Supplementary Information

The NMD Pathway is Disrupted in Inflammatory Myofibroblastic

Tumors

JingWei Lu^{1,2*}, Terra-Dawn Plank^{3*}, Fang Su^{4*}, XiuJuan Shi¹, Chen Liu⁵, Yuan Ji⁶, Andrew Huynh³, Chao Shi⁴, Bo Zhu⁴, ShuaiJun li¹, Guang Yang¹, YanMing Wu¹, Miles F Wilkinson^{3,7,#} & YanJun Lu^{1,#}

*Equal contributors

¹Clinical and Translational Cancer Research Center, The Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.

² School of biotechnology of east china university of science and technology,

Shanghai, China.

³Department of Reproductive Medicine, School of Medicine, University of

California San Diego, La Jolla, California, USA.

⁴Department of Medical Oncology& Cardiothoracic Surgery& Pathology, The

First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province,

China.

⁵Institute of Aging Research, School of

Medicine, Hangzhou Normal University, Zhejiang, China.

⁶Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.

⁷Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA.

[#]Correspondence should be addressed to Y.L. (yanjunlu@hotmail.com) or M.F.W. (mfwilkinson@ucsd.edu).

Supplementary Figure 1. Somatic UPF1 mutations in pulmonary inflammatory myofibroblastic tumors (IMTs). (a) Chromatograms of UPF1 DNA sequences from patient IMTs. A total of 41 single-base substitutions in genomic UPF1 DNA were found in the IMTs of lung; each patient had between one to six point mutations. (b) Top: schematic of UPF1 protein domains. Bottom: location of the point mutations within the UPF1 gene. ESEs and ISEs denote predicted exonic and intronic splicing enhancers, respectively.

Vector: pTBNde(mini)

Supplementary Figure 2. *UPF1* mutations in patient IMTs trigger alternative *UPF1* splicing. (a) The indicated region of human *UPF1* (nt 22,779-23,570, RefSeq accession number NC_000019.9) was cloned into the *Ndel* site of the pTBNde minigene construct and mutations (denoted by the red arrows) were introduced to match those in patient 1, 2, 4-11 and 14. (b) RT-PCR analysis of HEK293 cells transfected with the constructs shown in panel a (primer locations are indicated by the arrows). Direct sequencing of the large (518 bp) and small (239 bp) bands indicated that they correspond to normally spliced and exon-skipped transcripts, respectively. The numbers below the gel are the average values (based on densitometry) from five independent transfections. The lanes were run on the same gel but were noncontiguous.

Α

Supplementary Figure 3. UPF1 protein expression in patient IMTs. Immunohistochemical (IHC) analysis of IMTs from patients 1, 2, 4-11, and 13-14, and normal lung tissue (NT) from patients 1, 2, 4 and 5. Red arrows indicate selected areas of positive UPF1 antibody staining. The staining was mainly observed in the inflammatory cells, while lung epithelial cells exhibited weak or negative staining.

Supplementary Figure 4. The mutant UPF1 protein encoded by patient 13 has dominant-negative activity. Upper: RT-qPCR analysis of NMD activity, determined by comparing the level of wild-type (WT) β -globin mRNA with β -globin mRNA harboring a premature termination codon at codon position 39 (N39). N39 β -globin mRNA is degraded by NMD, while WT β -globin mRNA is not. Patient 13 has a missense mutation in UPF1, which we introduced by site-directed mutagenesis into a UPF1 expression vector. β -globin constructs expressing these mRNAs were transiently transfected into HEK293 cells, along with a WT UPF1 expression vector and/or a UPF1 vector expressing the K559M mutant (patient 13). UPF1 siRNA (si-UPF1) was co-transfected to deplete endogenous UPF1. Error bars indicate standard deviations from three independent experiments; the solid horizontal bar represents the median value for each group. 18S mRNA was used as the endogenous control. Statistical analysis was performed using the Student's t test, *P < 0.05. Lower: Western blot analysis of UPF1 expression in HEK293 cells depleted of endogenous UPF1 by siRNA and transfected with WT or patient 13 (P13) UPF1 expression vectors. GAPDH is the endogenous control.

Supplementary Figure 5. NIK protein expression in patient IMTs. IHC analysis of IMTs from patients 2, 4-11, 13-14 and corresponding normal tissue (NT) of patient 2. Red arrows indicate selected areas of positive cytoplasmic NIK antibody staining. The staining was mainly observed in the lung epithelial cells while the inflammatory cells exhibited weak or negative staining for NIK.

Supplementary tables

Patient	Age		-	No. of	Nucleotide	Predict Amino	Mutation	
No.	(yr)	Sex	Location	Mutations	Change	Acid Change	Туре	Genotype
					c.1395G>A		synonymous	homozygous
4	1 55 F	_			c.1405C>T	p.P469S	missense	homozygous
1		Г	right upper	4	c.1416C>T		synonymous	homozygous
					IVS10+4C>A		intronic	homozygous
					IVS10+4C>A		intronic	heterozygous
2	52	F	left lower	3	IVS10+32C>T		intronic	homozygous
					IVS10+37G>A		intronic	heterozygous
3	45	М	left lower	0				
4	47	М	left lower	1	IVS10+4C>A		intronic	heterozygous
					IVS10+4C>A		intronic	heterozygous
					IVS10+18C>T		intronic	heterozygous
5	45	М	left upper	5	IVS10+32C>T		intronic	heterozygous
					IVS10+37G>A		intronic	heterozygous
					IVS10-38C>T		intronic	nic heterozygous nous heterozygous
		М	right lower		c.1383G>A		synonymous	heterozygous
					c.1421C>A	p.S474Y	missense	heterozygous
6	41			6	IVS10+4C>A		intronic	heterozygous
0	41			0	IVS10+32C>T		intronic	heterozygous
					IVS10+37G>A		intronic	heterozygous
					IVS10-38C>T		intronic	heterozygous
					c.1421C>A	p.S474Y	missense	heterozygous
					IVS10+4C>A		intronic	heterozygous
7	76	м	right upper	6	IVS10+18C>T		intronic	heterozygous
I	70	76 IVI		0	IVS10+32C>T		intronic	heterozygous
					IVS10+37G>A		intronic	heterozygous
					IVS10-38C>T		intronic	heterozygous
8	73	Μ	left upper	1	IVS10+4C>A		intronic	heterozygous
					IVS10+4C>A		intronic	heterozygous
٩	66	м	right unner	4	IVS10+32C>T		intronic	heterozygous
Ū	00		ngin appoi		IVS10+37G>A		intronic	heterozygous
					IVS10-25C>T		intronic	heterozygous
					IVS10+4C>A		intronic	heterozygous
10	66	М	left lower	4	IVS10+32C>T		intronic	heterozygous
10	00		1011101001		IVS10+37G>A		intronic	heterozygous
					IVS10-25C>T		intronic	heterozygous

Supplementary Table 1. Somatically Acquired *UPF1* Mutations in Patients with Pulmonary Inflammatory Myofibroblastic Tumors

11	60	М	right lower	1	IVS10+4C>A		intronic	heterozygous					
12	68	М	left	0									
13	73	М	right lower	1	c.1796A>T	p.K599M	missense	heterozygous					
					IVS10+4C>A		intronic	heterozygous					
14	61	М	left upper	3	IVS10+32C>T		intronic	homozygous					
					IVS10+37G>A		intronic	homozygous					
15	50	F	_	. –	50 F	-0 F	_	right upper	2	IVS10+4C>A		intronic	heterozygous
15			ngni upper	2	IVS10+32C>T		intronic	heterozygous					

		UPF1 IF	IC signal	NIK IHC signal			
		inflammatory	lung epithelial	inflammatory	lung epithelial		
Patient No.	UPF1 status	cells	cells	cells	cells		
1	splicing	<u> </u>	_	_	+		
1	mutation	Ι			I		
2	splicing	+	_	_	+		
2	mutation	Ι			I		
3	WT	+	+	—	—		
4	splicing	+	_	_	+		
-	mutation	Ι			I		
5	splicing	+	_		+		
Ū	mutation	Ι			I		
6	splicing	+	_	_	+		
0	mutation	Ι			,		
7	splicing	+	_	_	+		
	mutation	Ι			·		
8	splicing	+	_	_	+		
U	mutation	Ι					
9	splicing	+	_	_	+		
C C	mutation	I			I		
10	splicing	+	_	_	+		
	mutation	I			I		
11	splicing	+	_	_	+		
	mutation	I			·		
12	WT	+	+		_		
13	missense	+	+	_	+		
	mutation	I	I		Ι_		
14	splicing	+	_	_	+		
	mutation	ï			·		
15	splicing	+	_	_	+		
. •	mutation	I			I I		

Supplementary Table 2. UPF1 and NIK Protein Expression in IMTs and Inflammatory Cells

IHC: immunological histological chemistry

+, antibody reactivity in >30% of cells

-, antibody reactivity in <10% of cells

		Putative NMD-inducing	Relative	
Gene	Function	feature	increase	Reference
Asparagine synthetase (ASNS)	Asparagine biosynthesis	uORF	4.6	9
Cystathionine-g-lyase (CTH)	Cysteine biosynthesis	Unknown	3.5	9
Pyrroline-5-carboxylate reductase 1 (PYCR1)	Proline biosynthesis	Unknown	7.1	9
Phosphoglycerate dehydrogenase (PHGDH)	Serine biosynthesis	uORF	5.9	9
Cysteinyl-tRNA synthetase (CARS)	tRNA charging	Unknown	3.8	9,10
Seryl-tRNA synthetase (SARS)	tRNA charging	Unknown	4.5	9,10
Leucyl-tRNA synthetase,mitochondrial (LARS2)	tRNA charging	uORFs	6.4	9
Nephropathic cystinosis (CTNS)	Amino acid transport	uORF	5.3	9,10
Glutamate/neutral amino acid transporter (SLC1A4)	Amino acid transport	Unknown	6.5	9
Activating transcription factor 3 (ATF3)	Transcription factor	Alt. exon with PTC	5.1	9
Activating transcription factor 4 (ATF4)	Transcription factor	uORFs	6.1	9,10

Supplementary Table 3. Evidence that NMD is Disrupted in IMTs

RT-qPCR analysis of the expression ratio of the indicated NMD substrates in patient 15 IMT vs. NT. These endogenous NMD substrates were previously defined on the basis of being stabilized upon depletion of the NMD factor UPF1 in HeLa cells (*ASNS, CARS, SARS, ATF3, CTH, PYCR1, PHGDH, LARS2, CTNS, SLC1A4,* and *ATF4*) (9) or upregulated upon depletion of UPF1 and CHX treatment in mouse ES cells (*Ctns, Atf4, Sars,* and *Cars*) (10). The values shown reflect three replicates of RT-qPCR, using 18S rRNA as a normalization control.

Target	Sequ	uence	Sequence			
exon1	f	GCAGTTCCTGCTCTAGGCTG	F	GCAGTTCCTGCTCTAGGCTG		
	r	GATTGCAGGACCTGGGGCAG	R	TAAGCTCAGGCCGAGCCAGAG		
exon2	f	GGCATGGACATGGCTCTGTG	F	GGTTAGACCAGCTGTGTGGG		
	r	TCAGGGTGTCGGAGGTTGCT	R	CACCTCCTGACCGGTAACAG		
exon3	f	CAGCAGGACTCTCCTTGGAG	F	TGCTCCTTATCCCCTCGGAG		
	r	AGATCAGCGGGTGTGCCAAG	R	ACCCAGGTTTGTTAGCGTG		
exon4	f	GGATGAGGTGTGACTGCCTC	F	ATGGACCGTGAACGGTACCG		
	r	AACGCTCTCATGCCTCACCC	R	TGGAGGACAACTCCCTGGAG		
exon5	f	CAGAGCTCAAGTGCACAGGG	F	ATGCAGGGCATGCCCCTTTG		
	r	TCTCACTGGGTCAAGCCGTC	R	TCCCCGCAACCAGAAACCAC		
exon6	f	CCTGTGTGGCATGGAGTTCC	F	AGGGTTCTCCTTGCAGGTGG		
	r	ACATCAGCTCCCACAGCCTG	R	CTCTGGAAGCCTGAGGAGAG		
exon7-8	f	ACGGCAGAGGCTTGCTGTAG	F	CTGTGCTGGAGGCTAACC		
	r	AAGAGCAGTGGAGGGCGATG	R	AGCATGAGATGCTGGCCCAG		
exon9	f	CGGCTCATGGTGAGGTAGAG	F	AGCGTTTGGTGCAGAGCCAG		
	r	GAACCCCACTCCACAGTGAC	R	AGATGCCACAGGTGGCAACC		
exon10-11	f	GTCACTGTGGAGTGGGGTTC	F	ACTCAGGATGTCGGAGAGGC		
	r	AGAGAGCGGTAGGCACCATG	R	CACGTGCTCTCTTCGGTGTG		
exon12-13	f	AGCCCAGGATGTTGAGGCTG	F	TCACACCACTGCACTCCAGC		
	r	TTCCAGGCAGCGAGATGTCC	R	ACAACTGAGCGCAGAGAGGC		
exon14-15	f	TCACCACAGCCTGGACCATG	F	TGTCTGGGAGGGACAGCTTG		
	r	TGCCCTGACCTCAAGCAGTG	R	GAAGCTGATGGGCCAGTTCC		
exon16-17	f	AGGACCTGCAGCACTGTAGC	F	TTGCCCTGTGTCTGAACTCA		
	r	TCCTGGGCCATTCTGAGCTC	R	AGGAGACCAAGTGTGCCCGAG		
exon18	f	TCTAGCCTGGGTGACAGAGC	F	GCCTGCTGGCTGATAGTGAC		
	r	CTGCTCAGAGTCCTCTGACC	R	GGAAGTGAGGACCGATGAGC		
exon19-20	f	GTGTGCAGGGTCAGTGGCTTG	F	TCTTGGACCGTCCTGTGAGA		
	r	AAGCTGCAGCCATGGGAACG	R	ATCCCGGTGTGAGGACAAGG		
exon21-23	f	ATCTTCAGCCTGGGCAGAGC	F	CAGGACAGATGTGCAGCTCC		
	r	ATACCACCCCTCCAGTGCAG	R	CCCATCCTTCTCCTTGAGGC		
exon24	f	GTACCTGTGGGGCTCAGGTC	F	TGCCCTTCTCCCTCCTGACAG		
	r	GGGTTTGTCAAGGCTGCTGC	R	TACCCGGTGCATGCCTCTAC		

Supplementary Table 4. UPF1 DNA Sequencing Primers

Target	Sec	Sequence				
UPF1 cDNA E7-12	f	TCACTGTCAG GTGGGACCTG				
	r	GATCTGGTTGTGCAGGGCCA				
	F	CGCCTACTTC ACTTTGCCCA				
	R	GTCCACGGCGATGTTGCTC				
Minigene expression	F	CAACTTCAAGCTCCTAAGCCACTGC				
	R	TAGGATCCGGTCACCAGGAAGTTGGTTAAATCA				
Germline Cɛ transcripts	F	CGTCTCGGGTGCGTGGGC				
	R	CAGGTGATCGTGGGCGACT				

Supplementary Table 5. RT-PCR Primers

Target	Sequence					
β-globin-NS39	F	TTTTCTCGAGACACCATGGTGCACCTGACTCCTG				
	R	CTTAGGGTTGCCCATAACAG				
WT β-globin	F	GCAACCCTAAGGTGAAGGCT				
	R	GGACAGCAAGAAAGCGAGC				
UPF1	F	GACG CAGGGCTACA TCTCCA				
	R	CGTTGCTTAGCTCTTCCGCC				
NIK	F	TTCATCGCTGGGTCCAAACA				
	R	CAACACACGGGCCATTTT				
	R	GCACTTCTGTTCCTCGCAGA				
IL-8	F	CACTGCGCCAACACAGAAAT				
	R	GCTTGAAGTTTCACTGGCATC				
CCL20	F	CTGCTACTCCACCTCTGCG				
	R	TGCGCACACAGACAACTTTT				
CXCL1	F	CTTGCCTCAATCCTGCATCCC				
	R	CTCTGCAGCTGTGTCTCTCTT				
СТН	F	TGCTTCAGGTTTAGCAGCCA				
	R	TCAGATGCCACTTGCCTGAA				
PYCR1	F	CAAGGGCTTCACAGCAGCA				
	R	CCTTGTTGTGGGGTGTCAAC				
PHGDH	F	TGCAAATCTGCGGAAAGTGC				
	R	GATGACATCAGCGGTCACCT				
CARS	F	CTGAAGATCTTTGGGGCCGT				
	R	AGGGACTTTTTGCTCTCGGG				
SARS	F	TGCAGCAAGACAATCGGAGA				
	R	CGTCACACTTCAGGATGGCT				
LARS2	F	AGCCTGTGAGCAGATCCAGA				
	R	TGGCCCACCATTTAGCTGTC				
CTNS	F	CGCTTTCTTGTGATCCGCAG				
	R	GTCAGGTTCAGAGCCACGAA				
ASNS	F	CATGGAAGACAGCCCCGATT				
	R	CATCCAGAGCCTGAATGCCT				
SLC1A4	F	GTGGCCTTGGCGTTCATCAT				
	R	AGCTGCAACCACAAGATTGG				
ATF3	F	TGATGCTTCAACACCCAGGC				
	R	CCTGGCCTGGGTGTTGAAG				

Supplementary Table 6. RT-qPCR Primers

ATF4	F	AACCTCATGGGTTCTCCAGC
	R	GGTCATCTATACCCAACAGG
TRAF2	F	GCGCTGCGACCGTTGG
	R	CAGGCAGAAGGAGCAGTACC
18S	F	AGTCTAGAGCCACCGTCCAG
	R	CCTACCTAGAATGTGGCTG
NIK-uORF	F	TCTACAAGCTTGAGGCCGTG
	R	GGACCCAGCGATGAAAATGC

Supplementary Table 7. Construct Primers

Target		Sequence				
E10-11 Hybrid Mini-gene	F	GGAATTCCATATGCGTCTTCTCCCATCACTGCC				
	R	GGAATTCCATATGACACGGAACTCACGCTGCTG				
NIK uORF Hybrid	F	AAGCTTGGGGCGACCACGGGCCGGGA				
PGL3-control	R	CTTTATGTTTTTGGCGTCTTCCATGG				

wutagenesis							
Target	See	Sequence					
Mutagenic minigene	F	GGGAGGCCCTGTGCCGTGAAGCG					
c.1395G>A	R	CGCTTCACGGCACAGGGCCTCCC					
Mutagenic minigene	F	GGTTGAGGTCGGAGAGGCCCTGCGC					
c.1405C>T	R	GCGCAGGGCCTCTCCGACCTCAACC					
Mutagenic minigene	F	CCTGGGAGTGATTGAGGTCGGGGAGG					
c.1416C>T	R	CCTCCCCGACCTCAATCACTCCCAGG					
Mutagenic minigene	F	CACTCCCAGGTGAGCGCCGTCCTCA					
IVS10+4C>A	R	TGAGGACGGCGCTCACCTGGGAGTG					
Mutagenic minigene	F	CCGGCCCATGGACGAGGCCCCGC					
IVS10+32C>T	R	GCGGGGCCTCGTCCATGGGCCGG					
Mutagenic minigene	F	AGGCCCCGCGCACTGAGGACGGC					
IVS10+18C>T	R	GCCGTCCTCAGTGCGCGGGGCCT					
Mutagenic minigene	F	TCCCGGCCTATGGGCGAGGCCCG					
IVS10+37G>A	R	CGGGGCCTCGCCCATAGGCCGGGA					
Mutagenic minigene	F	CACGCACAGCTATGGCCGCCTCTCCG					
IVS10-38C>T	R	CGGAGAGGCGGCCATAGCTGTGCGTG					
Mutagenic minigene	F	GCCGTGAAGCGTTTGGGCAGCTGGCAC					
c.1383G>A	R	GTGCCAGCTGCCCAAACGCTTCACGGC					
Mutagenic minigene	F	CATAAACCTGGTAGTGGTTGAGGTCGGGGAGG					
c.1421C>A	R	CCTCCCCGACCTCAACCACTACCAGGTTTATG					
Mutagenic minigene	F	GGGGTTGGCAACACGCACAGCTGTGGC					
IVS10-25C>T	R	GCCACAGCTGTGCGTGTTGCCAACCCC					
Mutagenic UPF1 plasmid	F	GGTACCGGGCCTTGATGCGCACCG					
c.1796A>T	R	CGGTGCGCATCAAGGCCCGGTACC					
Mutagenic UPF1 plasmid	F	GGTTGAGGTCGGAGAGGCCCTGCGC					
c.1405C>T	R	GCGCAGGGCCTCTCCGACCTCAACC					
Mutagenic UPF1 plasmid	F	CATAAACCTGGTAGTGGTTGAGGTCGGGGAGG					
c.1421C>A	R	CCTCCCCGACCTCAACCACTACCAGGTTTATG					
Mutagenic NIK plasmid	F	GCGCTTGGCCGGTTGAGCACAAGCC					
c19A>T	R	GGCTTGTGCTCAACCGGCCAAGCGC					

Supplementary Table 8. Primers for Site-directed Mutagenesis

	, , , , , , , , , , , , , , , , , , , ,
Target Gene	Sequence
UPF1	GATGCAGTTCCGCTCCATT
	GAGAATCGCCTACTTCACT
	GCTCGCAGACTCTCACTTT
NIK	GTGTGAAAGTCCAAATACA
	CAGGCTGAGTGTGAGAATA
	CGCCAAATCAAGCCAATTA
con	GUANGZHOU RIBOBIO CO.,LTD

Supplementary Table 9. Small Interfering RNAs

Supplemental Methods

DNA/RNA sequencing and analysis

Genomic DNA from the FFPE samples was extracted using QIAamp DNA FFPE Tissue Kit (Qiagen). All UPF1 coding regions and exon-intron junctions (RefSeq accession number NC_000019.9) were amplified by nested PCR using the primers described in Supplementary Table 4. Total RNA from the patient's samples and cell lines was extracted using Trizol (Invitrogen). To prevent contamination with genomic DNA, the samples were treated with RNase-free DNase I (Fermentas). The synthesis of complementary DNA (cDNA) was performed using the PrimeScriptTM RT reagent Kit (Takara). Reverse transcription-polymerase chain reaction (RT-PCR) was performed with primers in Supplementary Table 5. Quantitative real-time reverse transcription PCR (RT-qPCR) analysis was performed using the relative quantification method ($\Delta\Delta$ CT) in a RotorGene RG-3000 thermal cycler system (Corbett Research). 18S mRNA was used as the endogenous control. Primers are described in Supplementary Table 6. All samples were evaluated in triplicate.

Constructs

Human *UPF1* expression vector was previously described (5). Human *NIK* corresponding to the 5' untranslated region (5' UTR, RefSeq accession number NM_003954.4) was amplified with the primers described in

Supplementary Table 7. The PCR products were cloned into the HindIII/Ncol site of the PGL3-control plasmid encoding firefly luciferase (Promega), and the Ndel site of the vector pTBNde (min), a gift from Dr. Francisco E. Baralle (International Centre for Genetic Engineering and Biotechnology, Italy). Site Directed Mutagenesis or point mutations were introduced by using the KOD-Plus-Neo kit (Toyobo) and the Dpnl enzyme (Takara). Primer sequences are provided in Supplementary Table 8. Wild type β -globin construct and mutated β -globin construct with a nonsense codon at position 39 were gifts from Dr. Andreas E. Kulozik, University of Heidelberg, Germany.

Cell culture and transfections

HEK 293 (human kidney cells, ATCC, CRL-1573) and BEAS-2B (human bronchial cells, ATCC, CRL-9609) were maintained in DMEM containing 10% FBS. The cells were transfected using Lipofectamine 2000 (Invitrogen) and harvested for protein or RNA extraction 48h after transfection, or luciferase activity 24h after transfection. The relative luciferase activity was measured in passive lysis buffer (Promega) using the Dual-Luciferase Assay System and a GloMax 20/20 luminometer (Promega) according to the manufacturer's instructions. Data were normalized against the activity of the co-transfected pRL-TK plasmid encoding Renilla luciferase (Promega). The small interfering RNAs (siRNAs) transfected to deplete *UPF1* or *NIK* are described in Supplementary Table 9.

Protein analysis

Tissues were prepared with RIPA lysis buffer (Beyotime). The protein content was determined using the Bradford calorimetric assay (Shenergy Biocolor) and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, blotted on a membrane, and probed with antibodies (UPF1: rabbit monoclonal, abcam, ab109363 and ab92655, NIK: rabbit polyclonal, Santa Cruz, sc-7211 and GAPDH: mouse monoclonal, Beyotime, AG019) at 1:500 dilution. Conjugated affinity anti-mouse, or anti-rabbit IgG IRDye 800 (Rockland Immunochemicals), was used for secondary detection and imaged with Odyssey Infrared Imaging System (LI-COR Biosciences).

IHC

Sections were deparaffinized two times in xylene, followed by serial dilutions of ethanol. After heat-induced antigen retrieval in antigen unmasking solution (Vector Laboratory), the internal peroxidase activity was quenched by incubation with 3% hydroperoxide in methanol for 15min. Sections were blocked in Avidin solution for 15min, incubated in Biotin solution for 15min (Vector Laboratory), incubated in 5% bovine serum albumin and 20% goat serum in PBS for 1h. Sections were then incubated overnight at 4°C with primary antibodies against UPF1 (rabbit monoclonal, Abcam, ab109363 and ab92655), IgE (mouse monoclonal, Santa Cruz, sc-52335) or NIK (rabbit polyclonal, Santa Cruz, sc-7211) at a 1:100 dilution.