 46. (B) Eya3 expression from Curtis data set 
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3440846/). Other biomarker status, n = 1,340; 
ER–PR–ERBB2–, n = 211. Tumors with no biomarker status were excluded.
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Eya3 increases tumor growth by suppressing CD8+ T cells. To 
determine whether decreased numbers of CD8+ T cells within 
the tumor are critical for Eya3-mediated enhancement of tumor 
growth, we injected a depleting anti-CD8α antibody into BALB/c 
and FVB mice. Three days after injection of anti-CD8α or control 
IgG antibody, we performed flow cytometry on blood from the 
treated mice, which confirmed that the anti-CD8α–injected mice 
had significantly reduced CD8+ T cells in comparison with IgG-
injected control mice (Figure 5A and Figure 6A). We then injected 
the 66cl4-SCR and Eya3-KD or Met1-SCR and Eya3-KD cell lines 
into the mammary fat pads of the BALB/C and FVB mice, respec-
tively. The mice continued to receive control or CD8-depleting 
antibodies weekly for the continuation of the study. As previously 
observed, both 66cl4 and Met1 tumors expressing Eya3 grew more 
rapidly than Eya3-KD tumors in IgG-injected control mice (Figure 
5B and Figure 6B). Depletion of CD8+ T cells increased the growth 
of Eya3-KD tumors almost to the levels of SCR tumors in both 
the 66cl4 and Met1 tumor models, suggesting that the ability of 
Eya3 to enhance tumor growth is due in large part to its ability to 
regulate cytotoxic T cells. While depletion of CD8+ T cells in the 
SCR controls also enhanced tumor growth, as expected, it did not 

As we did not observe proliferative differences in vivo, yet the 
tumor growth was dramatically inhibited with Eya3 KD, we asked 
whether the immune system may be playing a role in inhibiting 
the tumor when Eya3 levels were decreased. In both the 66cl4 
and Met1 models, tumors that expressed Eya3 contained fewer 
CD8+ T cells as determined by immunohistochemistry (IHC) and 
flow cytometry when compared with their Eya3-KD counterparts 
(Figure 3, E–G, and Figure 4, E–G). Interestingly, Eya3 expression 
did not significantly affect the number of CD4+ T cells seen with-
in the tumors, as assessed using flow cytometry in both models 
(Figure 3H and Figure 4H). Additionally, we observed significant 
increases in the populations of NK1.1+ natural killer cells, CD11c+ 
dendritic cells, and F4/80+, CD80+, and CD206+ macrophages in 
response to Eya3 KD. No significant differences in CD4+CD25+ T 
cells or CD11b+ myeloid cells were observed upon Eya3 KD (Sup-
plemental Figure 2). Because the presence of infiltrated CD8+ T 
cells in breast cancer is known to inversely correlate with tumor 
growth and aggressiveness, particularly in TNBC, and because 
their presence is a good predictor of overall survival, prognoses, 
and response to chemotherapies (72, 80–83), we focused on the 
role of Eya3 in regulating CD8+ T cells.

Figure 2. Eya3 expression regulates proliferation 
and migration in TNBC cells in a context-dependent 
manner. (A) RT-qPCR analysis on cDNA derived from 
RNA isolated from 66cl4-SCR and 66cl4-Eya3-KD 
cells or from Met1-SCR and Met1-Eya3-KD cells. Eya3 
mRNA level was normalized using GAPDH levels. Data 
represent mean ± SEM, and significance was measured 
using ANOVA with sum contrasts in R (https://cran.r-
project.org/) for biological triplicates for 3 combined 
experiments. (B) Western blot analyses performed 
on whole cell lysates from 66cl4 and Met1 cell lines. 
Antibodies against Eya3 and β-actin were used to probe 
the membranes. Representative image of experiments 
performed at least 3 times. (C) Cell growth assays per-
formed using the IncuCyte Zoom for 66cl4- or Met1-SCR 
and Eya3-KD cell lines. Cells were plated in triplicate, and 
proliferation was measured as confluence normalized 
to confluence on day of plating. Data represent mean ± 
SEM, and significance was measured by a mixed effects 
model. Representative experiment (n = 5 for 66cl4, n = 3 
for Met1). (D) Transwell migration assays on 66cl4-SCR 
and Eya3-KD cell lines. Cells were plated in triplicate in 
serum-free media in top of Transwell and allowed to 
migrate toward bottom of well containing full medium 
for 4 hours. Cells present at bottom of Transwell were 
then counted. Ibidi chamber migration assay on Met1-
SCR and Eya3-KD cell lines. Cells were plated in triplicate 
in 500-μm inserts and incubated overnight. Inserts were 
removed and the distance cells migrated was measured 
after 5 hours. Data represent mean ± SEM, and signifi-
cance was measured by an ANOVA with sum contrasts 
in R for biological triplicates for 3 combined experiments.
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with Eya3 KD, their functionality remained unknown. Thus, we 
repeated injection of 66cl4 cells into the mammary fat pads of a 
small cohort of BALB/c mice, and isolated tumors 3 weeks after 
injection to examine the activation state of tumor-associated 
CD8+ T cells. Intriguingly, a higher percentage of CD8+ T cells 
expressed Tim3, Blimp1, T-bet, Eomes, and PD-1, markers asso-

enhance the growth to the same extent as observed in the Eya3-
KD cells in either tumor model (Figure 5C and Figure 6C).

Eya3 regulates CD8+ T cell function in mammary carcinomas. 
The data above demonstrate that regulation of CD8+ T cells is 
critical for Eya3 to enhance tumor growth. While differences in 
the number of cytotoxic T cells within the tumor were observed 

Figure 3. Eya3 regulates CD8+ T cells in 66cl4 mammary carcinoma tumors. (A) Representative bioluminescence images of BALB/c mice bearing 66cl4-
SCR or Eya3-KD tumors at week 6 after injection. (B) Tumor volume of 66cl4-SCR and Eya3-KD tumors in BALB/c mice as measured using calipers. Each 
point represents the mean tumor size ± SEM at that time point after injection, and a mixed effects model was used to measure significance. Representa-
tive experiment (n = 3); n = 10 mice per cell line. (C) Representative pictures, original magnification ×20, of IHC for anti-BrdU staining performed on 66cl4-
SCR or Eya3-KD tumors. Five sections per tumor were stained and 5 fields of view photographed for each tumor. (D) Quantification of BrdU IHC performed 
on 66cl4-SCR or Eya3-KD tumors. Data represent mean ± SEM. Significance was measured using ANOVA with sum contrasts in R for 5 tumor sections 
with 5 fields of view scored for each section. (E) Representative pictures, original magnification ×20, of IHC performed for CD8+ on 66cl4-SCR or Eya3-KD 
tumors. Five sections per tumor were stained and 5 fields of view photographed for each tumor. (F) Quantification of CD8+ IHC shown in E. Data represent 
mean ± SEM. Significance was measured using ANOVA with sum contrasts in R for 5 tumor sections with 5 fields of view scored for each section. (G and 
H) Calculated number of CD8+ and CD4+ T cells present per gram of 66cl4-SCR and Eya3-KD tumor. Tumors were isolated (SCR, n = 5; KD2, n = 5; KD3, n = 
7) and analyzed by flow cytometry. CD8+ T cells defined as CD45+CD3+CD8+CD4–. CD4+ T cells defined as CD45+CD3+CD8–CD4+. Data represent mean ± SEM. 
Significance was measured using ANOVA with sum contrasts in R. Representative experiment (n = 2).
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T cells also showed trends of increased CD44 and TNF-α expres-
sion, all markers associated with cytotoxic T cell activation (Fig-
ure 7, F–I). Thus, not only does Eya3 expression lead to decreases 
in the numbers of CD8+ T cells, it is associated with indicators of 
CD8+ T cell loss of function.

ciated with T cell exhaustion or loss of function (84), in 66cl4-
SCR tumors than in 66cl4-Eya3-KD tumors (Figure 7, A–E). 
Conversely, 66cl4-Eya3-KD tumors, when compared with the 
66cl4-SCR counterparts, contained a significantly higher per-
centage of CD8+ T cells expressing IL-2 and IFN-γ, and the CD8+ 

Figure 4. Eya3 regulates CD8+ T cells in Met1 mammary carcinoma tumors. (A) Representative bioluminescence images of FVB mice bearing Met1-SCR or 
Eya3-KD tumors at week 5 after injection. One Eya3 KD was used, as Eya3 KD2 lost Eya3 suppression. (B) Tumor volume of Met1-SCR and Eya3-KD tumors 
in FVB mice as measured by luciferase signal of primary tumor over time. Points represent the tumor size at a given time after injection ± SEM. A mixed 
effects model was used to measure significance. n = 10 mice per cell line. (C) Representative pictures, original magnification ×40, of IHC for Ki67 staining 
performed on 66cl4-SCR or Eya3-KD tumors. Five sections per tumor were stained and 5 fields of view photographed for each tumor. (D) Quantification of 
Ki67 IHC performed on Met1-SCR or Eya3-KD tumors. Data represent mean ± SEM. Significance was determined using a 2-tailed Student’s t test on quan-
tification from 5 tumor sections. Five fields of view were scored for each section. (E) Representative pictures, original magnification ×20, of IHC for CD8+ 
performed on Met1-SCR or Eya3-KD tumors. Five sections per tumor were stained and 5 fields of view photographed for each tumor. (F) Quantification of 
CD8+ IHC performed on Met1-SCR or Eya3-KD tumors. Data represent mean ± SEM. Significance was measured using a 2-tailed Student’s t test for 5 tumor 
sections with 5 fields of view scored for each section. (G and H) Calculated number of CD8+ and CD4+ T cells present per gram of Met1-SCR and Eya3-KD 
tumors. Tumors were isolated (SCR, n = 7; KD3, n = 8) and analyzed using flow cytometry. CD8+ T cells defined as CD45+CD3+CD8+CD4–. CD4+ T cells defined 
as CD45+CD3+CD8–CD4+. Data represent mean ± SEM. Significance was measured using a 2-tailed Student’s t test. *P < 0.05, ***P < 0.001. C–H are from a 
repeated experiment and are not from the mice pictured in A and B.
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While the expression of Eya3 did not affect the proliferation of 
mammary carcinoma cells in vivo when examined at the endpoint 
of the study (Figures 3 and 4), the fact that its presence leads to T cell 
exhaustion suggests that the growth differences could be attributed 
to different apoptotic rates in the tumor in response to the immune 
system. Thus, we examined apoptosis of tumor cells 5 weeks after 
injection using propidium iodide (PI) and annexin V in the same study 
as outlined above in which we examined T cell markers. Intriguingly, 
we observed that high expression of Eya3 protected tumor cells from 
both early-stage (as shown by the presence of annexin V) and late-
stage (as shown as by the presence of annexin V and PI) apoptosis 
(Figure 7, J–K), suggesting that death of the tumor cells significantly 
contributes to tumor size when Eya3 is knocked down.

Eya3 increases PD-L1 expression through Thr phosphatase–medi-
ated regulation of c-Myc. Cancers promote exhaustion of tumor-infil-
trating CD8+ T cells via numerous mechanisms. As PD-L1 expression 
on tumor cells, including TNBC, is known to lead to tumor-associ-
ated immunosuppression (53, 61, 63, 66, 67, 76), we asked whether 
Eya3 regulates PD-L1. We observed that PD-L1 mRNA expression 
is reduced in both 66cl4 and Met1-Eya3-KD cells compared with 
their control counterparts (Figure 8A and Supplemental Figure 
3A). Although PD-L1 mRNA levels were increased in the presence 
of Eya3 expression, we did not observe increased PD-L1 protein on 
the surface of these cells in culture. The inability to observe surface 
PD-L1 protein in a culture setting has previously been described (67, 
85); thus we orthotopically injected our 66cl4-Eya3-KD and SCR 
control cell lines into the mammary fat pads of BALB/c mice, iso-
lated the tumors when they had reached 1 cm3 in size, and analyzed 
the surface of the cancer cells for PD-L1 protein by flow cytometry. 
We observed increased PD-L1 protein on the surface of tumor cells 
expressing Eya3 compared with those with Eya3 KD (Figure 8B).

Eya proteins are known to contain several domains with dif-
fering activities, including a transactivation domain, a Tyr phos-
phatase domain, and a completely separable Thr phosphatase 
domain (42, 86). As the Thr phosphatase domain has previously 
been implicated in innate immunity (43), we wanted to deter-
mine whether this domain is responsible for the altered PD-L1 
expression. To this end, we created the previously described 
H79A mutation to render Eya3 Thr phosphatase dead (42). We 
confirmed the mutation efficacy by pulling down Eya3 from 
HEK293FT cells and examining its ability to dephosphorylate a 
Thr-phosphorylated peptide (Figure 8C). We then re-expressed 
WT Eya3 or Thr phosphatase–dead (H79A) Eya3 containing wob-
ble mutations to avoid knockdown by Eya3 shRNAs in our 66cl4 
and Met1-Eya3-KD cell lines, as well as previously described 
Eya3 mutants that render the protein Tyr phosphatase dead 
(D262N) (28) or unable to bind Six family members (A520R) 
(the equivalent of the A532R mutant of Eya2) (34). These lat-
ter constructs also contained wobble mutations to avoid knock-
down by Eya3 shRNA within the 66cl4- and Met1-Eya3-KD cells 
(Figure 8D and Supplemental Figure 3B). Our data demonstrate 
that cells containing WT Eya3 upregulate PD-L1, whereas those 
containing the Thr phosphatase–dead Eya3 (H79A), even when 
expressed very efficiently, did not upregulate PD-L1 (Figure 8E 
and Supplemental Figure 3C). In contrast, the Tyr phosphatase–
dead Eya3 (D262N), even when not highly expressed, was able 
to restore PD-L1 levels to a degree similar to that observed in the 
control cells, as well as observed with WT Eya3 add-back, sug-
gesting that this activity of Eya3 is not required for its ability to 
modulate PD-L1 (Figure 8E and Supplemental Figure 3C). Addi-
tionally, the Six1-binding mutant of Eya3 (A520R) was only able 
to partially restore PD-L1 levels, particularly in the Met1 model 

Figure 5. Eya3 regulation of CD8+ T cells is required for increased 66cl4 mammary carcinoma growth. (A) Percentage of CD8+ cells in 50 μl blood from 
animals treated with rat IgG or CD8α-depleting antibody as measured by flow cytometry. Blood was isolated from 10 mice per group. Data represent mean 
± SEM. Significance was measured using a 2-tailed Student’s t test. (B) Tumor volume of 66cl4-SCR and Eya3-KD tumors treated with rat IgG or CD8+-
depleting antibody, as measured using calipers. Each point represents mean of tumors from mice in that condition ± SEM, and a mixed effects model was 
used to measure significance. n = 5 mice per group. Solid lines and filled symbols represent mice treated with IgG antibody. Dotted lines and open symbols 
represent mice treated with anti-CD8+ antibody. (C) Fold change of tumor growth between IgG-treated 66cl4-SCR and SCR2 tumors and CD8+-treated 
66cl4-SCR and SCR2 tumors and fold change of tumor growth between IgG-treated 66cl4-Eya3 KD2 and KD3 tumors and CD8+-treated 66cl4-Eya3 KD2 and 
KD3 tumors. Data represent mean ± SEM. Significance was measured using a 2-tailed Student’s t test of average fold change of CD8+/IgG tumor size aver-
aged for every time point over the experimental time course. n = 5 mice per group. *P < 0.05, ***P < 0.001.
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(Figure 8E and Supplemental Figure 3C), suggesting that the 
interaction with Six family members may be in part required to 
mediate upregulation of PD-L1 mRNA, but that it is not the main 
activity of Eya3 contributing to this effect. These data demon-
strate that Eya3 mediates upregulation of PD-L1 mainly through 
its Thr phosphatase activity.

One known target of the Eya3 Thr phosphatase is c-Myc. The 
Eya3 Thr phosphatase stabilizes c-Myc by dephosphorylating it at 
pT58, preventing its degradation (87, 88, 89). As c-Myc is a tran-
scriptional regulator of PD-L1 (90), we explored the possibility that 
regulation of c-Myc levels may be one mechanism by which the Eya3 
Thr phosphatase regulates PD-L1 expression. We observed that the 
degradable pT58 form of c-Myc is increased when Eya3 expression 
is lost in both the 66cl4 and Met1 systems (Figure 9, A and E). This 
pT58 form of c-Myc is decreased when WT Eya3 is re-expressed, 
but is not decreased when Eya3 is Thr phosphatase–dead (Figure 
9, A–E). These data suggest that Eya3 is stabilizing c-Myc levels in 
both systems via changing its phosphorylation state. Thus, to deter-
mine whether Eya3 is regulating PD-L1 mRNA levels via c-Myc, we 
knocked down c-Myc in the presence of either WT Eya3 or the Eya3 
H79A mutant (Figure 9, B, C, F, and G). Our data demonstrate that 
c-Myc is required downstream of WT Eya3 to upregulate PD-L1 
mRNA in both systems, but that it is not required downstream of 
the Eya3 H79A mutant (where PD-L1 is not increased compared 
with in the presence of WT Eya3) (Figure 9, D and H).

PD-L1 mediates increased growth with Eya3 overexpression. As 
we observed decreased PD-L1 on the surface of the mammary 
cancer cells in response to Eya3 KD, we asked whether PD-L1 
expression was the means by which Eya3 regulates CD8+ T cells 
and tumor growth. To this end, we stably re-expressed PD-L1 
in the 66cl4-Eya3-KD cells, which was confirmed by RT-qPCR 
(Figure 10A), and injected the cell lines into the mammary fat 
pads of BALB/c mice. Restoration of PD-L1 in Eya3-KD cells 
led to rescued levels of PD-L1 on the surface of the tumor cells 
compared with 66cl4-SCR control cells (Figure 10B). As previ-
ously observed, tumors expressing Eya3 (66cl4-SCR) had an 
increased rate of growth when compared with Eya3-KD tumors 
(Figure 10, C and D). Importantly, restoration of PD-L1 signifi-

cantly restored tumor growth (Figure 10C). Tumors isolated at 
42 days after injection exhibited similar proliferation rates, as 
measured by BrdU incorporation, in all of the groups (Figure 
10E), again demonstrating that alterations in proliferation were 
not mediating the effects of Eya3 in this context. Further, live 
CD8+ T cells were increased in 66cl4-Eya3-KD tumors com-
pared with 66cl4-SCR tumors, and re-expression of PD-L1 in 
66cl4-Eya3-KD tumors decreased the numbers of live CD8+ T 
cells back to that observed in 66cl4-SCR control tumors (Figure 
10F). Conversely, 66cl4-SCR tumors and KD tumors contain-
ing PD-L1 contained large numbers of dead CD8+ T cells when 
compared with 66cl4-Eya3-KD tumors (Figure 10G). Together, 
these data demonstrate that tumor growth mediated by Eya3 
is due in large part to its ability to increase PD-L1 expression, 
altering T cell function and tumor immunity.

Eya3 expression correlates with PD-L1 expression and a 
decreased CD8+ T cell signature in human breast cancers. To 
determine whether Eya3 is associated with T cell suppression 
in human settings, we first examined whether Eya3 regulates 
PD-L1 expression in human breast cancer cells. We knocked 
down Eya3 in the human TNBC cell line MDA-MB-231 (91). KD 
was determined by RT-qPCR, and, as observed in the murine 
systems, KD of Eya3 resulted in a reduction of PD-L1 expression 
(Supplemental Figure 4, A and B). We further examined whether 
Eya3 expression and PD-L1 expression correlate in human breast 
cancer data sets. In The Cancer Genome Atlas (TCGA; https://
www.oncomine.org) breast cancer data sets we observed a high-
ly significant correlation between Eya3 and PD-L1 expression 
for all breast cancer subtypes and TNBCs (Figure 11, A and B). 
Because cells other than tumor cells in the microenvironment 
likely also express PD-L1, and immunohistochemical analysis of 
PD-L1 in the many cell types within a tumor can be difficult to 
interpret (61, 92–94), we used gene expression analysis to exam-
ine whether the correlation between Eya3 and PD-L1 appeared 
specific to the tumor cells. To this end, we identified breast can-
cers, using gene expression signatures, with a purity of greater 
than 80% tumor cells (Figure 11, C and D), and found that these 
tumors showed a strong significant correlation between Eya3 and 

Figure 6. Eya3 regulation of CD8+ T cells is required for increased Met1 mammary carcinoma growth. (A) Percentage of CD8+ cells in 50 μl blood from 
animals treated with rat IgG or CD8α-depleting antibody as measured by flow cytometry. Blood was isolated from 5 mice per group. Data represent mean 
± SEM. Significance was measured using a 2-tailed Student’s t test. (B) Tumor volume of Met1-SCR and Eya3-KD tumors treated with rat IgG or CD8+-
depleting antibody, as measured using calipers. Each dot represents mean of tumors from mice in that condition ± SEM, and a mixed effects model was 
used to measure significance. n = 5 mice per group. Solid lines and filled symbols represent mice treated with IgG antibody. Dotted lines and open symbols 
represent mice treated with anti-CD8+ antibody. (C) Fold change of tumor growth between IgG-treated Met1-SCR tumors and CD8+-treated Met1-SCR 
tumors and fold change of tumor growth between IgG-treated Met1-Eya3 KD tumors and CD8+-treated Met1-Eya3-KD tumors. Data represent mean ± SEM. 
Significance was measured using a 2-tailed Student’s t test of average fold change of CD8+/IgG tumor size averaged for every time point over the experi-
mental time course. n = 5 mice per group. *P < 0.05, ***P < 0.001.
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sequencing data set to perform Cibersort analysis (95), to esti-
mate the abundance of the different subtypes of T cells within 
the tumor. Importantly, we found that high Eya3 expression sig-
nificantly correlates with lower estimates of tumor-infiltrating 
CD8+ T cells in breast cancer patients, including those with the 
TNBC subtype (Figure 11, E and F).

PD-L1. In contrast, those tumors that were less than 60% pure 
tumor cells did not show a correlation between Eya3 and PD-L1 
(Figure 11, C and D). These data suggest that Eya3 is contributing 
to PD-L1 expression specifically on the tumor cells. To further 
determine whether Eya3 expression correlates with a reduced 
CD8+ T cell signature within a tumor, we used the TCGA RNA 

Figure 7. Eya3 regulates CD8+ T cell exhaustion and promotes apoptosis of mammary carcinoma cells. (A–I) Number of immune cells per gram of 66cl4-
SCR and Eya3 KD3 tumors. Tumors were isolated 3 weeks after cancer cell injection (SCR, n = 5; KD3, n = 5), digested, and treated with brefeldin A, iono-
mycin, and PMA for 4 hours, and analyzed by flow cytometry. Representative experiment (n = 2). Data represent mean ± SEM. Significance was measured 
using a 2-tailed Student’s t test. (A) Tim3+CD8+ T cells were defined as GhostRed780–B220–MHCII–CD3+CD8+CD4–Tim3+ (Ghost Red 780, Tonbo Biosciences). 
(B) Blimp1+CD8+ T cells were defined as GhostRed780–B220–MHCII–CD3+CD8+CD4–Blimp1+. (C) T-bethiCD8+ T cells were defined as GhostRed780–B220–MHCII–

CD3+CD8+CD4–T-bethi. (D) EomeshiCD8+ T cells were defined as GhostRed780–B220–MHCII–CD3+CD8+CD4–Eomeshi. (E) PD-1+CD8+ T cells were defined as 
GhostRed780–B220–MHCII–CD45+CD3+CD8+CD4–PD-1+. (F) IL-2+CD8+ T cells were defined as GhostRed780–B220–MHCII–CD3+CD8+CD4–IL-2+. (G) IFN-γ+CD8+ T 
cells were defined as GhostRed780–B220–MHCII–CD45+CD3+CD8+CD4–IFN-γ+. (H) CD44+CD8+ T cells were defined as GhostRed780–B220–MHCII–CD3+CD8+CD4–

CD44+. (I) TNF-α+CD8+ T cells were defined as GhostRed780–B220–MHCII–CD3+CD8+CD4–TNF-α+. Number of apoptotic cells per gram of 66cl4-SCR and Eya3 
KD3 tumors. (J and K) Tumors were isolated 5 weeks after cancer cell injection (SCR, n = 5; SCR2, n = 5; KD2, n = 5; KD3, n = 5) and treated as outlined 
above. Data represent mean ± SEM. Significance was measured using ANOVA with sum contrasts in R. (J) Early-apoptotic carcinoma cells were defined as 
B220–MHCII–CD45–annexinV+PI–. (K) Late-apoptotic carcinoma cells were defined as B220–MHCII–CD45–annexinV+PI+.
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functions of Eya cooperatively mediate its tumor-promoting roles. 
Indeed, the Tyr phosphatase activity of Eya has been implicated 
in Six-mediated transcription (26), and thus this activity may both 
influence transcription and regulate cytoplasmic targets that are 
unrelated to transcription.

The Thr phosphatase activity of Eya has not, until recently, been 
explored in tumor progression. Eyas act as dual phosphatases, but 
via 2 different domains, as opposed to through 1 domain as is typi-
cally observed in dual phosphatases (97). Previous studies demon-
strated that the Thr phosphatase activity of Eya mediates the innate 
immune response to denatured DNA/double-stranded RNA (43, 
44). These studies have significant implications for the role of Eyas in 
tumor progression, as the Eyas are amplified and/or overexpressed 
in numerous tumor types (28, 33, 35–39, 98), but may alternatively 
be silenced via methylation in other tumor types (99, 100). Surpris-
ingly, the role of Eyas had never before been examined in immune-
competent tumor models. Thus, we believe our work is the first to 
demonstrate that Eya proteins regulate adaptive immunity (in any 
context), and that Eya-mediated regulation of this immune pathway 
has consequences for breast cancer growth and progression.

Discussion
In this study, we identify an entirely new function for Eya3 in the 
promotion of breast cancer growth through altering the adaptive 
immune response to tumors. Previous studies have shown that 
members of the Eya family can promote breast cancer through 2 
of its known biochemical functions, as Six family transcriptional 
cofactors and as Tyr phosphatases (28, 33). However, that Eya fur-
ther regulates tumor growth and progression via its Thr phospha-
tase activity had remained, to our knowledge, unknown until our 
studies. Eyas are known to promote Six family–mediated tran-
scription, resulting in enhanced breast cancer cell proliferation 
(20), lymphangiogenesis (22), EMT (33, 34), and stem cell pheno-
types (23, 24, 33, 96), all of which likely contribute to their abil-
ity to mediate metastasis (34). Interestingly, the Tyr phosphatase 
activity of the Eya proteins has also been implicated in promoting 
breast cancer growth and metastasis through regulation of prolif-
eration (38), migration/invasion (28), angiogenesis (30), and cell 
survival (29, 32). While it has been argued that the Eya Tyr phos-
phatase is mediating these functions through a cytoplasmic role 
independent of Six family members (28), it is more likely that both 

Figure 8. Eya3 Thr phosphatase activity regulates PD-L1 expression in 66cl4 mammary carcinoma cells. (A) RT-qPCR analysis on cDNA derived from RNA 
isolated from 66cl4-SCR and Eya3-KD cells. PD-L1 was normalized to GAPDH levels. Data represent mean ± SEM, and significance was measured using 
ANOVA with sum contrasts in R for biological triplicates for 3 combined experiments. (B) Calculated percentage of PD-L1+ cancer cells present per gram 
of 66cl4-SCR and Eya3-KD tumors. Tumors were isolated (SCR, n = 5; SCR2, n = 5; KD2, n = 4; KD3, n = 5) and analyzed by flow cytometry. Data represent 
mean ± SEM, and significance was measured using ANOVA with sum contrasts in R. PD-L1 cancer cells were defined as GhostRed780–luciferase+CD45–PD-
L1+. (C) FLAG-Eya3 WT and H79A Thr phosphatase–dead protein was isolated from HEK293FT cells using FLAG tag pull-down. Thr phosphatase activity 
was measured using an equal amount of Eya3 WT and H79A mutant protein in a malachite green phosphorylation assay in duplicate. Control indicates 
reaction with buffer and phospho-substrate without Eya3 protein added. Data represent mean ± SD. Significance was measured using ANOVA. Represen-
tative experiment (n = 4). (D) 66cl4-Eya3-KD cells were stably rescued with empty vector (EV), Eya3 WT, Eya3 H79A, Eya3 D262N, or Eya3 A520R. Western 
blot analysis performed on membranes containing whole cell lysates from these cells, as well as the 66cl4-SCR +EV control cells, and antibodies against 
Eya3 and GAPDH were used to probe the membranes. Representative image of experiments performed at least 3 times. (E) RT-qPCR analysis for PD-L1 
using cDNA derived from cell lines shown in D. PD-L1 normalized to GAPDH. Data represent mean ± SEM. Significance was measured using ANOVA.  
Representative experiment (n = 3). **P < 0.01, ***P < 0.001.
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ence of a variety of innate and adaptive immune cell types within a 
tumor, including natural killer cells, dendritic cells, macrophages, 
and T cells. All of these immune cell types are known to play roles in 
inhibiting and/or promoting breast tumor growth (103–105), and the 
dissection of the subtypes and functions of these cells within Eya3-
WT and -KD tumors is an avenue that warrants further exploration. 
Importantly, we observed striking differences between CD8+ T cells 
in our mouse models with Eya3 KD, and further demonstrated that 
Eya3 expression is inversely correlated with the number of CD8+ 
T cells within human breast tumors. These data, together with the 
CD8+ T cell depletion experiments, suggest that while Eya3 expres-
sion in mammary carcinoma cells leads to alterations in numerous 
components of the immune system, the effects of Eya3 on CD8+ T 
cells are critical to its ability to enhance tumor growth.

Our findings are significant as Eyas were previously thought 
to modulate tumor growth/metastasis via functions unrelated to 
the immune microenvironment (28). As previously mentioned, 
Eya proteins influence proliferation, migration, invasion, and 
EMT (28, 33). Additionally, Eya regulates apoptosis (1, 26–29). We 
show that Eya3 expression in mammary carcinoma cells, when 
in an immune-competent setting, protects against apoptosis. 
Eya3-mediated survival may be due to the ability of Eya3 to pro-

KD of Eya3 in 2 different syngeneic triple-negative murine 
mammary carcinoma cell lines, 66cl4 and Met1, resulted in differ-
ent in vitro growth phenotypes, with Eya3 KD affecting growth in 
vitro in 66cl4 cells but not in Met1 cells. Despite these differences in 
vitro, in vivo transplantation of the Eya3-KD cells into the mamma-
ry fat pads of immune-competent mice resulted in a delay of tumor 
growth for both TNBC lines. Surprisingly, in vivo proliferation of the 
tumor cells, when examined at the endpoint of the study, was not 
significantly affected by Eya3 KD in either setting, suggesting that 
proliferation of the cancer cells is not what drives tumor growth in 
an immune-competent setting. These data contrast with previous 
reports suggesting that the proliferative effects of Eyas are impor-
tant for their tumor-promoting effects (28, 33, 38). It remains possi-
ble that proliferative differences between control and Eya3-KD cells 
exist in vivo at early stages of tumor growth, as our study only exam-
ined this parameter when the tumors had reached their maximum 
size (2 cm3). Nonetheless, our data indicate that Eya3 largely regu-
lates the growth of mammary tumors via effects that do not involve 
proliferation, and instead involve regulation of the immune system.

Immune cells surrounding and infiltrated into tumors have 
gained recognition as major regulators of tumor growth (101, 102). 
Our data demonstrate that Eya3 is responsible for altering the pres-

Figure 9. The Eya3 Thr phosphatase regulates PD-L1 expression through Myc. (A) Western blot analysis performed on membranes containing whole cell 
lysates from 66cl4-SCR+EV, Eya3 KD+EV, Eya3 KD+WT Eya3, and Eya3 KD+H79A Eya3 rescue cells. Antibodies against pT58 c-Myc and GAPDH were used 
to probe the membranes. Representative image of experiments performed at least 3 times. (B and C) RT-qPCR analysis on cell lines shown in A 48 hours 
after transfection with si NT or si c-Myc siRNA. c-Myc normalized to GAPDH. Data represent mean ± SEM. Significance was measured using a 2-tailed 
Student’s t test for biological triplicates. Representative experiment (n = 4). (D) RT-qPCR analysis on cell lines shown in A. PD-L1 normalized to GAPDH. 
Data represent mean ± SEM. Significance was measured using ANOVA for biological triplicates. Representative experiment (n = 4). (E) Western blot 
analysis performed on membranes containing whole cell lysates from Met1-SCR+EV, Eya3 KD+EV, Eya3 KD+WT Eya3, and Eya3 KD+H79A Eya3 rescue cells. 
Antibodies against pT58 c-Myc and GAPDH were used to probe the membranes. Representative image of experiments performed at least 3 times. (F and 
G) RT-qPCR analysis on cell lines shown in D 48 hours after transfection with si NT or si c-Myc siRNA. c-Myc normalized to GAPDH. Data represent mean ± 
SEM. Significance was measured using a 2-tailed Student’s t test for biological triplicates. Representative experiment (n = 4). (H) RT-qPCR analysis on cell 
lines shown in D. PD-L1 normalized to GAPDH. Data represent mean ± SEM. Significance was measured using ANOVA for biological triplicates. Representa-
tive experiment (n = 4). **P < 0.01, ***P < 0.001.
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ultimately able to overcome the growth delay due to the eventual 
loss of active CD8+ T cells in the tumor microenvironment through 
mechanisms unrelated to Eya3. Over time, a buildup of Eya3-inde-
pendent factors either on the tumor cells or in the microenviron-
ment may lead to the eventual loss of active CD8+ T cells (or other 
active immune cells in the tumor microenvironment) (106, 107).

Previous studies examining the role of Eyas in tumor progres-
sion were conducted in immune-compromised mouse models, 
where the contribution of the immune system to tumor growth 
was not assessed. Therefore, it is possible that Eyas contribute 
to tumor progression via altering numerous tumor cell–autono-
mous and –non-autonomous properties. Regulation of immune 

mote apoptotic evasion (1, 26–29), as well as to the ability of Eya3 
to inhibit CD8+ T activity within the tumor microenvironment. 
Therefore, the significant delay in tumor growth attributed to loss 
of Eya3 expression may be due not to any effect of Eya3 on prolif-
eration, but instead to the ability of Eya3 to promote the survival 
of cancer cells. However, tumors formed from the 66cl4-Eya3-KD 
cells eventually catch up to the tumors formed from the 66cl4-
SCR control cells. These data suggest that growth is delayed, but 
not completely halted (in contrast, in the FVB mice, the tumors 
formed from the Met1-Eya3-KD cells do not ultimately become as 
large as the tumors formed from the Met1-SCR control cells; Fig-
ure 4B). It is possible that in the BALB/c mice, Eya3-KD tumors are 

Figure 10. PD-L1 upregulation is required for Eya3-enhanced mammary carcinoma growth. 66cl4-SCR and Eya3 KD3 cell lines were stably rescued with 
empty vector (EV) or PD-L1. (A) RT-qPCR analysis on cDNA derived from RNA isolated from 66cl4-SCR+EV, Eya3 KD3+EV, and Eya3 KD3+PD-L1 rescue cells. 
PD-L1 normalized to GAPDH. Data represent mean ± SEM. Significance was measured using ANOVA for biological triplicates from 3 combined experiments. 
(B) Percentage of PD-L1+ cancer cells present per gram of 66cl4-SCR+EV, Eya3 KD3+EV, and Eya3 KD3+PD-L1 rescue tumors. Tumors were isolated (n = 10 mice per 
group) and analyzed using flow cytometry. Data represent mean ± SEM. Significance was measured using ANOVA. PD-L1+ cancer cells were defined as 
GhostRed780–luciferase+CD45–PD-L1+. (C) Tumor volume of 66cl4-SCR+EV, Eya3 KD3+EV, and Eya3 KD3+PD-L1 rescue tumors in BALB/c mice as mea-
sured using calipers. Each point represents the mean tumor size of mice at that time point after injection ± SEM, and a mixed effects model was used 
to measure significance. n = 10 mice per group. (D) Representative bioluminescence images of BALB/c mice bearing 66cl4-SCR, Eya3 KD3+EV, and Eya3 
KD3+PD-L1 tumors at week 4 after injection. (E–G) Tumors were isolated (n = 10 mice per group) and analyzed by flow cytometry. Data represent mean ± 
SEM. Significance was measured using ANOVA. (E) Calculated percentage of BrdU+ cancer cells present per gram of 66cl4-SCR and Eya3 KD3+PD-L1 rescue 
tumors. BrdU+ cancer cells were defined as GhostRed780–luciferase+CD45–BrdU+. (F) Percentage of live CD8+ T cells per gram of 66cl4-SCR, Eya3 KD3+EV, 
and Eya3 KD3+PD-L1 rescue tumors. Live CD8+ T cells were defined as GhostRed780–luciferase–CD45+CD3+CD8+. (G) Percentage of dead CD8+ T cells present 
per gram of 66cl4-SCR, Eya3 KD3+EV, and Eya3 KD3+PD-L1 rescue tumors. Dead CD8+ T cells were defined as GhostRed780+luciferase–CD45+CD3+CD8+.  
*P < 0.05, **P < 0.01, ***P < 0.001.
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Figure 11. Eya3 expression, PD-L1 expression, and Myc expression are significantly correlated in human breast tumors. (A and B) Correlation of PD-L1 
(CD274) and Eya3 expression in human patient tumors from TCGA (n = 1,097) (A) and in the TNBC subset from TCGA (data set, n = 595; TNBC subset, n = 
46) (B). Data sets obtained from the Oncomine portal. Significance was measured using linear regression test and correlation test. (C and D) Gene expres-
sion data for Eya3 and PD-L1/CD274 (RNA-Seq median Z score) were downloaded for TCGA patients directly from cBioPortal for Cancer Genomics (http://
www.cbioportal.org/) using the cgdsr R package (https://cran.r-project.org/web/packages/cgdsr/index.html. Tumor purity measures and consensus mea-
surement of purity estimations (CPE) were acquired. Expression values, CPE measures, and receptor status of TCGA patients were compiled for a total of 
123 patients who were reported to be triple-negative. Patients were separated based on CPE (>0.80, C, or <0.60, D). Correlation between Eya3 and PD-L1/
CD274 was calculated for each patient group based on Spearman’s rank. (E and F) Expression data from TCGA for all breast cancer subtypes (E) and TNBCs 
(F) were stratified for high Eya3 expression (75th percentile and higher) and low Eya3 expression (25th percentile and lower). Data were applied to the 
Cibersort algorithm, and analysis of relative fraction of CD8+ cytotoxic T cells was graphed. Data represent mean ± SEM. Significance was measured using a 
Student’s t test with multiple-testing correction with the FDR procedure.
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Indeed, several clinical trials combining chemotherapy with 
anti–PD-L1 immunotherapies in TNBC are under way (74, 111). 
Eya3 is known to impart cancer cell chemoresistance (32, 35), 
and as we show that Eya3 regulates PD-L1 expression in tumor 
cells, treatment with Eya3 inhibitors, chemotherapies, and anti–
PD-L1 immunotherapies may represent a potent TNBC therapy. 
Small-molecule inhibitors against Eya Tyr phosphatase activ-
ity have been developed by several groups (30, 31, 41), and we 
are currently working to develop inhibitors against the Six-Eya 
interface. In contrast, no inhibitors against the Thr phospha-
tase activity of Eya exist. Our novel findings that the Eya3 Thr 
phosphatase leads to upregulation of PD-L1 and tumor immune 
evasion suggest that its targeting may prove to be beneficial to 
patients, particularly of the TNBC subtype. However, it should 
be noted that the correlation between Eya3 and PD-L1 is present 
in data sets containing all breast cancer subtypes and is present, 
but not increased, in TNBC data sets. This lack of an increased 
correlation in TNBC specifically may be due to the fact that there 
are fewer patient samples in TNBC data sets. Nonetheless, the 
strong correlation between Eya3 and PD-L1 in data sets contain-
ing all breast cancer subtypes suggests that the Eya3/PD-L1 axis 
may be relevant to additional breast cancer subtypes, although 
this needs to be experimentally validated.

The Eya Thr phosphatases are unique in that they bear no 
resemblance to any known Ser/Thr phosphatase, highlighting 
the need to understand the exact mechanism behind the Eya3 
Thr phosphate activity (42, 43). In this study, we show that 
Eya3 regulates PD-L1 expression in mammary carcinoma cells 
through regulating c-Myc, as c-Myc knockdown in Eya3 rescue 
cells inhibits the ability of Eya3 to upregulate PD-L1 (Figure 9), 
and as c-Myc is known to transcriptionally regulate PD-L1 (90). 
Additional studies from our laboratory clearly demonstrate that 
Eya3 increases c-Myc stability via its ability to dephosphory-
late c-Myc at pT58, through a mechanism that requires protein 
phosphatase 2A (112). These findings suggest that targeting 
the Eya3 Thr phosphatase could lead to downregulation of not 
only PD-L1, but also other Myc-mediated targets, and thus may 
influence numerous cancer-associated phenotypes. As the Thr 
phosphatase function of the Eyas may prove to be an effective 
cancer therapeutic target for TNBC and potentially other breast 
cancer subtypes, it is imperative that we work to better under-
stand their function in cancer, and begin to develop means to 
target this activity.

Methods
Detailed methods can be found in Supplemental Methods online.

Statistics. When conditions tested were over a time period, data 
were fit using a mixed-effects model and examined for a statistically 
significant difference between the effect of SCR control versus the 
effect of Eya3 KD2 and KD3, and reported as the corresponding P value.

When exactly 2 conditions were compared, an unpaired 
2-tailed Student’s t test was used and corresponding P values were 
reported. When correlations were tested, a linear regression test 
and correlation test were performed and corresponding P and r 
values were reported. When comparisons were tested with more 
than 2 conditions, a 1-way ANOVA was used followed by Tukey’s 
multiple-comparisons test. When 2 or more conditions were tested 

detection may be dominant to some of the other functions in 
vivo, although it should be noted that we did not address metas-
tasis in these models. It is therefore possible that the role of Eya 
in mediating tumor evasion of the immune system is critical in 
the primary tumor. However, once tumors have escaped immune 
detection, the cell-autonomous effects of Eya in mediating tumor 
migration, invasion, and EMT may play a more critical role. How 
the different activities of Eya influence tumor immune evasion 
remains to be thoroughly assessed. In our studies using mutants 
of Eya3 that abrogate various activities, we observed no differ-
ence in PD-L1 mRNA expression when Eya3 was Tyr phospha-
tase–dead. In contrast, we did observe a partial loss of PD-L1 
mRNA upregulation by Eya3 when Eya3 contained a mutation 
that should abrogate its binding with Six family members (34). 
The partial requirement of Eya3 for Six family members may be 
due to the fact that Eya proteins are translocated to the nucleus by 
Six family members, and that nuclear localization of Eya3 is likely 
required for dephosphorylation and subsequent stabilization of 
c-Myc (87). In addition, Six and Eya family members have been 
shown to mediate transcription of c-Myc (26), and thus the partial 
requirement for Six interaction could be on multiple levels. None-
theless, the Thr phosphatase mutation of Eya3 completely abro-
gated its ability to upregulate PD-L1, suggesting that this activity 
of Eya3 is most important for its ability to upregulate PD-L1 and 
mediate immune suppression. In vivo experimentation dissect-
ing each individual function of Eya3 will be required to ultimately 
understand the relative contribution of the different Eya activi-
ties to tumor immune invasion.

Our findings that the Eya3 Thr phosphatase activity regu-
lates PD-L1 expression in TNBC are exciting as the PD-L1/PD-1 
pathway is proving to be a remarkably effective cancer target. 
We show that restoration of PD-L1 expression in Eya3-KD cells 
is sufficient to induce tumor growth similar to that seen in Eya3-
expressing tumors. As we show that Eya3 regulation of CD8+ T 
cells is necessary to promote tumor growth, it is likely that Eya3 
regulates these T cells through PD-L1, rather than another mech-
anism of CD8+ T cell repression, such as control of immune sup-
pressive cells. In fact, we observed no significant difference in 
the populations of CD11b+Gr1+ myeloid-derived suppressor cells 
in tumors upon Eya3 manipulation, although other immune cell 
populations may be contributing to altered T cell activity. Addi-
tionally, our observation that Eya3 and PD-L1 only correlate in 
human breast cancer data sets with greater than 80% tumor 
cell purity strongly suggests that the effects of PD-L1 on tumor 
growth are due to expression of Eya3 and PD-L1 in the tumor 
cells themselves, and not due to other PD-L1+ immunosuppres-
sive cells in the microenvironment.

Our findings have significant clinical implications. No target-
ed therapies exist for TNBC, and classic chemotherapies do not 
provide long-term protection for patients, as more than half of 
TNBC patients become chemoresistant and relapse after treat-
ment (108). However, TNBC tumors are highly immunogenic, 
and clinical trials are being conducted to treat such tumors with 
immunotherapies, including anti–PD-L1 immunotherapies (71, 
76, 77). Studies have shown that a combination of traditional 
DNA-damaging and mitotic-halting chemotherapy agents 
with immunotherapies results in synergistic effects (109, 110). 
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