## Supplemental Information (Bozadjieva et al.)

### Supplemental Table 1. Antibodies

| Antibody                                  | Specie             | Source                                                            | Application |
|-------------------------------------------|--------------------|-------------------------------------------------------------------|-------------|
| Glucagon                                  | Mouse              | Abcam (ab10988)                                                   | IFC         |
| Glucagon                                  | Rabbit             | Chemicon/Millipore (AB932)                                        | IFC         |
| Glucagon-BV421                            | Human/Mouse        | BD Biosciences (565891)                                           | FC          |
| Insulin                                   | Guinea Pig         | Dako (A0564)                                                      | IFC         |
| Insulin-APC                               | Human/Mouse/Bovine | R&D Systems (IC1417A)                                             | FC          |
| pS6 (S240)                                | Rabbit             | Cell Signaling (5364)                                             | IFC         |
| pS6 (S240)-PE                             | Mouse              | BD Biosciences (560430)                                           | FC          |
| FoxA2                                     | Rabbit             | Cell Signaling (3143)                                             | IFC         |
| FoxA2                                     | Mouse              | Abcam (ab60721)                                                   | WB          |
| FoxA2-Dylight488<br>(conjugated in house) | Mouse              | Abcam (ab60721) and DyLight488<br>Fast Conjugation Kit (ab201799) | FC          |
| KIR6.2                                    | Rabbit             | Alomone Labs (APC-020)                                            | WB          |
| SUR1                                      | Rabbit             | Show-Ling Shyng Lab                                               | WB          |
| Somatostatin                              | Rabbit             | Santa Cruz (SC-13099)                                             | IFC         |
| Pancreatic                                | Guinea Pig         | Linco/Millipore (4041-01)                                         | IFC         |
| Polypeptide                               |                    |                                                                   |             |
| Actin                                     | Mouse              | Sigma (A5441)                                                     | WB          |
| Ghost Dye Red 780                         |                    | Tonbo (13-0865)                                                   | FC          |
| Ki67                                      | Rabbit             | Thermo Fisher (PA5-19462)                                         | IFC         |
| Ki67-BV786                                | Mouse              | BD Biosciences (563756)                                           | FC          |

| AnnexinV-PE |                                                      | BD Biosciences (556421) | FC             |     |
|-------------|------------------------------------------------------|-------------------------|----------------|-----|
| Glucagon    | Guinea Pig                                           | Linco (4031-01F)        | IFC<br>patched | for |
|             |                                                      |                         | cells          |     |
| DAPI        | VECTASHIELD<br>Antifade Mounting<br>Medium with DAPI | Vector (H-1200)         | IFC            |     |
| GFP         | Chicken                                              | Abcam (ab13970)         | IFC            |     |

WB = Western Blot

IFC = Immunofluorescent Chemistry

FC=Flow Cytometry

### Supplemental Table 2. Primer Sequences

| Gene   | Forward                     | Reverse                     |  |  |
|--------|-----------------------------|-----------------------------|--|--|
| FoxA2  | CAGCTACTACGCGGAGCC          | GCTCATTCCAGCGCCCAC          |  |  |
| SUR1   | CTGGTGGCCATCGACACAA         | TGTACAGGAGCCAGCAGAAT        |  |  |
| KIR6.2 | GCTGCATCTTCATGAAAACG        | TTGGAGTCGATGACGTGGTA        |  |  |
| MafB   | GAACGAGAAGACGCAGCTCT        | CGAGTTTCTCGCACTTGACCT       |  |  |
| Nkx2.2 | TCGCTCTCCCCTTTGAACTTT       | GTTAACGTTGGGATGGTTTGG       |  |  |
| Pou3f4 | TTCCTCAAGTGTCCCAAGCC        | TAA ACCTCGTGTGGCTGCTG       |  |  |
| FoxP1  | CGAATGTTTGCTTACTTCCGA       | GCCAGGCTGTGA AAGCATATGTGA   |  |  |
| FoxP2  | GCCAGGCTGTGAAAGCATATGTGA    | CATTTGCACTCGACATTGGGCAGT    |  |  |
| FoxP4  | GTCAGCCTGCAGCCCAAGCCAAGCCTC | GGAGCTGTCTCTCCGAGATGTGAGCAC |  |  |
| 18S    | GCAATTATTCCCCATGAACG        | GGGACTTAATCAACGCAAGC        |  |  |

| Single Cell   | Forward               | Reverse              |
|---------------|-----------------------|----------------------|
| SUR1          | CTGGTG GCCATCGACACAA  | TGTACAGGAGCCAGCAGAAT |
| (inside)      |                       |                      |
| SUR1          | GTCTACTTCCAACCTGTCAAT | ACCCTCGAGCAGAAGATGTT |
| (outside)     |                       |                      |
| Raptor        | CCTCTGTCCATATACGACCT  | CTCTGCAGTGCAAACTGT   |
| (inside; exon |                       |                      |
| 6)            |                       |                      |
| Raptor        | CCTACTGTGGATGAAGTCAAG | CACTCCCATCAAGATTGCTC |
| (outside;     |                       |                      |
| exons 5&7)    |                       |                      |

|         |        | <b>U</b> |        |       |         |        |
|---------|--------|----------|--------|-------|---------|--------|
| CCNB1   | NOTCH1 | ABCC8    | CCND1  | FOXO1 | LAMP1   | PAX6   |
| EIF4E   | SNAP25 | HSP90AB1 | CCND2  | FOXP1 | LAMTOR2 | PCSK2  |
| CHRM3   | ULK2   | CACNA1S  | CDKN1A | FOXP4 | LAMTOR3 | PTF1A  |
| NEUROG3 | MAFB   | XBP1     | CDKN1B | GCG   | MAFA    | RFX6   |
| LAMTOR1 | FOXA2  | ARX      | CPE    | GIPR  | NKX6-1  | TM4SF4 |
| NKX2-2  | POU3F4 | CACNA1A  | CRYBA2 | GLP1R | NOTCH2  | UCP2   |
| ULK1    | KCNJ11 | CASP3    | DDIT3  | HSPA5 | OGT     | VAMP2  |
| GATA4   | RBPJ   | CCNA2    | ERN1   | IRS2  | PAX4    |        |

Supplemental Table 3. Fluidigm Gene Targets Included in Analysis



# tdTomato Nissl

AP – Area Postrema
NTS – Nucleus of the Solitary Tract
C – Central Canal
DMX – Dorsal Motor Nucleus of Vagus
XII – Hypoglossal Nucleus
V4 – Fourth Ventricle

Supplemental Figure 1. Glucagon-Cre recombination in the Nucleus of Solitary Tract

(NTS). Immunofluorescent images (scale=50  $\mu$ m) of Glucagon-Cre recombination in the

Nucleus of Solitary Tract (NTS) using a reporter transgenic mouse CAG-tdTomato.





**Supplemental Figure 2.** α**Raptor<sup>KO</sup> mice have increased gluconeogenesis. A.** Fasting blood glucose (n=3-4). **B.** Pyruvate tolerance test (2 g/kg) in 2-months old mice (n=3-6). **C.** Fed and fasted liver weight (n=3-6) and **D.** Liver glycogen content (n=3-4) in 8 months-old control and αRaptor<sup>KO</sup> mice. Data for (A) shown as means  $\pm$  S.E.M. \*p≤0.05; (Student's 2-tailed *t* test). Data for (B-D) are shown as means  $\pm$  S.E.M. \*p≤0.05; (1-Way ANOVA with Dunnett's post-test).



**Supplemental Figure 3. Circulating and intestinal active GLP-1 levels. A.** Fed and fasted active GLP-1 levels in 2 month-old mice (n=4-5). Data shown as means  $\pm$  S.E.M. \*p≤0.05; (1-Way ANOVA with Dunnett's post-test). **B.** Intestinal active GLP-1 levels in 2 month-old mice (n=4-5). Data are shown as means  $\pm$  S.E.M. \*p≤0.05; (Student's 2-tailed *t* test).





Supplemental Figure 4. Loss of mTORC1 signaling in α-cells leads to decreased proliferation and increased apoptosis in αRaptor<sup>KO</sup> and decreased cell number in older αRaptor<sup>HET</sup> mice. **A.** Quantifications of α-cell apoptosis by TUNEL stain (%; n=4) and **B.** Proliferation by ki67 stain at 2 weeks of age (%; n=3) in paraffin sections. **C.** Flow cytometry analysis of α-cell apoptosis by AnnexinV staining (%; n=4-5) and **D.** Proliferation by ki67 staining (%; n=6-9). **E.** Immunofluorescent images (scale=50 µm) and quantification of **F.** Somatostatin (δ) and **G.** PP (pancreatic polypeptide) cell mass in 2 month-old mice (n=3-4). **H.** Flow cytometry analysis of α-cell size and **I.** Glucagon content in older αRaptor<sup>HET</sup> mice (n=3). **J.** Quantifications of α-cell number per islet of older αRaptor<sup>HET</sup> mice (n=4). Data are shown as means ± S.E.M. \*p≤0.05; (Student's 2-tailed *t* test).



Supplemental Figure 5. Increase in glucagon secretion by glutamine is dependent on **mTORC1 activation. A.** Glucagon secretion and **B.** Islet glucagon content from isolated wild type islets treated with vehicle control or rapamycin (30nM) at increasing concentrations of glutamine (0, 1, 3, 5 mM) in 4 mM glucose KRBB (n= 5). Data are presented as fold change from 0 mM glutamine. Data are shown as means  $\pm$  S.E.M. \*p<0.05; (Student's 2-tailed *t* test).



**Supplemental Figure 6. Glucagon and insulin levels in FACS-enriched α-cell population from Control and αRaptor<sup>HET</sup> mice. A.** Hormone quantification of Tomato (glucagon-enriched) and GFP (insulin) gates obtained through FACS using isolated and dispersed islets from 2 month-old Glucagon-Cre<sup>Ins1GFP; tdTomato</sup> mice (n=4). Glucagon data is presented as fold change from glucagon content in Tomato Gate. Insulin data is presented as fold change from insulin content in GFP Gate. Cells sorted from Tomato Gate (glucagon-enriched population) were used for experiments.