High levels of circulating TNF and its receptors, TNFR1 and TNFR2, predict the progression of diabetic kidney disease (DKD), but their contribution to organ damage in DKD remains largely unknown. Here, we investigated the function of local and systemic TNF in podocyte injury. We cultured human podocytes with sera collected from DKD patients, who displayed elevated TNF levels, and focal segmental glomerulosclerosis (FSGS) patients, whose TNF levels resembled those of healthy patients. Exogenous TNF administration or local TNF expression was equally sufficient to cause free cholesterol–dependent apoptosis in podocytes by acting through a dual mechanism that required a reduction in ATP-binding cassette transporter A1–mediated (ABCA1-mediated) cholesterol efflux and reduced cholesterol esterification by sterol-
Christopher E. Pedigo, Gloria Michelle Ducasa, Farah Leclercq, Alexis Sloan, Alla Mitrofanova, Tahreem Hashmi, Judith Molina-David, Mengyuan Ge, Mariann I. Lassenius, Carol Forsblom, Markku Lehto, Per-Henrik Groop, Matthias Kretzler, Sean Eddy, Sebastian Martini, Heather Reich, Patricia Wahl, GianMarco Ghiggeri, Christian Faul, George W. Burke III, Oliver Kretz, Tobias B. Huber, Armando J. Mendez, Sandra Merscher, Alessia Fornoni
Analysis of podocyte TNF, TNFR1, and TNFR2 expression after treatment with serum from patients with FSGS or DKD, after exposure to TNF or after TNF overexpression.