

Figure S1: MHC-II^{-/-} mice have normal B cell and $CD8^+$ T cell populations, but lack $CD4^+$ T cells. Flow cytometry of the deep cervical lymph nodes of wild type (**A**) and MHCII^{-/-} (**B**) mice showing CD4⁺ and CD8⁺ lymphocytes in the TCR β^+ population and CD19⁺B220⁺ B cells in the CD45⁺TCR β^- population. Numbers indicate percent CD4⁺ (upper left) and CD8⁺ (lower right), as a percentage of TCR β^+ cells and CD19⁺B220⁺ B cells as a percentage of the CD45⁺TCR β^- population.

Figure S2: No difference in contralateral, uninjured retinas of all mouse strains and experimental manipulations examined in this manuscript. (A) $MHCII^{-/-}$ mice injected with 3 x 10⁶ wild type CD4⁺ T cells on the day of injury exhibit no difference in neuronal counts in the uninjured retinas compared to those injected with saline. Retinal ganglion cell counts (% of $MHCII^{-/-}$) of $MHCII^{-/-}$ mice and $MHCII^{-/-}$ mice injected with wild type

 $CD4^+$ T cells as assessed by Fluoro-Gold staining (n = 3, wild type thymus; n = 3) MHCII^{-/-} thymus; Student's t-test). (B) MHCII^{-/-} mice implanted with wild type thymi exhibit no difference in neuronal counts in the uninjured retinas compared to those implanted with MHCII^{-/-} thymi. Retinal ganglion cell counts (% of MHCII^{-/-} + MHCII^{-/-} thymus) of MHCII^{-/-} mice implanted with either a MHCII^{-/-} or wild type thymi (six weeks after implantation) as assessed by Fluoro-Gold staining (n = 5, wild type thymus; n = 8 MHCII^{-/-} thymus; Student's t-test). (C) OTII/Rag1^{-/-} mice exhibit no difference in retinal ganglion cell number in the uninjured retinas compared to Rag1^{-/-} mice. Retinal ganglion cell counts (% of Rag1^{-/-}) of Rag1^{-/-} and OTII/Rag1^{-/-} mice assessed by Fluoro-Gold staining (n = 3, Rag1^{-/-}; n = 3, OTII/Rag1^{-/-}; Student's t-test). (D) IL-4^{-/-} mice exhibit no difference in retinal ganglion cell number in the contralateral retinas compared to wild type mice. Bar graphs represent retinal ganglion cell counts (% of wild type) of IL-4^{-/-} or wild type mice, assessed by Fluoro-Gold staining (n = 5, wild type; n = 5, IL-4⁻ ^{/-}; Student's t-test). (E) Mice transplanted with IL-4^{/-} bone marrow exhibit no difference in retinal ganglion cell number in the contralateral retinas compared to those transplanted with wild type bone marrow. Retinal ganglion cell counts (% of wild type \Rightarrow wild type) of wild type \Rightarrow wild type or IL-4^{-/-} \Rightarrow wild type bone marrow chimeras. Bone marrow was allowed to engraft for 6 weeks before optic nerve injury, and retinal ganglion cell counts were assessed by Fluoro-Gold staining (n = 3, wild type bone marrow; n = 3, IL- $4^{-/-}$ bone marrow; Student's t-test). (F) Rag $1^{-/-}$ mice receiving IL- $4^{-/-}$ CD 4^+ T cells demonstrate no difference in retinal ganglion cell number in the contralateral retinas compared to Rag1^{-/-} mice receiving wild type T cells. Retinal ganglion cell counts (% of Rag1^{-/-} mice injected with wild type T cells) of Rag1^{-/-} mice injected with either wild type or IL-4^{-/-} CD4⁺ T cells 3 weeks before optic nerve injury. Retinal ganglion cell counts were assessed by Fluoro-Gold staining (n = 7, wild type; n = 7, IL-4^{-/-} T cell injected; Student's t-test). (G) MyD88^{-/-} mice exhibit no difference in retinal ganglion cell number in the contralateral retinas compared to wild type mice. Retinal ganglion cell counts (% of wild type) of wild type and MyD88^{-/-} mice were assessed by Fluoro-Gold staining (n = 3, wild type; n = 3, MyD88^{-/-}; Student's t-test). (H) Mice receiving MyD88⁻ ^{/-} bone marrow exhibit no difference in retinal ganglion cell number in the contralateral retinas compared to those receiving wild type bone marrow. Retinal ganglion cell counts (% of wild type \Rightarrow wild type) of wild type \Rightarrow wild type or MyD88^{-/-} \Rightarrow wild type bone marrow chimeras. Bone marrow was allowed to engraft for 6 weeks before optic nerve injury, and retinal ganglion cell survival was assessed by Fluoro-Gold staining (n = 3, n)wild type bone marrow recipients; $n = 3 \text{ MyD88}^{-/-}$ bone marrow recipients; Student's ttest).

Figure S3: Classical TLR ligands do not increase Gata3 mRNA expression in $CD4^+$ T cells. Gata3 expression (mean ± s.e.m.) in sorted wild type $CD4^+$ T cells co-cultured with Pam3CSK4 (A), zymosan (B), LPS (C), flagellin (D), FSL-1 (E), ssRNA (F), CpG (G), or HMGB1 (H) at the indicated concentrations for 3 days (n = 3 per group, representative of two experiments).

Figure S4: *IL-4* induces axon elongation in cultured neurons (**A**, **B**) The application of a single dose of 100 pg/ml recombinant IL-4 significantly increased the length of axons (mean \pm s.e.m.) of isolated primary neurons. Representative microphotographs (**A**) and quantification of axonal length (**B**) of isolated neurons treated with PBS or a single dose of 100 pg/ml recombinant IL-4. Scale bar: 20 µm. (n[well] = 4 per group. ***, p < 0.001; One-way ANOVA with Bonferroni's post-test).

Figure S5: *IL-4R expression on spinal cord axons.* Axons in longitudinal sections of the spinal cord show tubular, membrane-related IL-4R expression (green) pattern, adjacent to the stained axonal neurofilament (SMI, red). The presumed membrane is indicated by dotted lines. Two representative axons (left and right panels) are provided. Scale bar: 1µm.

Perilesional (tangential section)

Caudal (5mm)

Figure S6: T cells migrate caudally from the lesion site after injection. CFDA_{SE} labeled T cells were injected into the site of injury immediately after spinal cord injury. Spinal cords were isolated and visualized for CFDA_{SE} labeled T cells 6 days after the lesion. (Scale bars: 15 µm). T cells were found at least 5 mm away from the site of injection, where axonal regrowth was observed.