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     Supplementary Table 1.  qRT PCR primers 
 
 

 Sense Anti-sense Accession 
Number 

18S 5'- CGGCTACCACATCCAAGGAA -3' 5'- GCTGGAATTACCGCGGCT -3' AY248756 

EP2 5'- TGCTGGCTTCATATTCAAGAAA -3' 5'- TGGCCAGACTAAAGAAGGTCA -3' NM_008964 

COX-2 5'- TGCAAGATCCACAGCCTACC -3' 5'- GCTCAGTTGAACGCCTTTTG -3' NM_011198 

iNOS 5'- TGACGGCAAACATGACTTCAG -3' 5'- GCCATCGGGCATCTGGTA -3' MMU43428 

gp91phox 5'- CCAACTGGGATAACGAGTTCA -3' 5'- GAGAGTTTCAGCCAAGGCTTC -3' NM_007807 

p67phox 5'- GCCGGAGACGCCAGAAGAGCTA -3' 5'- GGGGCTGCGACTGAGGGTGAA -3' NM_010877 

p47phox 5'- TACAGCAAAGGACAGGACTGGGTT -3' 5'- GAGGCACTTGGCTTTCTGCAAACT -3' NM_010876 

IL-1β  5'- CCAGGATGAGGACATGAGCACC -3' 5'- TTCTCTGCAGACTCAAACTCCAC -3' NM_008361 

MCP-1 5'- TCACCTGCTGCTACTCATTCACCA -3' 5'- TGAAGACCTTAGGGCAGATGCAGT -3'  NM_011333 

MIP-1α  5'- ATACAAGCAGCAGCGAGTACCAGT -3' 5'- AATCTTCCGGCTGTAGGAGAAGCA -3'  NM_011337 

Neprilysin 5'- AGTATGCTTGTGGAGGCTGGTTGA -3' 5'- AGGTTGTCCGCCTCTGCTATCAAT -3' NM_008604 

MMP-9 5'- TCTTTGAGTCCGGCAGACAATCCT -3' 5'- ACACCCACATTTGACGTCCAGAGA -3' NM_013599 

Insulysin 5'- TGCAGAAGGACCTCAAGAATGGGT -3' 5'- GGAAACTATTGCCACCCGCACATT -3' NM_031156 

Iba1 5'- ATGAGCCAAAGCAGGGATTTG -3' 5'- TCTCCAGCATTCGCTTCAAGG- 3' NM_019467 

CD68 5'- TACAATGTGTCCTTCCCACAGGCA -3' 5'- AGGTCAAGGTGAACAGCTGGAGAA -3' NM_009853 

Igf1 5’- AAAGCAGCCCGCTCTATCC -3’ 5’- CTTCTGAGTCTTGGGCATGTCA -3’ NM_001111274 

GAPDH 5'- TGCACCACCAACTGCTTAG -3' 5'- GATGCAGGGATGATGTTC -3' NM_008084 
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Supplementary Figure 1.   Effects of EP2 receptor activation on IL-1ß and MIP-1α  expression.  
Aged (21 mo) peritoneal macrophages were stimulated with Aß42 oligomers (5 µM) +/- the EP2 receptor 
agonist butaprost (1µM), and mRNA was measured by qPCR at 4 hours for (A) IL-1ß and (B) MIP-1α 
(n=5-6 per group, *p<0.05 and **p<0.01 by t-test).  (C) Validation of effect of EP2 receptor activation 
was carried out in primary post-natal microglia.   Butaprost suppresses Aß42-induced MIP-1α secretion 
(n=4 per group; effects of Aß42 and of butaprost p<0.0001; post hoc p<0.0001 for both 5 µM and 10 µM 
Aß42 oligomers).    
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Supplementary Figure 2.  Effect of EP2 signaling on levels of Aß42 in cerebral cortex with aging 
in APP-PS1 mice.  Cerebral cortex from 4-5 and 8-9 mo APP-PS1 and APP-PS1;EP2KO mice was 
homogenized in 5M guanidine to denature soluble and insoluble Aß42 peptides; guanidine was then 
removed with ethanol precipitation and supernatants were assayed for Aß42 by ELISA.  No differences 
were observed at 4-5 months between genotypes, however a significant decrease was observed at 8-9 
mo in APP-PS1 mice lacking EP2 (effect of genotype: p=0.0127 and effect of age: p<0.0001; post-hoc 
Bonferroni p<0.01 at 8-9 mo; n=5-8 per group).  Previous studies have shown that this decrease is not 
associated with decreased generation of APP, BACE activity, or levels of ß-CTF (1).  
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Supplementary Figure 3.  Microglial EP2 signaling regulates distinct immune and non-immune 
pathways.  Adult microglia were harvested from brains of 8 mo Cd11bCre;EP2+/+ (WT) and 
Cd11bCre;EP2lox/lox (EP2cKO) mice 48h after ICV administration of vehicle or Aß42 fibrillar peptides.  (A) 
Hierarchical cluster analysis of differentially regulated genes in the WT+Aß42 vs WT+veh comparison is 
shown. (B) Upstream regulator analysis was performed using Ingenuity Pathway Analysis (IPA) on 
genes regulated ≥1.5-fold by ICV Aß42 (upregulated genes in pink and red, indicating induction of 1.5-
1.99 and ≥2-fold, respectively; downregulated genes in green, representing reduction ≥1.5-fold). NF-κB 
and IRF7, as well as COX-2 and PGE2 regulate transcriptional response to Aß42.  (C) EP2 and COX-2 
mRNA are upregulated in vivo by qPCR of purified adult microglia following ICV vehicle or Aß42 (n=7-8 
per group; **p<0.01 and ***p<0.001).  (D) KEGG pathways, including cell cycle, proteolysis, and 
immune pathways, are significantly over-represented in the microglial EP2cKO vs WT comparison.   
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Supplementary Figure 4.  Immunoprecipitation of IGF-1R and IRS-1.  For (A) and (B), SN: 
supernatant, after immunoprecipitation (IP) with rabbit anti-IGF receptor antibody; IP Control: 
hippocampal lysate IP with rabbit serum (total IP elution volume is 40 µl); IP IGF-1R: hippocampal 
lysate IP with rabbit anti-IGF-1R with lanes in duplicate (40, 10, and 20µl); Lysate: non 
immunoprecipitated lysate.  IB: immunoblot.  Arrowhead indicates correct molecular weight for IGF 
receptor and phospho-IGF receptor.  (C) Immunoprecipitated IRS-1 in hippocampus at 48h is shown 
post ICV veh or ICV Aß (ANOVA effect of genotype, p=0.052).  (D) Levels of total IGF1 receptor 
normalized to actin are unchanged between genotypes and treatment groups (n=6-9 per group). (E) 
Order of phosphoproteins in PathScan (Cell Signaling) multi-antibody array slide.  Phosphoproteins 
marked with ** and bold are quantified in Figure 5D.  (F) Representative array from each of the four 
groups quantified in Figure 5D. 
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Supplementary Figure 5. Immune factors are regulated by microglial EP2 48h following ICV Aß42. 
Hippocampi were harvested from brains of 8 mo Cd11bCre;EP2+/+ (WT) and Cd11bCre;EP2lox/lox 
(EP2cKO) mice 48h after ICV administration of vehicle or Aß42 (n=7-8 per group).  (A) IL1ß (effect of 
genotype: **p=0.0083 and effect of Aß: ***p<0.0001; post hoc Bonferroni *p<0.05); IL1α (effect of 
genotype:*p=0.032 and effect of Aß: ***p<0.0001; post hoc *p<0.05); MIP1α (effect of genotype:p=0.07 
and effect of Aß: ***p<0.0001; post hoc *p<0.05); MIP1ß (effect of genotype:p=0.06 and effect of Aß: 
***p<0.0001; post hoc p<0.05); RANTES (effect of genotype:***p=0.0009 and effect of Aß: ***p<0.0001; 
post hoc ***p<0.0001).  (B) IL17A shows significant effect of Aß only in WT genotype that is 
suppressed in EP2cKO (effect of Aß: *p=0.0136; post hoc *p<0.05 for effect of Aß); eotaxin similarly 
shows effect of Aß only in WT genotype (effect of Aß: **p=0.0014; post hoc **p<0.01 for effect of Aß). 
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Supplementary Figure 6.  Functional characterization of microglial EP2 conditional knockout 
mice.  Cohorts of 3-4 mo male Cd11bCre and Cd11bCre;EP2lox/lox (n=9-10 per genotype) were 
examined for (A) weight and (B) distance traveled and time spent moving in an open arena over a 5 
minute period.  (C) The percent time spent moving along the periphery of the arena (thigmotaxis) over a 
5 minute period was quantified as a measure of anxiety.  (D) Y maze performance was quantified as 
percent spontaneous alternation (average of all trials) and number of entries (n=9-10 male 3-4 mo mice 
per genotype).   
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Supplementary Figure 7.  Regulation of Erk1/2 signaling in APP-PS1 and APP-PS1;EP2cKO 
cerebral cortex at 9 mo of age.  (A) Diagram of receptor tyrosine kinase (RTK) signaling pathways.  
(B) Phosphorylation of Erk1/2 and RSK1 is increased in APP-PS1;Cd11bCre mice compared to 
Cd11bCre controls.  This increase is abrogated with microglial deletion of EP2 (n=4-5 per group; 
*p<0.05; **p<0.01).    
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