Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy
Bernard Thienpont, … , Wolf Reik, Hywel Llewelyn Roderick
Bernard Thienpont, … , Wolf Reik, Hywel Llewelyn Roderick
Published November 28, 2016
Citation Information: J Clin Invest. 2017;127(1):335-348. https://doi.org/10.1172/JCI88353.
View: Text | PDF
Research Article Cardiology Cell biology Article has an altmetric score of 71

The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy

  • Text
  • PDF
Abstract

Cardiac hypertrophic growth in response to pathological cues is associated with reexpression of fetal genes and decreased cardiac function and is often a precursor to heart failure. In contrast, physiologically induced hypertrophy is adaptive, resulting in improved cardiac function. The processes that selectively induce these hypertrophic states are poorly understood. Here, we have profiled 2 repressive epigenetic marks, H3K9me2 and H3K27me3, which are involved in stable cellular differentiation, specifically in cardiomyocytes from physiologically and pathologically hypertrophied rat hearts, and correlated these marks with their associated transcriptomes. This analysis revealed the pervasive loss of euchromatic H3K9me2 as a conserved feature of pathological hypertrophy that was associated with reexpression of fetal genes. In hypertrophy, H3K9me2 was reduced following a miR-217–mediated decrease in expression of the H3K9 dimethyltransferases EHMT1 and EHMT2 (EHMT1/2). miR-217–mediated, genetic, or pharmacological inactivation of EHMT1/2 was sufficient to promote pathological hypertrophy and fetal gene reexpression, while suppression of this pathway protected against pathological hypertrophy both in vitro and in mice. Thus, we have established a conserved mechanism involving a departure of the cardiomyocyte epigenome from its adult cellular identity to a reprogrammed state that is accompanied by reexpression of fetal genes and pathological hypertrophy. These results suggest that targeting miR-217 and EHMT1/2 to prevent H3K9 methylation loss is a viable therapeutic approach for the treatment of heart disease.

Authors

Bernard Thienpont, Jan Magnus Aronsen, Emma Louise Robinson, Hanneke Okkenhaug, Elena Loche, Arianna Ferrini, Patrick Brien, Kanar Alkass, Antonio Tomasso, Asmita Agrawal, Olaf Bergmann, Ivar Sjaastad, Wolf Reik, Hywel Llewelyn Roderick

×

Figure 2

H3K9me2 is acquired during cardiomyocyte maturation and lost at fetal genes upon AB.

Options: View larger image (or click on image) Download as PowerPoint
H3K9me2 is acquired during cardiomyocyte maturation and lost at fetal ge...
(A) Selected ontology terms enriched among genes in regions altered in H3K9me2 upon AB. (B) H3K9me2 enrichment at loci on chromosomes (Chr) 5 and 15 in PCM1+ nuclei. Enrichment is displayed per 10-kb bin as log2(ratio of AB vs. sham). Green denotes significantly altered LOCKs. (C) Changes in H3K9me2 during CM maturation at LOCKs showed loss or no loss (green or gray) upon AB. (D) Quantification and representative images of immunofluorescence staining of H3K9me2 (green) in CMs (PCM1, red) in neonatal (3-day-old) and adult (3-month-old) mice (n = 4 each). Hypertrophy was induced for 6 weeks. Error bars indicate the SEM. n = 4 (B and D) and 2 (C) replicates. **P < 0.01, by nested ANOVA (D).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 8 news outlets
Posted by 8 X users
Referenced in 1 patents
Referenced in 1 Wikipedia pages
108 readers on Mendeley
2 readers on CiteULike
See more details