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Breast cancer metastasis remains a clinical challenge, even within a single patient across multiple sites of the disease.
Genome-wide comparisons of both the DNA and gene expression of primary tumors and metastases in multiple patients
could help elucidate the underlying mechanisms that cause breast cancer metastasis. To address this issue, we
performed DNA exome and RNA sequencing of matched primary tumors and multiple metastases from 16 patients,
totaling 83 distinct specimens. We identified tumor-specific drivers by integrating known protein-protein network
information with RNA expression and somatic DNA alterations and found that genetic drivers were predominantly
established in the primary tumor and maintained through metastatic spreading. In addition, our analyses revealed that
most genetic drivers were DNA copy number changes, the TP53 mutation was a recurrent founding mutation regardless
of subtype, and that multiclonal seeding of metastases was frequent and occurred in multiple subtypes. Genetic drivers
unique to metastasis were identified as somatic mutations in the estrogen and androgen receptor genes. These results
highlight the complexity of metastatic spreading, be it monoclonal or multiclonal, and suggest that most metastatic drivers
are established in the primary tumor, despite the substantial heterogeneity seen in the metastases.
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Introduction
Breast cancer remains the second leading cause of cancer-relat-
ed death in women in the United States and is typically caused by 
metastasis. Significant genetic heterogeneity exists both within 
a single primary breast cancer (1–3) and across patients (4–7). 
Despite this intratumor heterogeneity, the intrinsic gene expres-
sion features of the primary tumor as measured by RNA can pre-
dict future sites of recurrence (8, 9), response to therapy (10), 
and overall survival (8, 11). Few studies have compared both the 
RNA and DNA sequencing of multiple distant metastases within 
a patient, or across multiple subtypes of breast cancer from larg-
er cohorts of patients.

Previous studies of breast cancer metastatic evolution heavily 
emphasized mutational genetic drivers, as defined by previous large-
scale sequencing projects (6, 7, 12, 13). Because copy number variations 
(CNVs) cause many genes to be altered at once, potential genetic driv-
ers from CNVs are often difficult to identify. Computational approach-
es integrating known protein-protein interaction networks, with gene 

expression from RNA-sequencing (RNA-seq) data and DNA-based 
somatic alterations have demonstrated the power of this approach for 
identifying unique driver sets beyond somatic mutations alone (14–
16). This integrative approach could be used to identify shared drivers 
of breast cancer metastasis across patients and subtypes.

Multiple efforts to understand the genetic evolution of metas-
tasis by sequencing matched primary tumors and metastases via 
a single matched pair, or single-cell sequencing, revealed both 
linear expansion of a single clone from the primary tumor to a 
metastasis (17–21), branched evolution of metastasis (22, 23), and 
cross-seeding of metastases (24). Few of these studies, however, 
span multiple subtypes of breast cancer. Thus, it remains unknown 
how dynamic these methods of metastatic seeding are, both with-
in a patient or across multiple subtypes of breast cancer.

Here, we analyzed the metastatic evolutionary process and 
computationally predicted drivers of breast cancer metastasis 
in a panel of matched primary tumors and multiple metastases. 
Using the Rapid Autopsy Program established at the UNC at 
Chapel Hill, we collected matched primary and metastatic breast 
cancers from 16 individuals and performed RNA-seq and DNA 
whole-exome sequencing on the primary tumor, 67 matched 
metastases (2–7 per patient), and a matched normal tissue com-
parator for each patient. We examined computationally predict-
ed metastatic drivers by integrating known protein-protein net-
works with gene expression and DNA-seq data and the clonal 
evolution of metastasis within each patient.
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Genome-wide comparisons of both the DNA and gene expression of primary tumors and metastases in multiple patients 
could help elucidate the underlying mechanisms that cause breast cancer metastasis. To address this issue, we performed 
DNA exome and RNA sequencing of matched primary tumors and multiple metastases from 16 patients, totaling 83 
distinct specimens. We identified tumor-specific drivers by integrating known protein-protein network information 
with RNA expression and somatic DNA alterations and found that genetic drivers were predominantly established in the 
primary tumor and maintained through metastatic spreading. In addition, our analyses revealed that most genetic drivers 
were DNA copy number changes, the TP53 mutation was a recurrent founding mutation regardless of subtype, and that 
multiclonal seeding of metastases was frequent and occurred in multiple subtypes. Genetic drivers unique to metastasis 
were identified as somatic mutations in the estrogen and androgen receptor genes. These results highlight the complexity 
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primary tumor, despite the substantial heterogeneity seen in the metastases.
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doi.org/10.1172/JCI96153DS1). This cohort of metastatic 
patients had a median age of 45.5 years at the diagnosis of 
breast cancer, a median time to relapse of 14.5 months, and 
an overall survival of 36.5 months (Table 1). These patients 
all received at least 1 chemotherapeutic agent prior to 
death, and all but 1 patient received radiation, predomi-
nantly to the breast and/or brain (Supplemental Table 1).

Of the primary tumors sequenced, 6 of 16 were 
therapy naive, 5 of 16 received neoadjuvant che-
motherapy, and 5 of 16 received both neoadjuvant 
chemotherapy and radiation therapy (Supplemental 
Table 1). The median overall coverage of DNA exome 
sequencing was 108× (75×–250×; Supplemental Table 
2). An established DNA variant pipeline (25), an RNA-
seq variant (26), and an RNA-seq gene expression 
pipeline (27) were used to call variants in the DNA 
and the RNA, as well as to determine gene expression 
levels in all 83 samples (see Methods and Supple-
mental Figure 2). Of the DNA single base mutations 
with at least 5 reads of coverage at that position in the 
RNA, 83% were also identified in the RNA-seq data. 
Additionally, droplet PCR confirmation of all estro-
gen receptor 1 (ESR1) mutations demonstrated high 
accuracy and sensitivity of our variant calling pipeline 
(Supplemental Figure 3).

We next examined the clinical features and 
molecular subtypes of each of the primary tumors 
and their matched metastases. We applied the 
PAM50 subtype predictor (28) to determine the 
intrinsic molecular subtype (Supplemental Table 
2). Breast tumors from 4 patients were positive for 
estrogen receptor (ER) expression, but negative for 
human epidermal growth factor receptor 2 (HER2) 
overexpression (ER+/HER2–) according to standard 
clinical assays on the primary tumor at diagnosis. 
According to subtyping based on the primary tumor, 
1 of these patients had luminal A subtype, 1 had 
luminal B subtype, and 2 had “normal-like” tumors; 
these 2 primary tumors were both formalin-fixed, 
paraffin-embedded (FFPE) and of low tumor cel-
lularity and were thus excluded from gene expres-
sion analyses but included for DNA-based analyses. 
Of the primary breast tumors from 4 patients who 
were clinically HER2+, 1 was of the HER2-enriched 
subtype, 2 were of the luminal A subtype, and 1 
was of the basal-like subtype. Breast tumors from 
9 patients were triple-negative (negative on clinical 
assays for the ER, the progesterone receptor [PgR], 
and HER2), with 6 patients’ tumors classified as the 

basal-like subtype and 3 as normal-like, but next-closest to the 
basal-like centroid, and all metastases from these 9 patients 
were classified as basal-like (Supplemental Table 2); note that 
none of these normal-like FFPE samples were included in sub-
sequent gene expression analyses.

As reported previously (8, 22), the intrinsic gene expression 
profiles in tumors from an individual patient are typically highly 
correlated with one another (Supplemental Figure 4). This result 

Results

Patient and sequencing characteristics
To explore metastatic evolution and identify drivers of breast cancer 
metastasis, we performed DNA whole-exome sequencing and RNA-
seq on 16 primary invasive breast cancers and 67 matched metastases 
(Figure 1, Supplemental Figures 1 and 2, and Supplemental Tables 1 
and 2; supplemental material available online with this article; https://

Figure 1. Overview of the study methods. Primary tumors and 68 metastases from 16 
patients who died of metastatic breast cancer were sequenced with both DNA whole- 
exome sequencing and RNA sequencing. DNA somatic mutations, somatic copy number 
alterations, and RNA gene expression were called. Biologic subtype was determined with 
the PAM50 predictor. Clonality was determined from the DNA mutations. Genetic drivers 
were predicted using the DawnRank driver analysis tool, integrating RNA expression, DNA 
mutations, and copy number.
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Timing of genetic alterations and drivers. To understand when 
during the metastatic process potential “driver” somatic mutations 
(Supplemental Table 3) and CNAs (Supplemental Table 4) occurred 
across the cohort, we classified both somatic alterations and Dawn-
Rank drivers within each patient into 4 categories: founder muta-
tions (present in all samples from a patient), subclonal primary- 
metastasis mutations (in the primary tumor and a metastasis but not 
in every tumor), metastasis-shared (not in the primary tumor), and 
metastasis-private (in only 1 metastasis) (Figure 2A).

Of these categories, the majority of mutations and CNAs in 
the metastases were shared with at least 1 other tumor and were 
not private in a single tumor (mutations: 27% founder, 7.7% pri-
mary-metastasis shared, 26% metastasis-shared, 35% private; 
CNAs: 8.7% founder, 16.7% primary-metastasis shared, 34% 
metastases-shared, 24% metastasis-private) (Figure 2, B and C). 
Interestingly, when narrowing to only predicted DawnRank driv-
ers, an enrichment for earlier events was noted, especially in the 
mutations (mutations: 43% founder, 2.5% primary-metastasis 
shared, 15% metastasis-shared, 22% private; CNAs: 18% found-
er, 18% primary- metastasis shared, 40% metastases-shared, 19% 
metastasis-private) (Figure 2, D and E).

In the 16 patients, 110 mutations were identified as drivers: 
39 founder mutations, 11 subclonal primary-metastasis shared, 29 
metastasis-shared, and 31 private (Supplemental Figure 6A). Of 
the 50 driver mutations observed in the primary tumors, 25 (50%) 
were at a variant allele frequency (VAF) of less than 10%; thus, fil-
tering at a greater than 10% VAF would overestimate the number 
of metastasis-specific events.

Genetic drivers were more likely to be founders as compared 
with private mutations (Figure 2D, 1-sided t test P = 0.03, t esti-
mate = 0.22). The only recurrent genetic driver mutation in more 
than half of the patients was TP53 (13 of 16 patients; Figure 3A). 
Beyond TP53, genetic drivers (ESR1 and PIK3CA) caused by a 
mutation were detected in only 3 of 16 patients (Figure 3A). All 
other mutation drivers were identified in only 1 or 2 patients in the 
data set, and many were uniquely observed in patients with basal- 
like tumors (Figure 3A, genes shown in red font).

Many more genes were identified as drivers from CNAs rather 
than from mutations (Supplemental Figure 6B). In contrast to the 
low frequency of common mutational drivers in our data set, many 
copy number amplifications and deletions were consistently iden-
tified as drivers across most patients (Figure 3, B and C). Previ-
ously identified common regions of amplification in breast cancer 
(8q, 5p, and 1q) included the DawnRank hits ANGPT1, LYN, SDC2, 
SHC1, GDNF, and TERT, which were identified as drivers in 15 of 
16 patients, with 6 of 10 of these events showing amplification in 
the primary tumor that was maintained in the metastases in those 
patients (Figure 3B, gray). Common copy number losses occurred 
in FAS, a critical member of the apoptosis cascade, in PIK3R1, the 
regulatory subunit of PIK3CA, and in AURKB, a central inhibitor 
of the cell-cycle pathway (Figure 3C).

In an analysis restricted to the subset of patients with basal-like 
tumors (n = 10), we collectively identified common copy num-
ber amplifications of genes involved in the cell cycle, specifically 
those involved in the G1/S transition including CCNE1, CUL1, and 
CDK5, as well as the chromatin-associated proteins RBBP4 and 
HDAC1 (Supplemental Figure 7). A gain in BCAN expression, spe-

was recapitulated in our sample set when we excluded the 5 “nor-
mal-like” specimens. We performed hierarchical clustering analy-
sis using the intrinsic gene list of Parker et al. (28) and noted that 
all tumors from 10 of the 16 patients were clustered together, with 
5 of 16 patients’ samples categorized into 2 subgroups, although 
all tumors were in the same overall subtype cluster, and 1 of the 16 
patients’ samples was clustered into 2 different subtype dendrogram 
locations. By PAM50 centroid–based subtyping, 12 of 16 tumors had 
the same subtype calls, including all basal-like tumors, 2 of 16 had 
mixed luminal A/B subtypes, and 2 of 16 had multiple samples with 
different subtype calls (luminal A, luminal B, and HER2-enriched).

Computationally predicted drivers of breast cancer metastasis. 
Many mutations and copy number alterations (CNAs) are proba-
bly passenger alterations without functional biologic consequenc-
es. We therefore used a computational tool called DawnRank 
(14) to identify genetic drivers. DawnRank integrates DNA alter-
ations, protein-protein interaction networks, and the expression 
of these networks via RNA gene expression data for each individ-
ual tumor. By evaluating the perturbation of the network through 
RNA gene expression data for each tumor, DNA alterations can be 
ranked in terms of the RNA networks’ expression in that tumor, 
and thus those DNA alterations with the greatest effects in terms 
of RNA network expression can be identified as genetic drivers in 
an individual tumor specimen (14).

DawnRank network analysis was applied to each tumor using 
upper-quantile–normalized RNA counts from RSEM software 
(29) that were normalized to the mRNA-seq platform (Supple-
mental Table 4). Varying the “driver” cutoff top ranks selected 
from 90% to 99.5% showed consistent numerical predominance 
of DNA copy number drivers as compared with somatic mutations 
(Supplemental Figure 5). Because DawnRank scores follow a nor-
mal distribution, for each individual tumor, genes with DawnRank 
network scores in the top 5% of more than 8,000 genes in prede-
termined networks (akin to P = 0.05) were overlapped with the 
somatic CNA and/or mutation profile from that tumor  and were 
thus considered to be genetic drivers.

Table 1. Clinical characteristics of the study population (n = 16)

Age at diagnosis 45.5 yr (30–66 yr)

ER/PR/HER2 status at diagnosis and no. of tumors (PAM50)
 TNBC 9 (all basal-like)
 HER2+ (any ER/PR) 3 (HER2-enriched, luminal B, basal-like)
 ER+/PR+/HER2– 4 (all luminal A)

Time to relapse 14.5 mo (range: 0–8 yr)

Total lines of therapy after relapse
 Chemotherapy 4 (range: 1–15)
 Endocrine 1 (range: 0–5)
 HER2 therapy 1

Overall survival after relapse 18 mo (range: 2 mo–4 yr)

No. of metastases per patient
 Known prior to autopsy 4 (range: 2 –7)
 Collected at autopsy 6 (range: 2–6)
 DNA and RNA sequenced per patient 5 (range: 3–6)
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To further test the robustness of DawnRank, we compared 
DawnRank results using the ratio of each metastasis to its 
matched primary tumor as the input, as opposed to the compar-
ison of each tumor with the median of all tumors in The Can-
cer Genome Atlas (TCGA), as was done above (see Methods).  

cifically in the patients with basal-like tumors, has not been previ-
ously described in breast cancer, but this gene has been shown to 
be highly overexpressed in aggressive gliomas via STAT3 signaling 
(30). Basal-like copy number loss of the DNA damage cascade reg-
ulator RAD51 was also called as a common basal-specific driver.

Figure 2. Timing of somatic alterations and driver acquisition in metastases. Somatic DNA alterations within a single patient classified into 4 categories 
on the basis of  a hypothesized timing with which they were acquired during the development of metastasis. (A) Founder alterations established in the 
primary tumor and observed in all metastases (gray), shared in the primary tumor and metastases but not in all tumors (purple), shared in 2 metastases 
but not the primary tumor (pink), and private to 1 metastasis (blue). The distributions of all (B) somatic mutations, (C) somatic CNAs, (D) DawnRank pre-
dicted mutations, and (E) DawnRank CNAs within each patient. shared primary/mets, shared in the primary tumor and metastases but not in all tumors; 
shared met-met, shared in 2 metastases but not the primary tumor.
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patient A2 = mixed luminal/HER2-enriched). The ESR1 mutation was 
the only metastasis-specific mutation identified in more than 2 patients.

TP53 as a founder and subtype-agnostic driver event in metastatic 
breast cancer
We investigated whether there were founder mutations or pathways 
common either within or across subtypes of breast cancer. All 16 patients 
in our cohort harbored TP53 alterations identified by DawnRank as driv-
ers: 13 of 16 patients’ primary tumors had a TP53 mutation that was in the 
primary tumor and every metastasis from that patient (Figure 3A), while 
tumors from the 3 remaining patients had copy number loss for TP53, 
also identified by DawnRank as a driver (Supplemental Table 5). TP53 
mutations were observed in both basal-like and luminal subtype tumors: 
Patient A12’s luminal tumors harbored a 45-bp deletion between exons 
4 and 5 incorporating the splice site; patient A8’s HER2-enriched tumors 
had a premature stop codon introduced at Arg306*, and 9 of 10 of the 
tumors from the patients with basal-like primary cancers had either 
nonsense or deleterious missense mutations (33). Our data suggest that 
disruption of TP53 is an early and typically founding event critical to the 
ability of a breast cancer to metastasize, regardless of subtype.

This resulted in an overall similar number and identification of 
genetic mutational drivers per tumor (Supplemental Figure 8A) 
when compared with the median normalization method; in addition, 
the timing of when drivers were established did not change, regard-
less of the method of normalization (Supplemental Figure 8B).

Luminal-specific resistance to aromatase inhibitor therapy  
via ESR1 mutations
DawnRank analysis identified ESR1 mutations as genetic drivers 
specifically in the metastatic samples in 3 ER+ patients (Figure 3A). 
ESR1 mutations in the binding pocket of the ER have been previously 
described as effectors of resistance mechanisms to estrogen suppres-
sion by aromatase inhibitors (AIs) (31, 32). In this cohort, 5 patients had 
ER+ breast cancer and had received both a nonsteroidal AI (letrozole) 
and a steroidal AI (exemestane). Three of the 5 ER+ patients had ESR1 
mutations in the metastases, but not in the primary tumor; all were 
called as drivers by DawnRank. Interestingly, the 3 ER+ patients who 
developed ESR1 mutations had primary tumors of the luminal subtype, 
while the 2 patients who did not develop ESR1 mutations did not have 
tumors of the luminal molecular subtype (patient A8 = HER2-enriched; 

Figure 3. Timing and frequency of predicted drivers in primary and metastatic breast cancers. (A) DawnRank drivers from somatic mutations. (B) DawnRank 
copy number amplifications in at least 12 of 16 patients, and (C) deletions in at least 10 of 16 patients. Each alteration is characterized per patient as a founder 
alteration (gray), an alteration shared in the primary tumor and metastases (primary/mets) (purple), an alteration shared in 2 metastases but not in the pri-
mary tumor (pink), or an alteration private to 1 metastasis (blue). Copy number–altered drivers are annotated with the chromosomal cytoband location.
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Shared transcriptional program in metastases
To identify genes differentially expressed in metastases versus prima-
ry cancers, a linear regression model was built comparing matched pri-
mary tumors to metastases. Briefly, for each gene, the RNA values for 
the primary tumor were compared with its matched metastases (Sup-
plemental Figure 9, A and C). The t statistic defines how consistently 
altered the RNA gene expression values for each patient’s metastases 
are compared with the primary tumor. If one was to center the prima-
ry tumor at zero within each patient and adjust the gene expression 

values accordingly for the metastases, consistent alterations could be 
observed across our data set, despite the location of the metastases 
(Supplemental Figure 9, B and D). The labels defining primary tumors 
and metastases were randomized 100 times to calculate the FDR.

At an FDR of 0, we found that 333 genes from RNA-seq were 
differentially expressed (Supplemental Table 6). Hierarchical clus-
tering of these significantly expressed genes across the data set clus-
tered the primary tumors in 1 clade on the left and the metastases 
on the right (Figure 4A and Supplemental Table 7). Notably, within 

Figure 4. Differential gene expression in metastases. (A) Hierarchical clustering of median-centered RNA gene expression defined as significantly 
differentially expressed genes in metastases (Mets) as compared with matched primary tumors (Primaries) with the lmer function in R. Each color 
in the dendrogram identifies a different patient. Box plots of the mean signature score of (B) upregulated genes and (C) downregulated genes, com-
paring the following categories: TCGA normal breast tissue, TCGA luminal A/B primary tumors, UNC RAP luminal primary tumors, UNC RAP luminal 
metastases, TCGA HER2-enriched primary tumors, UNC RAP HER2-enriched primary tumors, UNC RAP HER2-enriched metastases, TCGA basal-like 
primary tumors, UNC RAP basal-like primary tumors, and UNC RAP basal-like metastases. ADR, adrenal gland; Ax-LN, axillary lymph node; Basal, 
basal-like; HER2E, HER2-enriched; Lum, luminal; LLL, left lower lobe; LUL, left upper lobe; MED, mediastinum MET, metastases; OVA, ovary; PRIM, 
primary tumor; RLL, right lower lobe; SKIN-L, left skin; SKIN-R, right skin ; SPIN, spinal.
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the metastases, the clades were defined by patient, despite a diverse 
range of metastatic sites represented by multiple liver, lung, and 
brain metastases (Figure 4A). These genes were consistently over- 
and underexpressed in the metastases as compared with expression 
levels in the primary tumors; additionally, the gene expression pro-
gram was more similar within a patient than across sites.

Pathway analysis (34) revealed that the upregulated genes in 
the metastases as compared with those in the primary tumor were 
associated with the Gene Ontology (GO) terms hypoxia, cellular 
metabolism, and fatty acid β oxidation, consistent with previous 
research demonstrating a switch in metabolism in the metastat-
ic setting (35). Additionally, genes associated with cell migration/
motility and IP3 signaling were noted by the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis as also being more 
highly expressed in metastases. Significantly downregulated genes 
in the metastases relative to expression in the primary tumors were 
mostly nucleic acid–processing genes including both RNA- and 
DNA-processing genes.

A signature score, calculated as the mean gene expression 
value for the metastasis upregulated genes in both TCGA and 
this data set, was plotted by subtype. Interestingly, the basal-like 
TCGA primary tumors had increased expression compared with 
levels in the other tumor subtypes, with all primary tumors from 

this study having higher expression levels than did those in TCGA 
primary tumors (TCGA: ANOVA P = 0.0113, F = 3.714) (Figure 4B). 
A similar signature score for the downregulated genes was calcu-
lated in TCGA and this data set as the mean of the genes within the 
gene list defined by the linear model. Interestingly, we observed 
a slight upregulation of gene expression in our primary tumors as 
compared with expression in TCGA primary tumors, but a signifi-
cant downregulation of gene expression in the metastases. Down-
regulated genes had significantly lower means in the basal-like 
tumors than in the other tumor subtypes (TCGA: ANOVA P = 7.7 
× 10–16, F = 25.39) (Figure 4C). Last, neither of these signatures 
(the upregulated or downregulated signatures in metastases) was 
prognostic of survival when tested on multiple external data sets 
including that of the Molecular Taxonomy of Breast Cancer Inter-
national Consortium (METABRIC) (5).

Genetic heterogeneity of the primary breast cancer is maintained  
in the metastases
Previous work by our group demonstrated that low-frequency sub-
clones present at 1% to 5% in the primary tumor can be enriched to 
greater than 40% in the related metastases (22). In contrast, other 
groups have used VAF cutoffs such as 5% and 10% to exclude variants 
(17, 21). In order to minimize false-positives and still maintain high 

Figure 5. Multiclonal and monoclonal metastatic seeding patterns in breast cancer patients. (A–C) Dendograms depicting the overall relationship of the 
tumors in (A) patient A2, (B) patient A20, (C) patient A12, and (D) patient A15. Each subclone detected in a patient is represented as a separate color along 
the x axis for each primary tumor and metastasis on the y axis. The radius of each circle is proportionate to the mean cellular prevalence of that clone in each 
tumor. The total number of mutations per clone is indicated on the right, and the percentages of mutations detected in that clone in each tumor are plotted 
as a bar graph below each dendogram. Across subtypes, monoclonal seeding patterns in (A) patient A2 (ER+, luminal) and (B) patient A20 (ER–/PR–/HER2–, 
basal-like) and multiclonal patterns in both (C) luminal (patient A12) and (D) basal-like (patient A15) tumors are shown. LungL, left lung; LungR, right lung.
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maintained throughout the metastatic process;we observed this in 
both luminal and basal-like breast cancers. We also showed that 
TP53 was the only mutation driver that was common across all sub-
types of breast cancer metastases and that the majority of drivers 
were predominantly altered by virtue of somatic CNAs. Moreover, 
our data illustrate that metastasis is often a result of multiclonal 
seeding of breast cancer metastases, regardless of subtype.

Historically, point mutations or small intragenic insertions/
deletions (in/del) have been regarded as the driving force behind 
oncogenesis. One of the unique aspects of this work was our use 
of DawnRank, which allows a more functional-based assessment 
of genetic drivers and integrates prior knowledge of protein inter-
action networks with mutations, CNAs, and RNA expression data, 
to refine our ability to identify drivers for each individual patient. 
By contrast, DNA-only–based methods can only identify drivers 
on the basis of correlations to previous data sets from which pop-
ulation-based enrichments of specific genes were determined. 
Our functional-based genetic driver approach demonstrated that 
the majority of drivers were, in fact, the result of CNAs. A chal-
lenge with interpreting and acting upon large-scale amplification/
deletions in the genome is that often tens to hundreds of genes are 
altered; a strength of DawnRank is that it can further prioritize 
these many CNA candidate genes on the basis of functional data 
from individual patients, thus providing a means of finding the 
driver(s) present in these regions of large-scale changes.

TP53 mutations were seen repeatedly in both basal-like and 
luminal breast cancers, with the mutation always established in 
the primary tumor and maintained in every metastasis from that 
patient. This suggests that TP53 is one of the founding mecha-
nisms of aggressive, lethal breast cancer. Beyond TP53, no other 
driver mutations were present in more than 3 of the 16 patients in 
this data set.

DawnRank analysis identified mutations in the binding pock-
et of ESR1 in 3 of 16 patients with luminal subtype breast cancers 
who received AIs, consistent with previous reports demonstrat-
ing this mechanism of resistance to AIs (31, 32). Interestingly, in 
2 patients with clinically determined ER+ tumors who received 
AI therapy and did not have ESR1 mutations, those tumors were 
of the HER2-enriched subtype. Previous reports have described 
HER2 amplification as a known mechanism of resistance to endo-
crine therapy (39). Furthermore, preliminary evidence has shown 
that ER+ tumors that metastasize often have features of HER2 
enrichment in them (40). This molecular diversity of ER+ tumors 
(16, 41) may explain the differential response of many patients’ 
metastases to AI therapy.

In studying the dynamic gene expression in the primary 
tumors compared with expression in the metastases, we were able 
to generate a unique signature showing consistent gene expres-
sion differences in the metastases, regardless of the site of metas-
tasis. Previous research comparing single matched pairs of prima-
ry and metastatic tissues showed that hypoxia, proliferation, and 
dedifferentiation signatures were upregulated in the metastases 
(8). Other studies have evaluated groups of primary tumors and 
metastases from specific sites such as bone (42) and brain (43), but 
not multiple matched sites from the same patient. Here, we iden-
tify a unique set of genes that were upregulated and downregulat-
ed in metastases commonly across the cohort; however, we note 

sensitivity, we used our clinically validated variant pipeline (25) to call 
high-quality somatic mutations, followed by computational reinterro-
gation. Computational reinterrogation was performed such that, for 
a given patient, high-quality somatic variants were initially called by 
comparing each tumor (be it the primary tumor or a metastasis) with 
its matched normal tissue, all variants were then combined into a sin-
gle file, and the resulting somatic mutations were specifically reque-
ried in all tumors from that particular patient; this greatly improved 
the detection of low-frequency variants in some specimens, typically 
the primary tumor.

To evaluate the clonal evolution of a metastasis, we calcu-
lated cancer cell fractions and subclonal structure with PyClone 
(36) and reconstructed evolutionary processes with Dollo parsi-
mony, an R wrapper for PHYLIP (37). We classified patients into 
3 categories on the basis of the evolutionary relationship: those 
with monoclonal primary tumors that led to a linear evolution 
of metastases, those with monoclonal primary tumors with mul-
ticlonal metastases, and those with multiclonal primary tumors 
with multiclonal metastases.

Of the 16 patients examined, 4 had monoclonal primary 
tumors and metastases (Figure 5, A and B, and Supplemental 
Figure 10, A–C), 3 patients had monoclonal primary tumors with 
multiclonal metastases (Supplemental Figure 10, D–E), and 7 
patients had multiple clones in the primary tumor and seeding of 
each distant metastasis by at least 2 clones (Figure 5, C and D, and 
Supplemental Figure 11). As previously reported (22) and as again 
seen here, triple-negative breast cancer (TNBC) patients with a 
basal-like tumor subtype often had multiple clones in the prima-
ry tumor and metastases (Figure 5D and Supplemental Figure 11). 
Interestingly, multiclonal seeding of metastases from a multiclon-
al primary tumor was also observed in patient A12, who had an 
ER+, luminal A subtype cancer (Figure 5C).

Last, a recent report on colon cancer metastases examined 
the relationship between primary tumors, lymph node metastases, 
and distant metastases and determine that lymph node metastases 
were not an obligate step in the spreading to distant organs (38). 
We analyzed axillary lymph node metastases in 2 patients (patients 
A1 and A23), and these were relatively distant from their primary 
tumors. In patient A1, the primary tumor shared 2 clones with the 
distant metastases, and these clones were not detected in the A1 
axillary lymph node (Supplemental Figure 11B). In patient A23, the 
predominant clone in the brain metastases was observed in both 
the primary tumor and the A23 axillary lymph node; however, the 
close clustering of the primary tumor with the 3 brain metastases on 
1 main branch in the dendrogram suggests a direct hematogenous 
spreading of the primary cancer to the brain rather than through the 
axillary lymph nodes (Supplemental Figure 1A). These findings sug-
gest that seeding of the distant metastases in these 2 patients did 
not occur via an obligate seeding from the lymph node metastasis.

Discussion
The molecular mechanisms driving the metastatic process are criti-
cal to understand in order to better prevent and treat existing metas-
tases. Using the UNC’s Rapid Autopsy Program and next-genera-
tion sequencing of multiple tumors from 16 breast cancer patients 
with aggressive disease courses, we showed that the majority of 
genetic drivers were established in the primary breast cancer and 
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adaptations. In addition, given that our analysis involved only 2 
patients with HER2-enriched cancers, data on additional patients 
with this tumor subtype will be needed to confirm the clonality 
of the metastases and to understand the resistance mechanisms 
that develop specifically in HER2+  breast cancer. Technically 
speaking, the conclusions of clonality were based on assumptions 
of sampling. As previous researchers have revealed substantial 
heterogeneity of the primary breast cancer, it is difficult to know 
whether a subclone is definitively not present in a tumor without 
sequencing the entire tumor. Furthermore, 5 of 16 of the prima-
ry breast cancers in this data set were treated with neoadjuvant 
(preoperative) therapy prior to mastectomy. Thus, the conclu-
sions drawn are a combination of both the natural history of the 
breast cancer and the resistance to therapy. Future studies com-
paring matched, therapy-naive, post-neoadjuvant therapy, axil-
lary lymph nodes, liquid biopsies, and distant metastases will be 
needed to understand the multiple, complex steps of clonal evo-
lution, particularly given the prevalence of multiclonal seeding. 
Finally, this study is overrepresented in terms of aggressive, late-
stage breast cancers, making it more difficult to draw conclusions 
regarding more indolent metastases.

In summary, this study validates and further expands upon 
the compelling evidence of multiclonal seeding across multiple 
subtypes of breast cancer, especially for TNBC/basal-like tumors. 
Additionally, we show that most genetic drivers arise from CNAs. 
The mechanisms underlying the generation of genetic diversi-
ty are becoming known, including the consistency we observed 
across our patient cohort and previous literature suggesting that 
TP53 dysfunction is an early and critical event in the development 
of aggressive breast cancers. Despite the high degree of heteroge-
neity in primary breast cancers and metastases, our results also 
show that the majority of genetic drivers are established in the pri-
mary breast cancer and maintained throughout metastasis. This 
study provides hope that the therapeutic targeting of founding 
events driving the primary and metastatic tumor phenotype might 
both prevent and inhibit the progression of metastasis.

Methods

Patient consent and tissue processing
Tumor tissue was obtained from patients with metastatic breast 
cancer who consented to participation in the Rapid Autopsy Tumor 
Donation program (RAP) at the UNC. Primary tumor, metastatic 
tumor, and normal tissues were taken within 6 hours of death for 
all metastatic sites, both known and found, at the time of autopsy. 
Tissues were frozen in a –80°C freezer, and RNA and DNA were iso-
lated from each tissue using QIAGEN RNAeasy and DNAeasy kits, 
respectively, according to the manufacturer’s protocols. Primary 
breast cancer tissues taken at diagnosis were also acquired when 
possible. Patients were selected if they had a primary tumor and at 
least 2 metastases available for analysis.

Archived tissues in FFPE tissues had total RNA isolated with a 
Roche High Pure RNA Paraffin Kit (catalog 03270289001) and DNA 
isolated with a Maxwell 16 FFPE Tissue LEV DNA Purification Kit. 
RNA quality was verified with an Agilent BioAnalyzer RNA 6000 
Nano Kit. Sequencing data were deposited in the NCBI’s genotypes 
and phenotypes database (dbGaP) (accession number phs000676).

that these signatures were not prognostic. This is consistent with 
many previous genomic predictors of future metastasis develop-
ment (including OncotypeDX [ref. 44], Mammaprint [ref. 45], and 
Prosigna [ref. 46]), in which a large component of these signatures 
is proliferation. An important feature of our metastasis-associated 
signature was hypoxia and possibly an altered cellular metabo-
lism, which likely reflects a type of Warburg effect seen when com-
paring metastases versus primary tumors; these features could 
potentially provide new therapeutic vulnerabilities, and strategies 
targeting metabolism in breast cancer, especially TNBC, is an area 
of extensive current research (47–49).

Previous whole-genome sequencing of tumors from 2 patients 
(A1 and A7) identified multiclonal seeding as a mechanism in 
breast cancer metastasis, with the majority of functional muta-
tions established in the primary tumor and maintained throughout 
metastasis (22). Here, we build upon that small study, reanalyze 
these same 2 patients using DNA exomes and RNA-seq, include 
another 14 new patients, and demonstrate that, at least for basal- 
like tumors, multiclonal seeding is a common mechanism of 
metastasis. The short duration of progression-free survival seen 
in many of our patients has interesting implications for observa-
tion of the polyclonal seeding of metastases; importantly, whether 
this varies with the time to progression will need to be examined 
in larger data sets with more variability in the time to progression.

In patients in whom multiclonal seeding occurred, the metas-
tasis formation may have occurred via a clump of cells containing 
more than 1 clone that left the primary tumor, which then traveled 
to the distant site and seeded this site. This has important clinical 
implications: if the metastasis “seed” is a collection of cells with 
distinct subclonal populations, then successful therapy to prevent 
metastasis focused on inhibiting individual cell migration/motility  
may have a reduced effect on tumors that use multiclonal metastat-
ic seeding. This heterogeneous metastasis has been demonstrated 
in both HER2+ breast cancer metastasis (50) as well as in animal 
model studies showing growth factor crosstalk between 2 clones 
(51). Strategies to more comprehensively identify and inhibit the 
multiple subclones, which may have growth factor crosstalk (51), 
may be necessary in these tumors to effectively inhibit the process 
of metastases and/or primary tumor growth.

Last, though only 2 of 16 patients had axillary lymph nodes 
sequenced, our data suggest that the distant metastases were 
not necessarily seeded from the axillary lymph node metastasis. 
Patient A1 had 2 clones that were shared between the primary 
tumor and the distant metastases but were not found in the axil-
lary lymph node metastasis, supporting the notion of seeding 
specifically via the vasculature rather than the lymphatic system. 
This could be a false-negative result as a result of this clone being 
missed in the sequencing process; however, these 2 triple-neg-
ative, basal-like breast cancers from our data set support the 
hypothesis that lymph node metastases may be markers rather 
than required seeding routes for distant metastases.

Our study had a number of limitations, most notably a small 
sample size of 16 patients, which inhibited our ability to identify 
recurrent somatic mutations common to the metastatic setting, 
although our sample size was large enough to identify the impor-
tance of TP53 and ESR1. A larger sample size will also be need-
ed to identify site-specific (i.e., lung or brain) differences and 
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ly, were used to find the mean difference for each gene across each plat-
form. For example, the mean difference of fresh-frozen, ribo-zero total 
RNA-seq was calculated on a per-gene basis according to the same sam-
ple’s fresh-frozen mRNA-seq. Likewise, the mean difference of FFPE 
ribo-zero total RNA-seq was calculated on a per-gene basis according 
to the same sample’s fresh-frozen mRNA-seq. Each of these vectors was 
applied to samples sequenced with total RNA-seq and FFPE, respectively, 
giving a gene-by-gene adjustment to the mRNA-seq platform. Using 
these mRNA-normalized counts, the PAM50 score was calculated 
exactly as previously described (7). Briefly, a vector calculated from the 
2015 TCGA Lobular Breast Cancer study (7) for adjustment of the UNC 
sequencers using fresh-frozen mRNA-seq, mapped with MapSplice (62) 
and quantified with RSEM (29), was used for the calibration parameter 
in Bioclassifier R (28).

Droplet PCR for ESR1 mutations
Digital droplet PCR for WT and 4 hotspot ESR1 alleles (D538G, Y537C, 
Y537S, and Y537N) was performed using Raindrop Source and Sense 
instruments (Raindance Technologies). Primers for a 75-bp amplicon that 
includes these hotspot mutations were used in conjunction with locked 
nucleic acid TaqMan probes for WT (conjugated to TET) or mutant (con-
jugated to FAM) ESR1 alleles, purchased from Integrated DNA Technolo-
gies (IDT). The multiplexed genotyping reaction was validated using syn-
thesized 125-bp DNA fragments (gBlocks; IDT). The primer and probe 
sequences are listed in Supplemental Table 8. TaqMan Genotyping Mas-
ter Mix (Applied Biosystems) was used for 10 to 100 ng Covaris-sheared 
genomic DNA in a 50-μl reaction volume. After PCR amplification in a 
thermocycler (C1000 Touch Thermal Cycler; Bio-Rad), the emulsion 
was analyzed with the Raindrop Sense instrument (RainDance Technolo-
gies) to measure the endpoint fluorescence signal from each droplet using 
the manufacturer’s standard protocols. The fluorescence intensity and 
duration for each droplet in the FAM and TET channels were analyzed 
using RainDrop Analyst Software II (RainDance Technologies). Two- 
dimensional (FAM and TET intensity) plots were made for each sample, 
and gates were used to define graphical areas with specific fluorescence 
properties. The number of droplet events specific for WT or mutant ESR1 
alleles was used to calculate the mutation frequency.

Computational analyses
Linear model of gene expression. Patients with fresh-frozen, polyA 
select primary tumors and metastases were compared using the lin-
ear mixed-effects model lme4 package in R (64). Using the log2-trans-
formed, RSEM-normalized gene counts, each gene was tested for 
significantly differential expression in the primary tumors versus 
matched metastases, with the patient taken into account as a con-
founding variable: lmer(gene[i] ~ prim/met + (1|patient))

The labels of primary or metastasis were permutated 100 times to 
calculate an FDR for each gene (Supplemental Table 6 and see Supple-
mental Data File 2 for the code).

Gene signature score. Genes identified in the linear model at an 
FDR of 0 were used to supervise the original data set. The fresh- 
frozen RAP tumors were median centered for each gene, clustered in 
Cluster (65), and viewed with Java TreeView (66). Genes were clus-
tered into 2 distinct clusters: 1 upregulated cluster and 1 downregulat-
ed cluster. For each sample, the gene signature was calculated as the 
average log2-transformed, RSEM-normalized RNA-seq value for the 
genes in each cluster. The signature score was calculated from TCGA 

DNA whole-exome sequencing
DNA was prepared for sequencing using the Agilent Technologies 
SureSelect XT library protocol. Fresh-frozen tumors were processed 
according to the manufacturer’s protocol for 3 μg input, while FFPE 
tumors were processed with the low-volume input according to the 
manufacturer’s protocol for 200 ng input. DNA libraries were cap-
tured and amplified with Agilent Technologies SureSelect Human All 
Exon, version 5 or 6, according to the manufacturer’s protocol (Sup-
plemental Table 2). The quality of both the DNA libraries and DNA 
exome capture and concentration were quantified with Agilent Tape-
Station DNA 1000 and High Sensitivity D1000, respectively.

Paired-end sequence data (2 × 100 bp) were generated using 
the Illumina HiSeq 2500 for each tumor or normal sample, with 
3 samples per lane. Illumina reads were mapped to the NCBI 
Build 36 reference sequence with BWA 0.7.9a (52), realigned with 
ABRA, version 0.96 (53), and processed by biobambam2 (54). 
Viral alignments were counted with Samtools (55) and BEDTools- 
Version-2.15.0. Picard 1.92 (56) was used to calculate sequencing 
metrics. ISAAC (57) and Freebayes were used to call germline 
mutations with quality scores above 30. SnpSIFT, version 1.3.4, 
band SnpEFF (58) was used to annotate alterations with popula-
tion-level frequencies. CADABRA SomaticLocusCaller was used 
for further filtration. Somatic variants were called with STRELKA 
(59) using strelka_config_bwa_default.ini. STRELKA filter -lane 
‘if(/^#/) {next;} if(\$F[7]!~/QSS_NT=(\d+);?/) {next;} if(\$1>=10) 
{print;}’. UNCeqR v0.1.14 (26), Cadabra version 0.9 (53), and 
ENSEMBL (60) with Python 2.7.10.

We used minor allele frequencies of highly variable SNPs called 
by Freebayes in the general population for sample identity. All sam-
ples had an expected 87%–100% identity with both the tumor and 
matched normal tissue from the same patient.

Copy numbers were called with SynthEx (61) using 50,000-bp–
sized bins and K nearest neighbors = 3 from the pool of 16 normal tis-
sues available in dbGaP (accession number phs000676). Briefly, the 
ratio of on-target and off-target exome reads of the tumor were com-
pared with a normal tissue selected from the data set by the highest 
degree of similarity by K-nearest neighbor (KNN) based on library size 
and fold enrichment. Segment-level ratios were calculated and log2 
transformed (Supplemental Table 4). For DawnRank analyses, copy 
number levels greater than 0.25 were considered gains, and levels 
below –0.32 were considered losses (61).

RNA-seq
Fresh-frozen RNA was prepared for sequencing following the Illumina 
TruSeq polyA Select protocol. If libraries failed the protocol, they were 
then prepared with the Illumina TruSeq RiboZero Gold protocol accord-
ing to the manufacturer’s instructions. FFPE RNA was prepared with the 
Illumina TruSeq FFPE RiboZero Gold protocol according to the manu-
facturer’s instructions. RNA libraries were sequenced as 2 × 50 bp paired-
end reads with 2 samples per lane on Illumina HiSeq 2500 sequencers. 
Reads were aligned with MapSplice, version 0.7.4 or version 0.7.6 if 0.7.4 
failed (62), and gene values were quantitated with RSEM (29) and counts 
upper-quartile normalized and log2 transformed for analysis.

Because of bias in the FFPE and total RNA-seq data as compared 
with the mRNA-seq data, a normalization vector was calculated: 
previously published matched samples of fresh and FFPE RNA (63) 
sequenced at the UNC using mRNA-seq and total RNA-seq, respective-
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primary tumor; and “private,” meaning identified in only 1 tumor in the 
patient. Box plots were generated with R.

RNA interrogation of DNA mutations. Using the “union” list of 
mutations for each patient, UNCeqR (26) was used to count the num-
ber of mutated reads from the RNA BAMs at each position within a 
patient. For example, for patient A1, all of the mutations from the 
tumors within that patient were measured in the binary alignment 
map generated from MapSplice from the RNA-seq data. Mutations 
within each tumor were only considered if at least 5 reads of that gene 
were detected within the RNA-seq. Genes for which the RNA gene 
expression of the gene was less than 5 were removed from the total 
number of DNA mutations in that tumor. UNCeqR was additionally 
run on the de novo mutation identification with default parameters.

Subclonal analysis. PyClone (36) was applied to all related tumors 
for each patient using the mutation calls following computational 
reinterrogation, as described above, and copy numbers from SynthEx 
(61). The mean cellular prevalence (CP) of the mutations comprising 
each clone was then calculated per tumor. Circles were drawn, with 
the radius of the circle proportionate to the mean CP. Clustering was 
performed for each patient with Dollo parsimony, an R wrapper for 
PHYLIP (37), with the R code, where i is the index for each patient  (see 
Supplemental Data File 2 for the code).

Statistics
For DawnRank analyses, a normal distribution was confirmed, and a 
cutoff of the top 5% ranked genes, corresponding to a P value of 0.05, 
was used to determine statistical significance. A linear model was 
described as above, with a permutation of ×100 based on randomiza-
tion of the primary/metastasis label. An FDR was then calculated, and 
an FDR of 0 was used for RNA signature development. All plotting was 
performed using R, version 3.3.0, in RStudio (67).

Study approval
Patients provided consent prior to death for a rapid autopsy, in accor-
dance with protocols of the UNC at Chapel Hill Office for Human 
Research Ethics and the US Department of Health and Human Services. 
Primary breast cancers in the form of fresh-frozen tissues were collect-
ed prior to autopsy under study ID number LCCC 9819 (ClinicalTrials.
gov Identifier: NCT01000883). This study was approved by the IRB of 
the University of North Carolina.

Accession numbers and data sharing
Sample information for RNA-seq and DNA-seq fastQ runs, includ-
ing the clinical information, were uploaded to the NCBI’s dbGAP 
(phs000676.v1.p1). RNA-seq RSEM upper-quantile–normalized 
counts were deposited in the NCBI’s Gene Expression Omnibus 
(GEO) database (GEO GSE110590).

Author contributions
LAC, CMP, and MBS conceptualized the study. MBS, XH, AH, 
AEDVS, JSP, MC, SK, GPG, and KAH designed the study method-
ology. MBS and XH conducted experiments. MBS, KAH, AEDVS, 
ERM, CMB, LAC, and CKA wrote the manuscript. JBP, ALG, CKA, 
LAC, LBT, NK, and CL were responsible for project administration. 
VJM, CMB, ALG, JBP, XH, SK, GPG, LBT, NK, MBS, DM, and KAH 
were responsible for data curation. CMP, LAC, and CKA provided 
resources. ERM, JSP, CKA, LAC, and CMP supervised the study.

RNA-seq data from the 2015 Lobular Breast Cancer data set (7) using 
1,098 primary breast cancers. Using the RNA-seq, RSEM-normalized, 
log2-transformed counts, the RNA-seq data were added to our mRNA-
seq–normalized data from the primary tumors and metastases report-
ed here. The entire data set was median centered, and the genes iden-
tified as significant at an FDR of 0 from the above linear model were 
averaged to calculate the gene signature. This gene signature was then 
box plotted according to previously reported PAM50 subtypes (7).

Hierarchical clustering of gene expression. RNA-seq data from the 
1,098 primary breast cancers from the 2015 TCGA Lobular Breast 
Cancer data set using RSEM-normalized RNA counts (7) were log2 
transformed, merged with tissues from this study normalized to the 
mRNA-seq platform as described above, and median centered. Cor-
relation-centered hierarchical clustering of the median-centered data 
set with the PAM50 genes (28) was performed with Cluster (65) and 
visualized with Java TreeView (66).

Computational reinterrogation of somatic mutations in related tumors. 
Low read coverage or low tumor cell purity can cause the rigorous somat-
ic mutation caller to miss mutations (26, 53). Thus, all of the high-con-
fidence somatic mutations from every tumor taken from 1 patient were 
reinterrogated within the same tumors from that patient. First, all of 
the somatic mutations from the tumors within 1 patient were collapsed 
into 1 file, excluding any guanine-to-adenine or cytosine-to-thymine 
mutations from FFPE samples. For each mutation from a single patient, 
we then counted the mutant and reference alleles at that position from 
the original BAM file of each tumor from that patient. VAFs (alter-
nate counts/total read counts × 100) were recalculated from the new 
calls. All mutations from the data set were interrogated in the normal 
sequence for all tumors in this data set to account for false-positives. 
Mutations with VAFs of greater than 20% in at least 2 normal tissues 
from unrelated patients were excluded from future analyses.

DawnRank. We generated a binary matrix of 0, indicating no alter-
ation, and 1, indicating any alteration (mutation or copy number) for 
genes published in DawnRank (14). We combined log2-transformed, 
normalized RNA-seq data from the 2015 TCGA Lobular Breast Can-
cer data set (7) with the mRNA-seq RAP-normalized data set, median 
centered the data for each gene, and further transformed scores to the 
absolute value. Thus, each gene’s expression was normalized to a rep-
resentative cohort of breast cancers. DawnRank was then run for each 
individual tumor using the parameter mu = 3 (14). DawnRank scores 
were saved (Supplemental Table 5), and the top 5% of scores within 
each tumor were considered candidate drivers. These candidate driv-
ers were then filtered by nonsilent mutations and CNAs, such that if an 
alteration was present within the top 5% of ranked genes (of a total of 
8,000 in the networks), it was then further considered a driver.

An alternate analysis of DawnRank was performed by comparing 
the ratio of RNA-seq of each matched metastasis to its primary tumor 
tissue. Thus, for each metastasis, the RNA-seq value was the normal-
ized RNA-seq value of the metastasis over the matched primary tumor. 
These values were then used to re-run DawnRank with mu = 3 and the 
same network as above. Again, the top 5% ranked genes were consid-
ered candidates and filtered on the basis of mutation and CNAs for each 
tumor. All drivers across the metastases in a given patient were then cat-
egorized as follows: “truncal,” meaning in the primary tumor and every 
metastasis from that patient; “shared primary-met,” meaning in the 
primary tumor and a metastasis but not in every tumor; “shared metas-
tasis,” meaning shared in at least 2 metastases but not identified in the 
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