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Supplementary Table 1. qRT PCR primers

Sense Anti-sense Accession
Number

18S 5'- CGGCTACCACATCCAAGGAA -3' 5'- GCTGGAATTACCGCGGCT -3' AY248756
EP2 5'- TGCTGGCTTCATATTCAAGAAA -3' 5'- TGGCCAGACTAAAGAAGGTCA -3' NM_008964
COX-2 5'- TGCAAGATCCACAGCCTACC -3' 5'- GCTCAGTTGAACGCCTTTTG -3' NM_011198
iNOS 5'- TGACGGCAAACATGACTTCAG -3' 5'- GCCATCGGGCATCTGGTA -3' MMU43428
gp91”™* | 5- CCAACTGGGATAACGAGTTCA -3' 5'- GAGAGTTTCAGCCAAGGCTTC -3' NM_007807
p67°" 5'- GCCGGAGACGCCAGAAGAGCTA -3' 5'- GGGGCTGCGACTGAGGGTGAA -3' NM_010877
pa7P"™ 5'- TACAGCAAAGGACAGGACTGGGTT -3' | 5- GAGGCACTTGGCTTTCTGCAAACT -3' | NM_010876
IL-1B 5'- CCAGGATGAGGACATGAGCACC -3' 5'- TTCTCTGCAGACTCAAACTCCAC -3' NM_008361
MCP-1 5'- TCACCTGCTGCTACTCATTCACCA -3' | 5- TGAAGACCTTAGGGCAGATGCAGT -3' | NM_011333
MIP-1a 5'- ATACAAGCAGCAGCGAGTACCAGT -3' | 5- AATCTTCCGGCTGTAGGAGAAGCA -3' | NM_011337
Neprilysin| 5'- AGTATGCTTGTGGAGGCTGGTTGA -3' | 5- AGGTTGTCCGCCTCTGCTATCAAT -3' NM_008604
MMP-9 5'- TCTTTGAGTCCGGCAGACAATCCT -3' | 5- ACACCCACATTTGACGTCCAGAGA -3' | NM_013599
Insulysin | 5- TGCAGAAGGACCTCAAGAATGGGT -3' | 5'- GGAAACTATTGCCACCCGCACATT -3' | NM_031156
Iba1 5'- ATGAGCCAAAGCAGGGATTTG -3' 5'- TCTCCAGCATTCGCTTCAAGG- 3' NM_019467
CD68 5'- TACAATGTGTCCTTCCCACAGGCA -3' | 5- AGGTCAAGGTGAACAGCTGGAGAA -3' | NM_009853
Igf1 5’- AAAGCAGCCCGCTCTATCC -3 5- CTTCTGAGTCTTGGGCATGTCA -3’ NM_001111274
GAPDH | 5- TGCACCACCAACTGCTTAG -3' 5'- GATGCAGGGATGATGTTC -3' NM_008084
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Effects of EP2 receptor activation on IL-1R and MIP-1a. expression.
Aged (21 mo) peritoneal macrophages were stimulated with Al34, oligomers (5 uM) +/- the EP2 receptor
agonist butaprost (1uM), and mRNA was measured by qPCR at 4 hours for (A) IL-18 and (B) MIP-1a
(n=5-6 per group, *p<0.05 and **p<0.01 by t-test). (C) Validation of effect of EP2 receptor activation
Butaprost suppresses AR4-induced MIP-1a secretion
(n=4 per group; effects of A4, and of butaprost p<0.0001; post hoc p<0.0001 for both 5 yM and 10 uM
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AR42 levels from 4-9 mo APP-PS1 brains
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Supplementary Figure 2. Effect of EP2 signaling on levels of AB42 in cerebral cortex with aging
in APP-PS1 mice. Cerebral cortex from 4-5 and 8-9 mo APP-PS1 and APP-PS1;EP2KO mice was
homogenized in 5M guanidine to denature soluble and insoluble A4, peptides; guanidine was then
removed with ethanol precipitation and supernatants were assayed for AR4, by ELISA. No differences
were observed at 4-5 months between genotypes, however a significant decrease was observed at 8-9
mo in APP-PS1 mice lacking EP2 (effect of genotype: p=0.0127 and effect of age: p<0.0001; post-hoc
Bonferroni p<0.01 at 8-9 mo; n=5-8 per group). Previous studies have shown that this decrease is not
associated with decreased generation of APP, BACE activity, or levels of 3-CTF (1).
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Supplementary Figure 3. Microglial EP2 signaling regulates distinct immune and non-immune
pathways. Adult microglia were harvested from brains of 8 mo Cd11bCre;EP2"* (WT) and
Cd11bCre;EP2"** (EP2cKO) mice 48h after ICV administration of vehicle or ARy fibrillar peptides. (A)
Hierarchical cluster analysis of differentially regulated genes in the WT+AR4, vs WT+veh comparison is
shown. (B) Upstream regulator analysis was performed using Ingenuity Pathway Analysis (IPA) on
genes regulated 21.5-fold by ICV AR, (upregulated genes in pink and red, indicating induction of 1.5-
1.99 and >2-fold, respectively; downregulated genes in green, representing reduction =1.5-fold). NF-xB
and IRF7, as well as COX-2 and PGE; regulate transcriptional response to AR4,. (C) EP2 and COX-2
mRNA are upregulated in vivo by gPCR of purified adult microglia following ICV vehicle or A4, (n=7-8
per group; **p<0.01 and ***p<0.001). (D) KEGG pathways, including cell cycle, proteolysis, and
immune pathways, are significantly over-represented in the microglial EP2cKO vs WT comparison.
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Supplementary Figure 4. Immunoprecipitation of IGF-1R and IRS-1. For (A) and (B), SN:
supernatant, after immunoprecipitation (IP) with rabbit anti-IGF receptor antibody; IP Control:
hippocampal lysate IP with rabbit serum (total IP elution volume is 40 ul); IP IGF-1R: hippocampal
lysate IP with rabbit anti-IGF-1R with lanes in duplicate (40, 10, and 20upl); Lysate: non
immunoprecipitated lysate. IB: immunoblot. Arrowhead indicates correct molecular weight for IGF
receptor and phospho-IGF receptor. (C) Immunoprecipitated IRS-1 in hippocampus at 48h is shown
post ICV veh or ICV AR (ANOVA effect of genotype, p=0.052). (D) Levels of total IGF1 receptor
normalized to actin are unchanged between genotypes and treatment groups (n=6-9 per group). (E)
Order of phosphoproteins in PathScan (Cell Signaling) multi-antibody array slide. Phosphoproteins
marked with ** and bold are quantified in Figure 5D. (F) Representative array from each of the four
groups quantified in Figure 5D.
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Supplementary Figure 5. Immune factors are regulated by microglial EP2 48h following ICV ARg,.
Hippocampi were harvested from brains of 8 mo Cd11bCre;EP2"* (WT) and Cd11bCre;EP2'¥"
(EP2cKO) mice 48h after ICV administration of vehicle or A4, (n=7-8 per group). (A) IL1R (effect of
genotype: **p=0.0083 and effect of AR: ***p<0.0001; post hoc Bonferroni *p<0.05); IL1a (effect of
genotype:*p=0.032 and effect of AR: ***p<0.0001; post hoc *p<0.05); MIP1a (effect of genotype:p=0.07
and effect of AR: ***p<0.0001; post hoc *p<0.05); MIP1R (effect of genotype:p=0.06 and effect of AR:
***p<0.0001; post hoc p<0.05); RANTES (effect of genotype:***p=0.0009 and effect of AR: ***p<0.0001;
post hoc ***p<0.0001). (B) IL17A shows significant effect of AR only in WT genotype that is
suppressed in EP2cKO (effect of AR: *p=0.0136; post hoc *p<0.05 for effect of AR); eotaxin similarly
shows effect of A3 only in WT genotype (effect of AR: **p=0.0014; post hoc **p<0.01 for effect of AR).
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Supplementary Figure 6. Functional characterization of microglial EP2 conditional knockout
mice. Cohorts of 3-4 mo male Cd11bCre and Cd11bCre;EP2'"** (n=9-10 per genotype) were
examined for (A) weight and (B) distance traveled and time spent moving in an open arena over a 5
minute period. (C) The percent time spent moving along the periphery of the arena (thigmotaxis) over a
5 minute period was quantified as a measure of anxiety. (D) Y maze performance was quantified as
percent spontaneous alternation (average of all trials) and number of entries (n=9-10 male 3-4 mo mice

per genotype).
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Supplementary Figure 7. Regulation of Erk1/2 signaling in APP-PS1 and APP-PS1;EP2cKO
cerebral cortex at 9 mo of age. (A) Diagram of receptor tyrosine kinase (RTK) signaling pathways.
(B) Phosphorylation of Erk1/2 and RSK1 is increased in APP-PS1;Cd11bCre mice compared to
Cd11bCre controls. This increase is abrogated with microglial deletion of EP2 (n=4-5 per group;
*p<0.05; **p<0.01).
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