

**Supplementary Figure 1:** Coimmunostaining of Ki67 and K8, and cleaved caspase 3 (CC3) and K8 of prostate tissues from 1-yr-old PB-Pten and PB-Pten-Rbp-J mice. Bars=50µm. These images are cropped versions of Figure 2D and 2E, and are zoomed and shown here to facilitate reading of the staining.



**Supplementary Figure 2:** H&E staining of seminal vesicles of 1.5-yr-old wild type and PB-NICD mice. Bars=50 μm.



**Supplementary Figure 3:** Immunostaining of PTEN in prostate tissues of 16-wk-old PB-Pten and PB-Pten-NICD mice. Bars=50µm. Arrows point to PTEN staining in stromal cells, which serves as internal positive controls.



**Supplementary Figure 4:** Western blot analysis of expression of pAKT in prostate tissues of 16-wk-old wild type (WT), PB-NICD, PB-Pten, and PB-Pten-NICD mice. Each lane represents an independent specimen. NRAEV: normalized relative arbitrary expression value by  $\beta$ -actin. Results of AKT and pAKT from PB-Pten (lane 5-9) and PB-Pten-NICD (lane 10-14) were also shown in Figure 8C.



**Supplementary Figure 5:** Coimmunostaining of AR and P63 (A), K5 and K8 (B), and pH2A.X and K8 (C) in prostate tissues of 16-wk-old PB-Pten and PB-Pten-NICD mice. Bars=50µm.



**Supplementary Figure 6:** Characterization of the cell lines established from primary prostate tumors (PtNI-Pro), primary seminal vesicle tumors (PtNI-SV) and lung metastasis (PtNI-Met) in PB-Pten-NICD mice. (A) Western blot analysis of expression of Keratin5 (K5), Keratin 8 (K8), androgen receptor (AR), Pten, AKT, pAKT, and Notch1. The primary human prostate basal epithelial cells (PrEC) were used as a control. (B) Quantitative RT-PCR analysis of 7 genes in the established cell lines from 3 different experiements. These are representative genes expressed at a much higher level in rodent seminal vesicles than in prostate. \*:p<0.05, \*\*:p<0.01, Student's t-test.



**Supplementary Figure 7:** Gene Ontology pathways that are differentially enriched (-log10 p-value) in primary prostate and seminal vesicle tumors in PB-Pten-NICD mice, respectively. P values were by one-sided Fisher's exact test.



**Supplementary Figure 8:** Western blot analysis of expression of pP65 in prostate tissues of 16-wk-old wild type (WT), PB-NICD, PB-Pten, and PB-Pten-NICD mice. Each lane represents an independent specimen. NRAEV: normalized relative arbitrary expression value by  $\beta$ -actin.



Supplementary Figure 9: NF- $\kappa$ B signaling is necessary for the survival and migratory capability of PB-Pten-NICD metastatic cell line. (A) Cell viability assay.  $2x10^4$  cells per well were seeded in 24-well plates and cultured without or with Bay11-7085 at the specified concentration. Cells were counted 2 days later. Dot graphs show means  $\pm$  SD of percentage of final cell numbers normalized by that of the no treatment group from 3 independent experiments. \*\*\*: p < 0.001, Student's t-test. (B) Transwell migration assay of PB-Pten-NICD cells treated without or with 1µM Bay11-7085. Bar graphs show means  $\pm$  SD of migrated cells per well from 3 independent experiments. \*: p < 0.05, Student's t-test.



Supplementary Figure 10: Suppressing FoxC2 by a second shRNA also reduces the capacities of PB-Pten-NICD cells for invasion in vitro and distal metastasis in vivo. (A) QRT-PCR and Western blot analyses show successful knockdown of *FoxC2* by shRNA#2. \*\*\*: p<0.001. (B) Growth curves of PB-Pten-NICD metastatic cell line infected with scrambled shRNA control and *FoxC2* shRNA#2 lentivirus. (C) Transwell migration assay. Bar graphs show means  $\pm$  SD of migrated cells per well from 3 independent experiments. \*: p < 0.05, Student's t-test. (D) NOD/SCID mice were inoculated with  $2x10^6$  cells each in individual groups via tail vein. Mice were imaged 5 weeks later. Foxc2 shRNA reduced the capacity of PB-Pten-NICD cells to form distal metastases in the lung (p=0.019, Fisher's exact test).

| Primers         | Sequences (5' to 3')           |
|-----------------|--------------------------------|
| Cre forward     | CCTGACAGTGACGGTCCAAAG          |
| Cre reverse     | CATGACTCTTCAACTCAAACT          |
| RBP-J forward   | GAAGGTCGGTTGACACCAGATAGC       |
| RBP-J reverse 1 | ATGTACATTTTGTACTCACAGAGATGGATG |
| RBP-J reverse 2 | TAATGCACACAAGCATTGTCTGAGTTC    |
| ICN forward     | TAAGCCTGCCCAGAAGACTC           |
| ICN reverse 1   | GAAAGACCGCGAAGAGTTTG           |
| ICN reverse 2   | AAAGTCGCTCTGAGTTGTTAT          |
| Pten forward    | CAAGCACTCTGCGAACTGAG           |
| Pten reverse    | AAGTTTTTGAAGGCAAGA             |

## **Supplementary Table 1: Mouse genotyping primers**

| <b>Supplementary</b> | Table 2 | : Mouse | qRT- | PCR | Primers |
|----------------------|---------|---------|------|-----|---------|
|                      |         |         |      |     |         |

| - •            |                                     |
|----------------|-------------------------------------|
| Primers        | Sequences $(5^{\circ} - 3^{\circ})$ |
| Notch1 forward | ACTGTGAGGACGAGGTGGAC                |
| Notch1 reverse | ACAGGCACTCGTTGATCTCC                |
| Hey1 forward   | GGTACCCAGTGCCTTTGAGA                |
| Hey1 reverse   | GTGCGCGTCAAAATAACCTT                |
| Jag1 forward   | CCCAACTGTGAAATTGCTGA                |
| Jag1 reverse   | CAGCCTGGAGAACACTCACA                |
| CcnD1 forward  | AGTGCGTGCAGAAGGAGATT                |
| CcnD1 reverse  | AGCGGGAAGACCTCCTCTT                 |
| CcnD2 forward  | GCTGTGCATTTACACCGACA                |
| CcnD2 reverse  | CCACTTCAGCTTACCCAACA                |
| Nrarp forward  | AGGGCCAGACAGCACTACAC                |
| Nrarp reverse  | CGGTTAGCTAGGCGGATGT                 |
| Puma forward   | TGTGGAGGAGGAGGAGTGG                 |
| Puma reverse   | CGATGCTGCTCTTCTTGTCTC               |
| Noxa forward   | GCTACAGCAAGTGCCCAAG                 |
| Noxa reverse   | ACAGAAGCCACCACCTTAGC                |
| Bax forward    | GCTGATGGCAACTTCAACTG                |
| Bax reverse    | GATCAGCTCGGGCACTTTAG                |
| Fn1 forward    | TCTGGGACTGTACCTGCATC                |
| Fn1 reverse    | TGTAGGACTGACCCCCTTCA                |
| Cdh2 forward   | TGGATCGAGAGCTGATAGCC                |
| Cdh2 reverse   | CAATGTCAATGGGGTTCTCC                |
| Foxc2 forward  | CAGCTACTGGACGCTCGAC                 |
| Foxc2 reverse  | GGGCACATCCTTCTTCTTGA                |
| Snai1 forward  | CTTGTGTCTGCACGACCTGT                |
| Snail reverse  | GAGCAGGAGAATGGCTTCTC                |
| Snai2 forward  | GATCTGTGGCAAGGCTTTCT                |
| Snai2 reverse  | CCTATTGCAGTGAGGGCAAG                |
| Ocln forward   | CCTGGAGGTACTGGTCTCTACG              |
| Ocln reverse   | AATCATGAACCCCAGGACAA                |
| Cdh1 forward   | AATGAAAAGGGCGAATTTCC                |
| Cdh1 reverse   | GCCGGTGATGCTGTAGAAAA                |
| DSP forward    | GAGCGACAAGAACACCAACA                |
| DSP reverse    | TTCCTTTTCCTTGACCTCCA                |

| Antigen       | Supplier                                                      | Species | Dilution |
|---------------|---------------------------------------------------------------|---------|----------|
| K5            | Covance #PRB-160P                                             | Rabbit  | 1:2000   |
| K8            | Covance #MMS-162P                                             | Mouse   | 1:1000   |
| AR            | Santa Cruz, sc-816                                            | Rabbit  | 1:200    |
| Fibronectin 1 | BD bioscience, 610077                                         | Mouse   | 1:1000   |
| Notch1        | Cell Signaling, 3608                                          | Rabbit  | 1:1000   |
| Notch1        | Thermal Fisher, MA1-81888                                     | Mouse   | 1:500    |
| Foxc2         | Gift from Dr. Naoyuki Miura at<br>Hamamatsu University, Japan | Rat     | 1:500    |
| Vimentin      | Cell Signaling, 5741                                          | Rabbit  | 1:1000   |
| β-actin       | Sigma, A5441                                                  | Mouse   | 1:5000   |
| AKT1          | Cell Signaling, 9272                                          | Rabbit  | 1:1000   |
| phoAKT        | Cell Signaling, 4060                                          | Rabbit  | 1:1000   |
| МАРК          | Cell Signaling, 9102                                          | Rabbit  | 1:1000   |
| рМАРК         | Cell Signaling, 4370                                          | Rabbit  | 1:1000   |
| P53           | Protein tech,10442-1-AP                                       | Rabbit  | 1:500    |
| Pp53          | Cell Signaling,9284                                           | Rabbit  | 1:1000   |
| α-Rat HRP     | Santa Cruz, sc-2032                                           | Goat    | 1:5000   |
| α-Mouse HRP   | Vector Lab. PI-2000                                           | Goat    | 1:5000   |
| α-Rabbit HRP  | Vector Lab. PI-1000                                           | Goat    | 1:5000   |
| L             |                                                               |         |          |

## Supplementary Table 3: Antibodies for Western blot analyses

| Antigen             | Supplier                    | Species | Dilution |
|---------------------|-----------------------------|---------|----------|
| K5                  | Covance #PRB-160P           | Rabbit  | 1:2000   |
| K8                  | Covance #MMS-162P           | Mouse   | 1:1000   |
| K14                 | Biogenex MU146-UC           | Mouse   | 1:100    |
| GFP                 | Clontech, JL8               | Mouse   | 1:1000   |
| P63                 | Santa Cruz, 4A4             | Mouse   | 1:200    |
| Ki67                | Novocastra, NCL-Ki67-P      | Rabbit  | 1:1000   |
| AR                  | Santa Cruz, sc-816          | Rabbit  | 1:200    |
| рАКТ                | Cell Signaling, 4060        | Rabbit  | 1:500    |
| Cleaved caspase3    | Cell Signaling, 9661S       | Rabbit  | 1:1000   |
| Vimentin            | Cell Signaling, 5741        | Rabbit  | 1:500    |
| Smooth muscle actin | Sigma-Aldrich               | Mouse   | 1:2000   |
| Pho-γH2A.X          | Cell signaling, 9718        | Rabbit  | 1:400    |
| α-Mouse             | Invitrogen/Molecular Probes | Goat    | 1:2000   |
| α-Rabbit            | Invitrogen/Molecular Probes | Goat    | 1:2000   |
| α-Rabbit HRP        | Vector Lab, PI-1000         | Goat    | 1:5000   |

## Supplementary Table 4: Antibodies for IHC analyses