Perhexiline, a KLF14 activator, reduces atherosclerosis by modulating apoA-I

production

Yanhong Guo¹, Yanbo Fan¹, Jifeng Zhang¹, Gwen A. Lomberk², Zhou Zhou³, Lijie Sun^{1,4}, Angela J. Mathison², Minerva T. Garcia-Barrio⁵, Ji Zhang¹, Lixia Zeng⁶, Lei Li^{4,6}, Subramaniam Pennathur⁶, Cristen J Willer¹, Daniel J Rader⁷, Raul Urrutia², and Y. Eugene Chen¹ ¹Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.

² Laboratory of Epigenetics and Chromatin Dynamics, Epigenomics Translational Program, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, Minnesota, USA

³Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.

 ⁴Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health, Beijing, China.
⁵Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA.
⁶Division of Nephrology Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.

⁷Institute for Translational Medicine and Therapeutics, Cardiovascular Institute and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Address correspondence to: Y. Eugene Chen, Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, Michigan, USA. Phone: 734. 647.5742; Fax: 734.763.7097; E-mail: echenum@umich.edu.

Conflict of interest: The authors have declared that no conflict of interest exists.

Supplemental Figure 1

Hepatic KLF14 expression is reduced in dyslipidemia mouse models. (A) Heat map of replicate experiments displays the HDL-C trait related gene expression in livers from C57BL/6 mice fed chow diet or HFD for 12 weeks. Expression of genes was determined by qRT-PCR and normalized with 18S RNA. Primer pairs for screen are shown in Supplemental Table. (B and C) *Klf14* expression in liver from C57BL/6 mice fed chow diet or HFD for 12 weeks or wild-type or *ob/ob* mice, respectively, was determined by real-time qRT-PCR and normalized to 18S RNA (n = 4). (D and E) Hepatic KLF14 and GAPDH levels were determined in livers from the indicated animals by Western-blot (n = 3). *, p < 0.05, Student's *t* test. Chow, chow diet; HFD, high fat diet; WT, wild type C57BL/6 mice; *ob/ob* mice, leptin-deficient mice.

Supplemental Figure 2

Expression of KLF14 in mouse tissues. Expression of KLF14 was detected by Western-blot using whole-tissue lysates from wild-type C57BL/6 adult mice. Total cell lysates from HepG2 cells transfected with Ad*KLF14* were used as a positive control.

Supplemental Figure 3

SREBPs inhibit the activation of *Klf14*. (**A**) The expression of SREBP1 was detected in the livers from C57BL/6 mice fed chow diet or HFD for 12 weeks by Western Blot. Chow, chow diet; HFD, high fat diet. (**B**) Luciferase activity of reporters was analyzed in HepG2 cells cotransfected with *KLF*-luc and pcDNA3.1-SREBP1a, pcDNA3.1-SREBP1c or pcDNA3.1-SREBP2 constructs after 24 hours. **, p < 0.01. Two-way ANOVA and Multiple comparisons. Values represent mean \pm SEM; n = 3.

Supplemental Figure 4

Effects of KLF14 overexpression on the expression levels of genes involved in lipoprotein metabolism in vivo. Adenovirus containing LacZ (AdLacZ) or human KLF14 (AdKLF14) (5×10⁸ pfu per mouse) were administered via tail vein injection in C57BL/6 mice previously fed HFD for 12 weeks (n=10). Six days post-injection, liver samples of those animals were used in qRT-PCR to determine mRNA expression of lipoprotein metabolism genes including human KLF14 (A), ApoA-I (B), ApoC-III (C), ApoA-II (D), mouse Klf14 (E), ApoB (F), HMGCR (G). Data are expressed relative to 18S RNA as mean ± SEM. *, p< 0.05; **, p< 0.01, Student's t test. Results were replicated in one or more independent experiments. apoA-I, Apolipoprotein A-I; apoA-II, Apolipoprotein A-II; apoC-III, Apolipoprotein C-III; HMGCR, 3-hydroxy-3-methylglutaryl-CoA reductase. (H) The serum apoC-III levels were determined by ELISA (n=10).

Supplemental Figure 5

Overexpression of *KLF11* does not regulate HDL-C and LDL-C levels in vivo. Adenoviral vectors containing LacZ (AdLacZ) or human *KLF11* (Ad*KLF11*) (5×10⁸ pfu per mouse) were administered via tail vein injection to C57BL/6 mice fed HFD for 12 weeks. Plasma samples were collected at day 6 and subjected individually to analytical chemistry to measure HDL-C (**A**) and LDL-C (**B**) levels. Values represent mean \pm SEM. n = 6 per group.

Supplemental Figure 6

Adenoviral vectors containing shRNA-LacZ (AdshLacZ) or shRNA-KLF14 (AdshKLF14) (1×10⁹ pfu per mouse) were administered via tail vein injection to C57BL/6 mice fed HFD for 12 weeks. Serum samples were collected at day 6. (**A**) *KLF14* mRNA levels were determined by quantitative real-time PCR. Values represent mean \pm SEM. **, *p* < 0.01, Student's *t* test. (**B** and **C**) Western blot analysis of apoA-I in 3 µL of serum samples from the mice injected with AdshLacZ or AdshKLF14. **, *p* < 0.01, Student's *t* test. (**D** and **E**) Serum samples collected at day 6 after AdshLacZ or AdshKLF14 injection were pooled and the lipid profile was analyzed by FPLC followed by measurement of cholesterol levels in the fractions.

Supplemental Figure 7

KLF14 regulates the transcription of mouse *ApoA-I*. (**A**) Primary hepatocytes from C57BL/6 mice were infected with AdLacZ or AdKLF14 for 24h and *APOA-I* mRNA levels were determined by quantitative real-time PCR. Values represent mean \pm SEM. **, *p* < 0.01, Student's *t* test. (**B**) ChIP assay revealed significant enrichment of KLF14 protein on the mouse *ApoA-I* promoter in primary hepatocytes isolated from C57BL/6 mice. Values represent mean \pm SEM. n = 3. **, *p* < 0.01, Two-way ANOVA and Multiple comparisons.

Supplemental Figure 8

Generation of liver specific knockout of *Klf14* in mice. (**A**) Strategy for conditional disruption of the *Klf14* gene. The wild-type *Klf14* gene is shown in the upper line. For conditional gene targeting, the only exon was flanked by loxP sites (triangles). Homologous recombination, subsequent Flp-mediated removal of the frt-flanked neo, and Cre-mediated deletion of the *Klf14* gene is outlined below. (**B**) Genotyping of mice harboring wild-type (WT), loxP flanked (floxed, KLF14fl/fl) and *Alb*-Cre alleles. (**C**) qRT-PCR analysis revealed strong reduction of *Klf14* mRNA levels in the liver from KLF-LKO mice, but not the heart and intestine tissues. Values represent mean \pm SEM. n = 3.

Supplemental Figure 9

(A) HepG2 cells were incubated with 10 μ M perhexiline for 24 hours in DMEM containing 0.2% BSA. The apoA-I concentrations in the medium were detected by ELISA. Values represent mean \pm SEM; n = 6. *, p < 0.05. (B) HepG2 cells were infected with AdshLacZ or AdshKLF14 for 48 hours and the knockdown efficiency of *Klf14* was detected by qRC-PCR. Values represent mean \pm SEM; n = 3. **, p < 0.01, Student's *t* test. (C) HepG2 cells were infected with AdshLacZ or AdshKLF14 for 72 hours and then changed to DMEM containing 0.2% BSA. The apoA-I concentrations in the medium were detected by ELISA. Values represent mean \pm SEM; n = 6. *, p < 0.05, Student's *t* test.

Perhexiline upregulates KLF14 and apoA-I expression in Caco2 cells. qRT-PCR analysis showing the expression levels of *Klf14* (**A**) and *ApoA-I* (**B**) in Caco2 cells in the presence of perhexiline (10 μ M) or DMSO for 30 hours. Data are expressed relative to 18S RNA. Values represent mean \pm SEM; n = 3. *, p < 0.05, Student's *t* test.

C57BL/6J mice placed on HFD for 12 weeks were treated with DMSO or perhexiline maleate salt (10mg/Kg/day) for five consecutive days by gavage administration and samples collected at day 7 (n = 10 per group). Total RNA was isolated from liver and the expression of *Klf14* (**A**) and *ApoA-I* (**B**) were determined qRT-PCR. Values represent mean \pm SEM. *, p < 0.05; **, p < 0.01, Student's *t* test.

Supplemental Table 1

	Fold
Compound Name	change
DMSO	1.0
Amphotericin B	9.4
Perhexiline Maleate	5.1
Flufenazine Hydrochloride	5.1
Estradiol Cypionate	3.3
Gentian Violet	3.1
Acriflavinium Hydrochloride	3.1
Pyrithione Zinc	2.8
Nystatin	2.2

KLF14-luc-transfected 293 cells were used for high-throughput screening of a chemical library of NIH/JDRF Custom Collection including 1040 compounds. The luciferase activities were measured 24h after compound treatment. From the primary screening, 8 compounds were identified that activate KLF14-luc activity 2-fold or more.

Supplemental Table 2

Gene*	Name	FP	RP
185	185 RNA	ggaagggcaccaccaggagt	tgcagccccggacatctaag
mKLF14	kruppel-like factor 14	cctcaagtcacaccagcgta	cgacctcggtactcgatcat
mapoA-I	apolipoprotein A-I	gtggctctggtcttcctgac	acggttgaacccagagtgtc
mapoA-II	apolipoprotein A-II	ttgatggagaaggccaagac	cggtttctcctcaaggttca
mApoC-III	apolipoprotein C-III	acatggaacaagcctccaag	tggttggtcctcagggttag
mABCA1	ATP-binding cassette transporter	gggagtcccagaaaaggaag	tgtggttggttcatccagaa
	1		
mABCG1	ATP-binding cassette sub-family G	gtaccatgacatcgctggtg	agccgtagatggacaggatg
	member 1		
mLDLR	low density lipoprotein receptor	gaggagcagccacatggtat	gctcgtcctctgtggtcttc
mSR-BI	scavenger receptor class B	attcccacgtatcgcttcac	gctcctttgggttagggttc
	member 1		
hapoA-I	apolipoprotein A-I	tggatgtgctcaaagacagc	aggccctctgtctccttttc
hapoA-II	apolipoprotein A-II	gagctttggttcggagacag	tgtgttccaagttccacgaa
hKLF14	kruppel-like factor 14	tacaagtcgtcgcacctcaa	gtccccggtactcgatcata
mMC4R	melanocortin receptor 4	tcatctgtagcctggctgtg	ggtactggagcgcgtaaaag
mMVK	mevalonate kinase	gaagcaggctgaccaagttc	cagatggtgctggttcatgt
mANGPTL	angiopoietin-like 4	tccaatttcccatccatttg	ggctcttggcacagttaagg
4			

Table S2. Primers used for real-time qRT-PCR

mNAT2	arylamine N-acetyltransferase	ctgggctttgaaaccacaat	ctgaggctgatcctttccag
mSORT1	sortilin 1	caggagacaaatgccaaggt	ccttccgccacagacatatt
mTRIB1	tribbles homolog 1	gaggtgctccttggtgagag	tcggtggagaagacgaactt
mHNF1a	hepatocyte nuclear factor 1-alpha	tcacagacaccaacctcagc	gaggacactgtgggactggt
mPCSK9	proprotein convertase	tccattgggaagtggaagac	acctgctctgaaggacctga
	subtilisin/kexin type 9		
mGCKR	glucokinase (hexokinase 4)	cagcgtgagttaagcaccaa	tcagtgatggagcacctgag
	regulator		
mLIPC	lipase, hepatic	tctcggagcaaagttcacct	tatgaatggcgtccacaaaa
mLIPG	lipase, endothelial	cttccagtgcacagactcca	gggtgtccccactgttattg
mTOP1	topoisomerase (DNA) I	gccaaggtgttccgtaccta	cccttcgagcatctgctaac
mMYLIP	myosin regulatory light chain	tagagtggcatgctgtgagg	ctccttggtgacggtcaagt
	interacting protein		
mST3GAL	ST3 beta-galactoside	cgatggacttccactggatt	gcagaggtgtagagccaagg
4	alpha-2,3-sialyltransferase 4		
mCOBLL1	cordon-bleu WH2 repeat	ctgtgccacaagcacagatt	ctggcgatgctgttagatga
	protein-like 1		
mKLHL8	kelch-like family member 8	tgggtgtgatctctgtggaa	tctccacgtcactgaagcac
mTSPAN8	tetraspanin 8	ctggccatatgggtgagagt	tttcacagctccacagcatc
mPABPC4	poly(A) binding protein,	ccaggggggggaatctctaca	tcatctcggtgacagctttg
	cytoplasmic 4		
mLCAT	lecithin-cholesterol	aaagaggagcagcgcataac	gcccacaccgtagagacaat

	acyltransferase		
mSLC39A	Zinc transporter ZIP11	agcctaacggacacatccac	agtacaagatgccccaatcg
mPPP1R3	protein phosphatase 1, regulatory	tgctgaaggataaggccatc	gccgttacactcgtagcaca
В	subunit 3B		
mTTC39B	tetratricopeptide repeat domain	acaggtggatggtctgaagc	cctcagccttctccacagtc
	39B		
mSTARD3	StAR-related lipid transfer (START)	ggcagggaaaggaagctact	cctgatacaccagctcagca
	domain containing 3		
mARL15	ADP-ribosylation factor-like 15	gttgctggctttttcaggag	aagcgctcgaaaacacagat
mPLTP	phospholipid transfer protein	aaatcagtctgcgctggagt	gcaggacggttcttgtcaat
mGALNT2	UDP-N-acetyl-alpha-D-galactosam	ctggacaccttgggacactt	gagttgccttcgatctgctc
	ine:polypeptide		
	N-acetylgalactosaminyltransferase		
	2 (GalNAc-T2)		
mPGS1	CDP-diacylglycerolglycerol-3-pho	acgctgattggctctcctaa	ttcttgattagcggggtcac
	sphate 3-phosphatidyltransferase		
mHNF4a	hepatic nuclear factor 4 alpha	gattgccaacatcacagacg	aggagcagcacgtccttaaa
mUBE2L3	ubiquitin-conjugating enzyme E2L	agcttgaagagatccgcaaa	tgtgatcttgggtggtttga
	3		
mCITED2	Cbp/p300-interacting	tgggcgagcacatacactac	ggtaggggtgatggttgaaa
	transactivator, with Glu/Asp-rich		
	carboxy-terminal domain, 2		

mTRPS1	trichorhinophalangeal syndrome I	gcccagggttcattgactaa	gggtgttttgcaggtctcat
mAMPD3	adenosine monophosphate	ctgcccctgttcaaagctac	agcaccatgatgttggcata
	deaminase 3		
mLRP4	low density lipoprotein	ccaagccagccgtgtataat	tgctctgtctccgtgtcatc
	receptor-related protein 4		
mPDE3A	phosphodiesterase 3A,	gaggacgaagcctgtgaaag	ctcttggcttccccttctct
	cGMP-inhibited		
mSBNO1	strawberry notch homolog 1	accaaacactgggaagcaac	cacttttgtccagacgctca
mZNF664	zinc finger protein 664	catattcattggcgagacca	agctccagttgaaggctttg
mSCARB1	scavenger receptor class B,	tcgaattctggggtcttcac	aatgccttcaaacacccttg
	member 1		
mLCATB	lactamase, beta	tgctgacaactgtccaggag	tcacccactgtggacagaaa
mCMIP	c-Maf inducing protein	ctgctgtccgactacgatga	cagggctgtagagctggaac
mABCA8	ATP-binding cassette, sub-family A	caggaccagctgaagtctcc	ccctgattgcttgccatatt
	(ABC1), member 8		
mAMPD3	adenosine monophosphate	ctgcccctgttcaaagctac	agcaccatgatgttggcata
	deaminase 3		

* m, in front of the gene name indicates mouse; h, indicates human.

FP: Forward primer; RP: Reverse primer.

Perhexiline, a KLF14 activator, reduces atherosclerosis by modulating apoA-I production

Yanhong Guo¹, Yanbo Fan¹, Jifeng Zhang¹, Gwen A. Lomberk², Zhou Zhou³, Lijie Sun^{1,4}, Angela J. Mathison², Minerva T. Garcia-Barrio⁵, Ji Zhang¹, Lixia Zeng⁶, Lei Li^{4,6}, Subramaniam Pennathur⁶, Cristen J Willer¹, Daniel J Rader⁷, Raul Urrutia², and Y. Eugene Chen¹

¹Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.

²Laboratory of Epigenetics and Chromatin Dynamics, Epigenomics Translational Program, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, Minnesota, USA.

³Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.

⁴Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory peptides, Ministry of Health, Beijing, China.

⁵Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA.

⁶Division of Nephrology Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.

⁷Institute for Translational Medicine and Therapeutics, Cardiovascular Institute and Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Address correspondence to: Y. Eugene Chen, Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA. Phone: 734. 647.5742; Fax: 734.763.7097; Email: <u>echenum@umich.edu</u>.

Conflict of interest: The authors have declared that no conflict of interest exists.

Full unedited gel for Figure 1I

Full unedited gel for Figure 1J

Full unedited gel for Figure 3A

Full unedited gel for Figure 3G

Full unedited gel for Figure 4E

Full unedited gel for Figure 4F

Full unedited gel for Figure 4G

Full unedited gel for Figure 6H

Full unedited gel for Supplemental Figure 1D

Full unedited gel for Supplemental Figure 1E

Full unedited gel for Supplemental Figure 2

Full unedited gel for Supplemental Figure 3A

Full unedited gel for Supplemental Figure 6B

