
Therapeutic approaches targeting inflammation for diabetes and
associated cardiovascular risk

Allison B. Goldfine, Steven E. Shoelson

J Clin Invest. 2017;127(1):83-93. https://doi.org/10.1172/JCI88884.

Obesity-related sub-acute chronic inflammation has been associated with incident type 2 diabetes and atherosclerotic
cardiovascular disease. Inflammation is increasingly considered to be a pathologic mediator of these commonly co-
occurring diseases. A growing number of preclinical and clinical studies support the inflammatory hypothesis, but clinical
trials to confirm the therapeutic potential to target inflammation to treat or prevent cardiometabolic conditions are still
ongoing. There are multiple inflammatory signaling pathways. Regulation is complex, with substantial crosstalk across
these multiple pathways. The activity of select pathways may be differentially regulated in different tissues.
Pharmacologic approaches to diabetes management may have direct or indirect antiinflammatory effects, the latter
potentially attributable to an improved metabolic state. Conversely, some antiinflammatory approaches may affect
glucose metabolism and cardiovascular health. To date, clinical trials suggest that targeting one portion of the
inflammatory cascade may differentially affect dysglycemia and atherothrombosis. Understanding the underlying
biological processes may contribute to the development of safe and effective therapies, although a single approach may
not be sufficient for optimal management of both metabolic and athrothrombotic disease states.

Review Series

Find the latest version:

https://jci.me/88884/pdf

http://www.jci.org
http://www.jci.org/127/1?utm_campaign=cover-page&utm_medium=pdf&utm_source=content
https://doi.org/10.1172/JCI88884
http://www.jci.org/tags/58?utm_campaign=cover-page&utm_medium=pdf&utm_source=content
https://jci.me/88884/pdf
https://jci.me/88884/pdf?utm_content=qrcode


The Journal of Clinical Investigation   

8 3jci.org   Volume 127   Number 1   January 2017

R E V I E W  S E R I E S :  M E T A B O L I S M  A N D  I N F L A M M A T I O N 
Series Editors: Alan R. Saltiel and Jerrold M. Olefsky

Introduction
The obesity epidemic foreshadowed subsequent increases in 
incident type 2 diabetes (T2D) and atherosclerotic cardiovas-
cular disease (ASCVD), supporting a role for obesity to promote 
or accelerate pathophysiologic processes underlying and poten-
tially common to both conditions. Several features of obesity 
are implicated as potential pathologic mediators in cardiomet-
abolic conditions, including tissue triglycerides, oxidative and 
endoplasmic reticulum stress, mitochondrial dysfunction, and 
inflammation. Preclinical studies supporting potential etiologic 
roles for inflammation increased almost exponentially over the 
last decade, such that inflammation is increasingly considered 
to be an established mediator. However, clinical studies, which 
appropriately lag behind the preclinical studies, have yet to con-
firm inflammation as a pathogenic mediator of insulin resis-
tance, T2D, and ASCVD in humans.

Clinical relationships between T2D and ASCVD are well 
established. Risk for ASCVD is markedly elevated in patients 
with T2D compared with those without T2D (1, 2). ASCVD typi-
cally occurs one to two decades earlier in those with T2D (3), with 

greater severity and more diffuse distribution (4). Thus, identi-
fication of therapeutic approaches to simultaneously treat or 
prevent diabetes and atherosclerosis would be of high scientific 
merit and clinical benefit.

Historical perspectives linking obesity  
and inflammation
Epidemiologic associations relating inflammation with obesity 
and T2D can be traced to the 1950s and 1960s, when circulating 
concentrations of fibrinogen and other acute-phase reactants were 
shown to be elevated in these conditions (5–7). Numerous addition-
al epidemiologic studies have extended these early associative find-
ings (8–18). Increased circulating concentrations of markers and 
mediators of inflammation and acute-phase reactants including 
fibrinogen, C-reactive protein (CRP), IL-6, plasminogen activator 
inhibitor 1 (PAI-1), sialic acid, and white cells, among others, all cor-
relate with incident T2D (8, 9), as well as other obesity- associated 
conditions including metabolic syndrome, hypertension, nonalco-
holic steatosis, and ASCVD (17, 19–23). Obesity is positively asso-
ciated with concentrations of inflammatory markers, which are 
predictive of incident T2D and ASCVD even after controlling for 
weight and other risk factors (17, 18). Furthermore, the magnitude 
of cardiovascular risk associated with CRP is similar in magnitude 
to that of traditional risk factors including systolic blood pressure 
and/or non-HDL cholesterol (8, 24). Weight gain and obesity are 
accompanied by activation of at least two major inflammatory path-
ways, stress-activated JNK (25) and the transcription factor NF-κB 
(26). Epidemiologic, cellular, and molecular data support obesity as 
a condition of sub-acute chronic inflammation (26), with participa-
tion of activated monocytes and tissue macrophages amplifying the 
inflammatory state via production of proinflammatory cytokines. 
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and phentermine/topiramate (37), which raises adiponectin. The 
diverse molecular targets for these varied approaches suggest 
that weight loss rather than the molecular target itself contributes 
importantly to reduce the state of obesity-mediated chronic sub-
acute inflammation. As specific inflammatory proteins altered by 
these multiple approaches differ, distinct portions of the inflam-
matory signaling pathways may be differentially affected by these 
multiple specific therapeutic tactics.

3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors 
(statins). Reductions in major cardiovascular events are first real-
ized early after statin initiation, which suggests that relevant bio-
logic effects might extend beyond LDL cholesterol lowering (38). 
While multiple studies demonstrate that statins reduce the inflam-
matory marker CRP by 13% to 50% (39), we don’t know whether 
CRP lowering directly affects the natural history of ASCVD. CRP 
lowering may be related to statins’ ability to downregulate activi-
ties of transcription factors associated with inflammation, includ-
ing NF-κB and HIF-1α (40). Antiinflammatory properties of statins 
might also be secondary to reductions in cholesterol, as oxidized 
cholesterol and cholesterol crystals activate TLRs and the NOD-
like receptor pyrin-3 (NLRP3) inflammasome, respectively (41, 
42). However, CRP lowering with statins is not dose dependent, 
does not correlate with lipid lowering (39), and is not seen with 
dramatic cholesterol lowering by proprotein convertase subtilisin/
kexin type 9 (PCSK9) inhibitors (43), suggesting that additional or 
alternate putative antiinflammatory mechanisms extend beyond 
cholesterol lowering itself.

The Justification for the Use of Statins in Primary Prevention: 
An Intervention Trial Evaluating Rosuvastatin (JUPITER) trial 
(44) intended to test the inflammation hypothesis of ASCVD by 
comparing rosuvastatin to placebo in 17,802 individuals with ele-
vated CRP 2.0 mg/l or higher and LDL cholesterol levels below 
130 mg/dl (3.4 mmol/l) who would not have warranted statin 
administration according to guidelines at that time. The primary 
trial endpoint was the composite of myocardial infarction, stroke, 
arterial revascularization, hospitalization for unstable angina, or 
death from cardiovascular causes. The trial was stopped early, 
after a median 1.9 years of follow-up, with a 44% lower hazard 
ratio for rosuvastatin. This has been used to support the inflam-

This inflammatory state is thought to reduce insulin responsive-
ness in insulin-sensitive tissues to promote risk for T2D and ASCVD 
through actions on cells in the circulation and vasculature (26, 27).

The earliest experiments demonstrating that adipose tissue–
derived proinflammatory cytokines can cause insulin resistance 
were performed in the 1990s and showed increased TNF-α pro-
duction in adipose tissue and increased circulating TNF-α in obese 
rodents (28). Inhibition of TNF-α using neutralizing antibodies 
improved insulin sensitivity, thereby establishing for the first time 
in preclinical models a direct role of inflammation in obesity- 
related insulin resistance. Markers of inflammation and coagula-
tion are reduced with intensive lifestyle intervention, as seen in 
the Diabetes Prevention Program (29). Together these findings 
motivate the investigation of whether inflammation per se can be 
targeted to reduce disease risk (Figure 1).

Therapeutic approaches with pleiotropic 
antiinflammatory properties
Several therapeutic approaches or pharmacologic agents used in 
current clinical practice are reported to have antiinflammatory 
properties in addition to their major mechanisms of action. Thera-
peutic approaches with pleiotropic effects to reduce inflammation 
include weight-reducing diets and/or lifestyle, pharmacologic or 
surgical approaches to weight management, statin therapy, and 
antidiabetic drugs including insulin itself, insulin sensitizers (met-
formin and thiazolidinediones [TZDs]), incretin modulators, and 
sodium glucose transport inhibitors, among others.

Weight loss. Lifestyle intervention for weight loss reduces 
inflammation, assessed as circulating CRP concentrations, in 
obese persons both with and without T2D (29). However, it is 
not known whether the reduced inflammation associated with 
weight loss is responsible for improved glycemic control in T2D 
and improved cardiovascular and all-cause mortality (30–32). 
Interestingly, the effects of statins to lower CRP are additive to 
lifestyle-mediated weight management (33). Weight loss through 
bariatric surgical approaches also reduces inflammatory markers 
such as CRP and IL-6 (34). Pharmacologic approaches to manage 
weight that improve inflammatory markers/mediators include 
orlistat (35) and naltrexone SR/bupropion (36), which lower CRP, 

Figure 1. Clinical trials to target inflammation in T2D and ASCVD. 
Heightened inflammation that often accompanies obesity or excessive 
weight gain is a hypothesized mechanism for the associated increase in 
risk for T2D and ASCVD. Signaling pathways (e.g., NF-κB, inflammasome) 
and specific proinflammatory cytokines (e.g., TNF-α, IL-1β) have been both 
implicated in these pathologic processes and are potential targets for 
reversal and risk reduction. Salicylate and low-dose methotrexate (LDM) 
inhibit NF-κB as a downstream consequence of AMPK activation. IL-1β 
blockade mediated by IL-1Ra or specific antibodies inhibits IL-1β action 
and suppresses IL-1β production by dampening its self-induction; the 
same effect is potentially true for TNF-α blockade. Randomized, placebo 
controlled, double-masked clinical trials of salsalate (1–7, 128–132, 134, 
137), LDM (8, 144), IL1Ra (9–11, 178, 179, 181) anti–IL-1β (181, 184, 191, 192), 
and anti–TNF-α (12, 169) are being used to determine whether these 
antiinflammatory approaches affect disease risk in T2D and ASCVD. 
Reported randomized trials of 3 months duration or longer are referenced. 
CANTOS, Canakinumab Anti-inflammatory Thrombosis Outcomes Study; 
CIRT, Cardiovascular Inflammation Reduction Trial; TINSAL T2D, Targeting 
Inflammation Using Salsalate for Type 2 Diabetes.
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lowering, as the effects can be recapitulated in vitro with changes 
in ambient glucose. Direct reductions in inflammation appear to 
be unnecessary for glucose lowering. However, some antihyper-
glycemic drugs have intrinsic antiinflammatory activities associat-
ed with their primary mechanisms of action, including AMPK and 
PPARγ agonists (52–55). The converse is often not true, as many 
antiinflammatory drugs do not lower (e.g., COX inhibitors) and 
may even raise (e.g., corticosteroids) glucose levels.

Insulin. Multiple diabetes therapies reduce markers and 
potential mediators of inflammation. Insulin itself decreases 
NF-κB activity in peripheral blood mononuclear cells in a man-
ner that is both acute and reversible (56). Insulin administration 
during acute myocardial infarction will attenuate the rise in CRP, 
PAI-1, serum amyloid A, and mononuclear cell p47phox, the cyto-
solic subunit of the multiprotein complex known as NADPH oxi-
dase (57). Hypoglycemia may limit the ability to safely achieve any 
antiinflammatory effects of insulin; sustained changes have not 
been documented in comparison to other diabetes therapies (58).

TZDs. TZDs improve insulin sensitivity and reduce hyperglyce-
mia in T2D by binding and activating the nuclear receptor PPARγ. 
Activation of PPARγ induces multiple gene products involved in 
adipocyte differentiation, lipid and glucose uptake, and fatty acid 
storage (59). Increased fatty acid uptake into adipose tissue reduc-
es deposition in muscle and liver, where it is deleterious and con-
tributes to insulin resistance. While PPARγ expression is highest in 
adipocytes, PPARγ expression is also present and increases in cells 
exposed to adipose tissue lipids, including macrophages and other 
immune cells, hepatocytes, endothelial cells, and vascular smooth 
muscle cells (60, 61). The antiinflammatory actions of TZDs may 
be related to transrepression of NF-κB and reduced expression of 
NF-κB targets (55). Clinically, the ability of TZDs to lower circulat-
ing inflammatory proteins such as CRP, monocyte chemoattrac-
tant protein 1 (MCP-1, also referred to as CCL2), and MMP-9 is 
greater than that seen with equivalent glucose lowering induced 
with the sulfonylurea glimepiride (62). TZDs are effective thera-

matory hypothesis for atherosclerosis. However, while high-sen-
sitivity CRP was reduced 37%, LDL cholesterol was also reduced 
by 50% with rosuvastatin compared with placebo, such that rela-
tive contributions of cholesterol and CRP lowering cannot be dis-
tinguished. Improvements in ASCVD risk resulting from directly 
targeting CRP, such as through antibody neutralization or RNA 
knockdown, have not yet been reported (45, 46).

To the extent that statins are antiinflammatory and atheroscle-
rotic risk reduction by statins depends on their antiinflammatory 
properties, the effects of statins on glycemia are discordant. This 
was demonstrated in JUPITER, where recipients of rosuvastatin 
had a higher reported incidence of diabetes (44), a finding that has 
been born out in additional studies (47). This point is not meant to 
question the clinical utility or risk/benefit of statins. A meta-analy-
sis of 170,000 persons enrolled in 26 clinical trials showed reduc-
tions of 1 mmol/l (39 mg/dl) in LDL-C during four years of statin 
use were associated with a 9% reduction in the risk of death from 
any cause among patients with diabetes and a 13% reduction among 
those without diabetes (48). New-onset diabetes differs in clinical 
importance compared with a major cardiovascular event (49); in 
general, statins should be used in patients with T2D (50). Mende-
lian randomization studies support the idea that diabetes risk may 
be attributable to inhibition of 3-hydroxy-3-methylglutaryl-coen-
zyme A, as persons with genetic variants associated with reduced 
expression of this enzyme and lower LDL cholesterol levels are at 
increased risk for T2D (51). However, targeting inflammation with 
statins does not improve glycemia and therefore does not provide 
a unified antiinflammatory approach for diabetes and ASCVD. This 
underscores the potential differences in inflammatory pathways 
that may contribute to and be targeted in ASCVD versus T2D.

Antiinflammatory properties of diabetes drugs
Many antihyperglycemic drugs are associated with small reduc-
tions in inflammatory markers in both circulating cells and the 
circulation. This appears to be a general feature related to glucose 

Figure 2. AMPK-regulated metabolism and 
inflammation. AMPK activation via nutrient 
restriction or various drugs increases endogenous 
activators, leading to positive metabolic effects 
and inhibition of inflammation. AMPK activation 
promotes (green) nutrient uptake and energy 
storage while generally suppressing (red) cellular 
biosynthesis and growth. In cells mediating 
inflammatory responses, AMPK activation also 
suppresses NF-κB and synthesis of its targets 
(red). The antiinflammatory properties of salicy-
lates and methotrexate are mediated, at least in 
part, through this pathway.
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associated with known receptor-mediated effects, reductions in 
circulating markers of inflammation can occur with the GLP-1 
agonist exenatide even in the absence of substantial weight loss. 
Markers of inflammation that are reduced include mononuclear 
cell ROS, NF-κB activity, expression of TNFA, IL1B, JNK1, TLR2, 
TLR4, and SOC3 mRNAs, and circulating concentrations of MCP-
1, MMP-9, serum amyloid A, and IL-6 (93); these largely overlap 
with the effects of DPP-4 inhibitors, as discussed above (87, 88). 
Several changes reportedly occur within hours after a single drug 
dose (93). Similar antiinflammatory properties are reported for 
other GLP-1 receptor agonists, supporting the idea that these are 
class effects (82, 88). Interestingly, major adverse cardiovascular 
event rates are reduced with liraglutide or semaglutide compared 
to non-incretin-based diabetes therapies (94, 95), although incre-
tin-treated patients also had lower glycated hemoglobin (HbA1C), 
blood pressure, and body weight than those receiving placebo plus 
standard care. Improvements in ASCVD outcomes were not seen 
with the alternative GLP-1 receptor agonist lixisenatide, although 
severity of patient illness, duration of study and other factors 
could underlie the apparent differences (96). The contribution of 
inflammation reduction to diabetes or cardiovascular improve-
ments remains unknown.

Sodium-glucose cotransporter-2 inhibitors. The sodium-glu-
cose cotransporter-2 (SGLT2) inhibitors increase renal excretion 
of glucose, thereby accounting for their glucose-lowering proper-
ties. Non-glycemic benefits include decreases in weight, visceral 
obesity, blood pressure, arterial stiffness, uric acid concentrations, 
and albuminurea (97–99). Liver steatosis is reduced in obese 
rodents (100, 101). In humans, circulating biomarkers of inflam-
mation may be improved (102), but data are limited. Activation 
of AMPK has been reported with canagliflozin, but not with oth-
er SGLT2 inhibitors (103). Compared to placebo with standard of 
care, empagliflozin leads to a 14% reduction in the composite car-
diovascular outcome of cardiovascular death, nonfatal myocar-
dial infarction, or stroke, an effect that is potentially attributable 
to reductions in heart failure in people with T2D who are at high 
risk for cardiovascular events (104). Progression of renal disease 
is also slowed (105). Effects may be attributable to volume and 
hemodynamic changes or to improved fuel energetics (106, 107). 
What changes may occur in inflammatory processes in humans 
resulting from SGLT2 inhibition, and how these may relate to 
improved mortality, if at all, are unknown.

Pharmacologic approaches that directly target 
inflammation
Over recent years a large number of preclinical findings and tanta-
lizing human studies have suggested that inflammation potentially 
participates in the pathogenesis of T2D and ASCVD (reviewed in 
refs. 26, 108, 109). Initial enthusiasm around targeting inflamma-
tion for these metabolic conditions was limited by concerns over 
potential immunosuppression. Additional concerns stemmed 
from the common observation that glucocorticoids, which have 
strong antiinflammatory properties, promote insulin resistance 
and diabetes and thus are unlikely agents for disease treatment 
or prevention, a finding that was thought likely to occur with oth-
er direct antiinflammatory approaches. However, many immuno-
modulation therapies are used safely in autoimmune and rheu-

peutically for glucose lowering in T2D and for diabetes preven-
tion (63, 64) and partition triglycerides out of the liver in patients 
with steatosis (65). Associations between TZDs and ASCVD event 
rates remain controversial (66–68), which may be related to study 
design, population, or involvement in differential inflammatory 
pathways that influence diabetes and atherosclerosis.

Metformin. Metformin lowers glucose by decreasing hepatic 
glucose production and increasing peripheral glucose uptake (69). 
Its precise molecular mechanism of action remains incompletely 
understood, but it likely affects mitochondrial proteins to alter 
cellular energy stores and activate AMPK (70–72). In addition to 
its clear metabolic effects, AMPK activation is intrinsically anti-
inflammatory due to its inhibition of NF-κB (52–54). Metformin 
attenuates LPS-induced production of TNF-α and IL-6 in a con-
centration-dependent manner (73) and reduces TNF-α–induced 
activation of the NF-κB axis (74). NF-κB inhibition also reduces 
IL-1β production (75). Moreover, metformin concordantly reduc-
es circulating inflammatory proteins, including CRP, in patients 
with or at risk for T2D (29, 76, 77). The antiinflammatory actions 
of metformin appear to be independent of glycemia (58, 78, 79) 
and are most prominent in immune cells and vascular tissues (53, 
54, 74, 80, 81). The mechanistic link between metabolism and 
inflammation may well depend on the balanced activity of the 
transcription factor HIF-1α and AMPK regulating oxidative phos-
phorylation and glycolysis (Figure 2 and reviewed in ref. 52). While 
novel therapies to target HIFs are under development, there are 
no human clinical data to date that mechanistically support this 
target for treating or preventing T2D.

Dipeptidyl peptidase-4 inhibitors. Dipeptidyl peptidase-4 (DPP-
4) is a protease that degrades the incretin hormones glucagon-like 
peptide 1 (GLP-1) and gastric inhibitory polypeptide, among multi-
ple other peptides. DPP-4 inhibition thereby protects endogenous 
incretins and prolongs their antihyperglycemic effects. DPP-4 is 
also known as CD26, a transmembrane glycoprotein expressed on 
T lymphocytes, macrophages, and endothelial cells, that regulates 
the actions of cytokines and chemokines involved in chemotaxis 
and T cell activation (82–85). DPP-4 inhibitors suppress the actions 
of NLRP3 inflammasomes, TLR4, and IL-1β in human macro-
phages, in part through inhibition of PKC activity (86). Sitagliptin 
and other DPP-4 inhibitors reduce expression or activity of TNF-α, 
TLR4, TLR2, JNK1, IκB kinase subunit β (IKKβ), and the chemo-
kine receptor CCR2 (87, 88). These antiinflammatory effects may 
be clinically relevant, as observational studies suggest that DPP-4 
inhibitor use in patients with T2D is associated with reduced inci-
dence of rheumatic disease (89). While these drugs can be safely 
administered in patients with T2D and established (or at high risk 
for) cardiovascular disease, clinical trials of three distinct DPP-4 
inhibitors showed no improvements in cardiovascular outcomes 
in patients with T2D compared with diabetes regimens that lack 
incretin modulators (90–92). To the extent that antiinflammatory 
mechanisms are relevant in metabolic improvement, again there 
is a lack of established concordant effects of DPP-4 inhibition on 
glucose lowering and cardiovascular risk reduction.

GLP-1 receptor agonists. The GLP-1 receptor agonist pro-
teins reduce body weight and abdominal adiposity in addition 
to improving glucose-regulated insulin secretion and glucagon 
suppression to improve dysglycemia (82). While they are not 
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investigations, whereas CRP was unchanged. Salsalate was gener-
ally well tolerated, but small increases in LDL cholesterol levels 
and reversible increases in urinary albumin levels were observed 
in a subset of subjects.

Although salsalate effectively lowers blood glucose, its effects 
on atherosclerosis are less clear. Salsalate reduces NF-κB activ-
ity in endothelial cells and improves endothelial function after 
four days of use in overweight individuals (134). However, the 
high dose of salsalate (4.5 g/d) used in this study would not be 
tolerated for extended administration (127, 134). In contrast, no 
effects on flow-mediated dilation were seen in persons with T2D 
who received salsalate at 3.5 g/d over six months (135). It remains 
unknown whether these differences are due to dosage or study pop-
ulation, or whether the effects of short-term are not sustained, as 
mixed effects have been reported in additional investigations (131, 
136, 137). To address whether salsalate can reduce progression of 
non-calcified coronary plaque, a timely question given the inflam-
matory hypothesis of atherosclerosis, 190 overweight or obese per-
sons with established coronary heart disease taking statin therapy 
were randomized to salsalate (3.5 g/d) or placebo and followed by 
multidetector computed tomographic angiography over 30 months 
(138). There was no difference in progression of non-calcified 
plaque volume between groups, but interpretations of these study 
results must consider the absence of non-calcified plaque progres-
sion in the placebo group, which itself is an important finding for 
benefits of current multifactorial cardiovascular care.

In terms of molecular mechanism, salicylate inhibits IKKβ and 
NF-κB but does not bind IKKβ or other components of the NF-κB 
axis directly (121–125). Salicylate is now known to activate AMPK 
by binding its β1 subunit (139), which likely accounts for the meta-
bolic improvements (127, 128, 132, 133). Reduced insulin clearance 
may also contribute (127, 140, 141). AMPK activation is clearly 
accompanied by the inhibition of NF-κB, although the precise 
molecular details linking AMPK to IKK and NF-κB have not been 
established (52–54, 142, 143). Since salicylate activates AMPK, it is 
not necessary to invoke NF-κB inhibition to account for the meta-
bolic improvements.

Low-dose methotrexate. Methotrexate is a disease-modifying 
antirheumatic drug (DMARD) widely used at low doses to treat 
rheumatic and psoriatic arthritis, among other conditions. Metho-
trexate is also in clinical trials for effects in ASCVD and T2D (144). 
Preclinical support for this approach stems from both basic cell 
biological and in vivo findings. Methotrexate inhibits the enzyme 
that converts cellular aminoimidazole carboxamidoribonucleo-
tide (AICAR) into 5-aminoimidazole-4-carboxamide-1-β-D-ribo-
furanosyl-5′-monophosphate (FAICAR), leading to an accumu-
lation of AICAR. This has been interpreted to lead either to local 
adenosine release and activated adenosine signaling (145) or to 
cell-autonomous AMPK activation (146). Potential cardiometa-
bolic improvements induced by adenosine receptor activation may 
be mediated through attenuated leukocyte recruitment and adhe-
sion to the vascular endothelium by inhibiting selectin- and integ-
rin-mediated adhesive events, through the reduced production of 
oxygen radicals and other potentially deleterious mediators from 
stimulated neutrophils, and through broad effects on macrophage 
activation (reviewed in ref. 147). Adenosine has also been reported 
to promote regeneration of pancreatic β cells in preclinical models 

matic diseases. Other than glucocorticoids, immunomodulatory 
therapies are not known to dramatically alter glucose control. In 
fact, multiple proof-of-concept studies support further evaluation 
of antiinflammatory approaches to treat cardiometabolic diseases 
(reviewed in refs. 110–115). Inflammatory signaling is complex and 
multifaceted. While there are numerous inflammatory inputs and 
pathways, we do not yet know which one, or which combination of 
inputs and pathways, leads to distinct cardiometabolic phenotypes. 
As a result, we also do not know which of the available antiinflam-
matory strategies, alone or in combination, will have the best ther-
apeutic potential. Activity of select inflammatory pathways among 
different patients may affect therapeutic responsiveness to specif-
ic interventions (116). Additionally, the more recently introduced 
biological agents are narrowly focused on very specific targets, 
whereas older antiinflammatory agents such as salicylate or meth-
otrexate may have broader effects (see below).

Small-molecule antiinflammatory drugs
Salicylates. The vast majority of NSAIDs including ibuprofen and 
naproxen target the cyclooxygenase enzymes COX1 and COX2. 
Aspirin and other acetylated salicylates inhibit COX1 and COX2 
by covalent transacetylation of active site serine residues of the 
COX enzymes, which irreversibly blocks the rate-limiting step in 
prostaglandin synthesis (117). Low-dose aspirin is widely used for 
anti-thrombosis in primary and secondary CV event prevention. 
The effects are mediated through COX inhibition in platelets, 
which is sustained well past the short half-life of aspirin due to the 
irreversibility of COX acetylation coupled with the longer half-life 
of platelets and their inability to resynthesize COXs. Low-dose 
aspirin does not provide sustained COX inhibition in nucleated 
cells. In contrast, non-acetylated salicylates including salsalate do 
not inhibit the COX enzymes (118, 119) but have nonetheless been 
used since ancient times to treat pain and inflammation (120). 
Antiinflammatory and metabolic effects of salicylates are distinct 
from those of other NSAIDs.

High-dose salicylates are used to treat joint pain, presum-
ably by inhibiting IKKβ and NF-κB (121–125). Use of salicylate 
to lower glucose in the treatment of diabetes was first reported 
in 1876 (126). More recent proof-of-concept studies showed sal-
salate, a prodrug dimer of salicylate, lowered fasting glucose and 
triglycerides, increased adiponectin, and improved glucose utili-
zation during euglycemic-hyperinsulinemic clamps in T2D and 
obese nondiabetic persons (127). Initial observations have been 
confirmed in multiple cohorts with prediabetes or established dis-
ease (128–133). Glycemic efficacy was demonstrated in two mul-
ticenter, randomized, placebo-controlled trials in subjects with 
treated T2D who had a mean HbA1C of 7.7% at trial onset. The 
first study demonstrated a 0.5% decrease in HbA1C relative to 
placebo over 14 weeks, along with improvements in other mark-
ers of glycemic control (133). The next study expanded on these 
initial observations by using a 48-week follow-up period and a 
larger patient population (283 participants) (132). Glucose low-
ering was durable, with a placebo-corrected decrease in HbA1C 
of 0.4% despite reductions in use of concomitant medications in 
salsalate-assigned patients; triglycerides were also lowered. Sal-
salate lowered white blood cell counts and increased adiponectin, 
demonstrating antiinflammatory properties at doses used in these 
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(148, 149). Alternatively, cellular accumulation of AICAR directly 
activates AMPK. Consistent with this mechanism, methotrexate 
promotes glucose uptake and lipid oxidation in skeletal muscle, 
which is AMPK dependent, and reduces hyperglycemia in rodent 
models of T2D (146, 150, 151). Methotrexate has also been shown 
to inhibit atherogenesis in cholesterol-fed rabbits (152). As noted 
above, AMPK activation is inherently antiinflammatory and is 
accompanied by NF-κB inhibition.

Multiple observational studies of patients with rheumatic dis-
eases suggest lower hazard ratios, ranging from 10% to 90%, for 
cardiovascular events or mortality (153–157). Although intriguing, 
such non-randomized investigations must be interpreted with 
caution. Related data for glucose lowering are not yet available. 
Cohort studies are potentially confounded by effects of the com-
parator drugs used to treat the underlying rheumatic condition for 
which methotrexate is prescribed, including TNF-α inhibitors, or 
hydroxycholoroquine or corticosteroids, which themselves may 
lower or raise glucose levels, respectively. One small cohort study 
suggests improved glycemia with methotrexate (158). Together 
these data provided the rationale for the Cardiovascular Inflam-
mation Reduction Trial (CIRT), which evaluates the safety and 
effectiveness of targeting inflammation with low-dose methotrex-
ate to reduce major adverse cardiovascular events in metabolic 
syndrome and established coronary heart disease patients and 
will also evaluate potential for glycemic improvement (144).

Biologics as antiinflammatory drugs
TNF-α inhibitors. Despite preclinical studies suggesting the partic-
ipation of TNF-α in the pathophysiology of insulin resistance (28), 
clinical translation has not been confirmed (159–162). Consistent 
with a potential role in the pathogenesis of T2D, TNF-α antagonists 
used to treat conditions such as rheumatoid arthritis (163–167), 
psoriasis (168), and Crohn’s disease (169) have been associated 
with improved glycemia and decreased incident diabetes. How-
ever, since these studies were not randomized and most were not 
prospective, they must also be interpreted cautiously. Trials with 
TNF-α antagonists in persons with cardiometabolic risk have thus 
far involved small numbers of patients exposed for short dura-
tions (159–162). While antiinflammatory effects were observed, 
improved insulin sensitivity or glycemia were not detected, pos-
sibly due to insufficient trial duration or power to detect chang-
es. Support for continued investigation in this area is provided by 
results from a six-month trial of TNF-α inhibition, which reported 
decreased fasting glucose and increased adiponectin concentra-
tions in obese persons without diabetes (170).

IL-1β antagonists. Although there are 11 members of the IL-1 
superfamily, for cardiometabolic indications the field has focused 
on IL-1β signaling through the type 1 IL-1 receptor (IL-1R1) and 
inhibition of IL-1 signaling by the endogenous antagonist, IL-1Ra, 
which competitively binds but does not activate IL-1R1. IL-1R1 acts 
through MyD88 to activate NF-κB (171) and other downstream 
mediators and processes, including iNOS, endothelin-1, endothe-
lial smooth muscle proliferation, activation of macrophages and 
adhesion molecules, and production of chemokines and cyto-
kines. Many of these are hypothesized to contribute to diabetes 
and atherothrombosis (reviewed in ref. 172). Similar to TNF-α, a 
feed-forward mechanism drives increased IL-1β production in 

response to NF-κB activation. However, the production of active 
IL-1β involves additional steps, as conversion of IL-1β precursor 
protein to IL-1β by caspase-1 requires an activated NRLP3 inflam-
masome (173–175). In chronic inflammatory conditions increased 
IL-1β secreted by the activated cells leads to an imbalance with the 
inhibitor IL-1Ra.

Preclinical (176, 177) and human studies (178–185) support 
a potential role for IL-1β in the pathogenesis of T2D. Improved 
glycemia and β cell secretory function and reduced markers of 
systemic inflammation were demonstrated in a proof-of-concept 
trial of 70 patients with T2D randomized to receive daily IL-1Ra 
(anakinra) or placebo for 13 weeks (180). After anakinra discontin-
uation participants continued to be followed in a blinded manner 
for 39 additional weeks, at which time insulin secretion remained 
improved and inflammation decreased, suggesting that these 
effects were durable (179). This may be attributable to interruption 
of the self-propagating cycle of IL-1 auto-induction (186). Anakin-
ra has also been suggested to improve β cell secretory function in 
prediabetes (187), which may prevent or delay the onset of T2D. 
In addition to anakinra, humanized antibodies against IL-1β are 
being studied for potential benefits in T2D. In one study, a single 
dose of gevokizumab reduced HbA1C by 0.9% after three months 
(182). Likewise, 12 weekly injections of the anti–IL-1β antibody 
LY2189102 improved HbA1C by 0.4% and also improved fasting 
and postprandial glycemia and inflammatory biomarkers (185). 
Similar to the study with anakinra, effects of IL-1 antagonism 
were observed after the end of treatment, with a 0.6% decrease in 
HbA1C at week 24.

There is also a rationale for inhibiting IL-1β in ASCVD. In pre-
clinical studies, IL-1β exposure promotes atherosclerotic plaque 
formation (188), whereas loss of IL-1 function reduces atheroscle-
rotic lesions (189). Human atheroma contain IL-1β mRNA and 
protein (190), caspase-1, which converts pro–IL-1β to the active 
form and is overexpressed in human plaque (191), and choles-
terol crystals, which activate the NLRP3 inflammasome (41, 42), 
thereby activating caspase-1 to trigger IL-1β production and the 
proinflammatory response. In one study, the IL-1β monocolonal 
antibody canakinumab reduced the inflammatory proteins CRP, 
IL-6, and fibrinogen in persons with T2D and high cardiovascular 
risk (192). However, HbA1C, glucose, and insulin were unchanged 
at four months. The much larger Canakinumab Anti-Inflamma-
tory Thrombosis Outcome Study (CANTOS) will provide further 
insight into the effects of canakinumab on both cardiovascular 
event rates and glycemia (193).

Other antiinflammatory approaches in 
cardiometabolic disease
Other antiinflammatory approaches are under investigation. 
Increases in the numbers of macrophages and other immune 
cells in adipose tissue that accompany the development of obesi-
ty in rodents and humans may account for the local inflammation 
and systemic insulin resistance associated with the induction of 
obesity (111, 194). Reduced leukocyte recruitment may therefore 
diminish adipose tissue inflammation to potentially improve insu-
lin resistance. Chemoattractants including leukotrienes (lipids) 
and chemokines (polypeptides) thus provide additional potential 
antiinflammatory targets in cardiometabolic conditions.
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Leukotrienes are highly potent chemoattractants produced 
at sites of injury and inflammation for the recruitment of neutro-
phils and other myeloid cells (195, 196). Leukotriene biosynthe-
sis occurs through the conversion of arachidonic acid, first by the 
actions of 5-lipoxygenase (5-LO) and 5-LO–activating protein 
(FLAP) to form leukotriene A4 (LTA4), at which point the syn-
thetic pathway bifurcates. Depending on the setting, LTA4 is con-
verted either by LTA4 hydrolase (LTA4H) into the highly active 
leukotriene LTB4, or by LTC4 synthase into the cysteinyl leukot-
rienes. LTB4 binds and signals through the B leukotriene receptor 
BLT1, whereas cysteinyl leukotrienes LTC4 and LTD4 bind cyste-
inyl leukotriene receptor subtypes 1 and 2. Studies to determine 
whether antagonists of the enzymes for leukotriene production 
(5-LO, FLAP and LTA4H) (197, 198) or receptor binding (BLT1) 
have cardiometabolic outcome benefits are ongoing and results 
have not yet been reported.

Similarly, disruption of cytokine/receptor interactions might 
be used to decrease obesity-induced inflammation and insulin 
resistance, although the abundance of chemokines and chemok-
ine receptors makes this a potentially difficult approach. The most 
studied cytokine/receptor pair in terms of preclinical cardiometa-
bolic improvements are CCL2 and its receptor, CCR2, which are 
involved in the recruitment of monocytes to sites of inflammation 
(199–201). However, the results of clinical studies with CCR2 
antagonists have not been reported. Although COX2 inhibition 
may reduce adipose tissue inflammation and improve insulin 
resistance in fructose-fed rat models of disease (202, 203), the 
use of COX inhibitors has been associated with an increased car-
diovascular risk (204–206), which may limit this approach. Nov-
el approaches to evaluate antiinflammatory diets (207, 208) and 
modulate an individual’s microbiome (209, 210) are also under 
study. Some of these or other antiinflammatory approaches may 
provide future therapeutic options.

Summary
In summary, multiple diseases may be caused or exacerbated by 
pathologic activation of the immune system. Some of these inflam-

matory pathways impact glucose metabolism and cardiovascular 
health. Likewise, many antidiabetic agents have antiinflammato-
ry properties, some of which are direct effects while others may 
be secondary to improved metabolic state. Novel therapeutic 
approaches targeting inflammation to treat or prevent diabetes 
and ASCVD may be developed. Indeed, a large body of tantaliz-
ing data supports ongoing investigations of multiple approach-
es to target inflammation to improve cardiometabolic health. 
However, strong clinical data supporting approaches to simulta-
neously target diabetes and ASCVD do not yet exist, which also 
raises the question of the validity of the yet unproven hypothesis 
that chronic subacute inflammation is the commonality between 
these frequently co-occurring conditions. Clinical trials employ-
ing multiple approaches to test the inflammatory hypothesis are 
ongoing; however, as specific molecular inflammatory pathways 
involved in diabetes and atherosclerosis may differ, the potential 
therapeutic approaches to these conditions may likewise be differ-
ent even within the broader context of antiinflammatory therapy. 
A nuanced understanding of the underlying biological processes 
may contribute to the development of safe and effective therapies, 
although a single approach may not be sufficient for optimal man-
agement of both metabolic and atherothrombotic disease states.
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